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Sweden; 4Department of Radiation Oncology, Weill Cornell Medicine, New York, NY; and 5Cell Therapy Institute, Nova Southeastern University,

Fort Lauderdale, FL

Key Points

• Cytokine-activated NK cells
display distinct gene
expression programs in
response to cytokine
withdrawal.

• IL-15 sustains antitumor
functions of NK cells through
mTOR-governed metabolic
processes.

Treatment of hematological malignancies by adoptive transfer of activated natural killer

(NK) cells is limited by poor postinfusion persistence. We compared the ability of

interleukin-2 (IL-2) and IL-15 to sustain human NK-cell functions following cytokine

withdrawal to model postinfusion performance. In contrast to IL-2, IL-15 mediated

stronger signaling through the IL-2/15 receptor complex and provided cell function

advantages. Genome-wide analysis of cytosolic and polysome-associated messenger

RNA (mRNA) revealed not only cytokine-dependent differential mRNA levels and

translation during cytokine activation but also that most gene expression differences

were primed by IL-15 and only manifested after cytokine withdrawal. IL-15 augmented

mammalian target of rapamycin (mTOR) signaling, which correlated with increased

expression of genes related to cell metabolism and respiration. Consistently, mTOR

inhibitionabrogated IL-15–inducedcell functionadvantages.Moreover,mTOR-independent

STAT-5 signaling contributed to improved NK-cell function during cytokine activation but

not following cytokinewithdrawal. The superior performance of IL-15–stimulatedNKcells was also observed using a clinically applicable

protocol for NK-cell expansion in vitro and in vivo. Finally, expression of IL-15 correlatedwith cytolytic immune functions in patientswith

B-cell lymphoma and favorable clinical outcome. These findings highlight the importance of mTOR-regulated metabolic processes for

immune cell functions and argue for implementation of IL-15 in adoptive NK-cell cancer therapy. (Blood. 2016;128(11):1475-1489)

Introduction

Natural killer (NK)-cell–based immunotherapy is a potential thera-
peutic modality in patients with advanced cancers as transfer of
haploidentical NK cells induces beneficial responses in patients with
hematological malignancies; and leukemia clearance correlates with
persistence and in vivo expansion of NK cells after infusion.1-3 Thus,
sustained NK-cell activity in vivo likely represents a therapy
performance-limiting factor.

The type I cytokine family members interleukin-2 (IL-2) and IL-15
are essential in controlling homeostasis of innate and adaptive
immunity.4 Despite their different protein sequences, IL-2 and IL-15
bind to shared b (IL-2/IL-15Rb) and g (gc) subunits, but engage
separate a-chain receptors (IL-2/IL-15Ra).5 Although IL-2/IL-15
receptor complexes activate similar signal transduction cascades,
they display distinct activities in vivo. Although IL-2 preferentially
expands regulatory T cells and CD41 helper T cells,6 IL-15 supports
development of central memory T cells7,8 and NK cells.9,10

Furthermore, sustained persistence of infused NK cells is linked to
increased levels of endogenous IL-15 following treatment with high-
dose cyclophosphamide and fludarabine.1 Thus, NK-cell activation

with IL-15 may have beneficial effects on their postinfusion activity.
The molecular mechanisms underlying distinct effects from IL-2 and
IL-15 onNK-cell proliferation and persistence are, however, unknown.

Recently, studies of “translatomes” (ie, the pool of translated mes-
senger RNAs [mRNAs]) using polysome or ribosome profiling have
highlighted mRNA translation as a key mechanism controlling gene
expression and influencing a wide range of functions in immune
cells.11-13 Changes in translational efficiency affect protein levels
without changes in steady-state mRNA levels, thereby enabling rapid
adaptation to environmental changes essential for a functional immune
system.13 Thus, profiling mRNA translation may be essential to ef-
ficiently link observed immune cell phenotypes to underlying gene
expression programs.

Here, we uncover IL-15–mediated improved post-cytokine-
withdrawal functionsofNKcells associatedwithaugmentedmammalian
target of rapamycin (mTOR) signaling and an IL-15–primed gene
expression program. Such detailed mechanistic and functional un-
derstanding of IL-15’s impact on humanNK cells supports implementa-
tion of IL-15 in adoptive NK-cell therapy.
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Materials and methods

Patient gene expression data sets

We used a recent data set14 to investigate the role of IL-15 in patients
(supplemental Methods, available on the BloodWeb site).

Cell cultures

K562 (short tandem repeatfingerprint in supplemental Table 1) andEpstein-Barr
virus (EBV)-transformed B cells were maintained in Iscove modified Dulbecco
medium (Invitrogen) supplemented with 10% heat-inactivated fetal bovine
serum (Invitrogen). Prior to NK-cell isolation, T cells were removed by CD3
depletion (RosetteSep kit from StemCell Technologies) during Ficoll gradient
centrifugation. Primary human NK cells were subsequently isolated by
magnetic-activated cell sorting purification (purity.98%; Miltenyi Biotec).

Cytokine activation and expansion of NK cells

To activate NK cells, 18.3 ng/mL recombinant human IL-2 (50% effective dose
,0.1 ng/mL; Peprotech) or recombinant human IL-15 (50% effective dose
,0.1ng/mL;BiologicalResourcesBranch,NationalCancer Institute)wasadded
to 1 mL of Iscove modified Dulbecco medium supplemented with 10% human
ABserumcontaining23106NKcells in24-well plates for 48hours.Toevaluate
the molecular mechanisms, dimethyl sulfoxide (DMSO), the mTOR inhibitor
torin-1 (1 mM; Tocris Biosciences), the STAT-3–selective inhibitor S3I-201
(100mM; Sigma-Aldrich), or the STAT-5–selective inhibitor CAS285986-31-4
(400 mM; Merck) was added during the activation. For in vitro expansion of
human primary NK cells, a clinically applicable protocol with minor modifi-
cations was used15 (see supplemental Methods).

NK-cell function

The cytolytic activity of NK cells was measured using the chromium (51Cr)
release assay. Proliferation of NK cells was determined by 3H-thymidine
incorporation (see supplemental Methods). To evaluate levels of soluble
interferon-g (IFN-g) released by NK cells, culture media was harvested and
quantified using enzyme-linked immunosorbent assay (MabTech).

Flow cytometry

Fluorochrome-conjugatedantibodies and labelingdyes are listed in supplemental
Table 2 and were applied as previously described.16 Fluorescently labeled cells
were acquired in a BD LSRII flow cytometer and analyzed by FlowJo software
(TreeStar; see supplemental Methods).

Oxygen and glucose consumption

Five million primary human NK cells were activated with 18.3 ng/mL IL-2 or
IL-15 in a 12-well plate, in presence of DMSO, torin-1 (1 mM), or torin-1
(1mM)plusCAS285986-31-4 (400mM).Oxygen consumption rate (OCR) and
extracellular acidity rate (ECAR) were determined using the XF cell Mito
Stress Test kit and the Seahorse XF analyzer (Seahorse Bioscience; see
supplemental Methods).

RNA isolation and RNAseq library generation

Cytosolic and polysome-associated RNA was collected from 2 to 4 million
NK cells per donor and treated as described.17 smartSeq2 RNA-sequencing
(RNAseq) libraries were prepared as described (from step 518). Pooled libraries
were sequenced (50-bp paired-end reads generated with Illumina HiSeq 2500;
see supplemental Methods).

RNAseq data analysis

RNAseq reads were mapped to the hg19 genome assembly using HISAT19 and
quantified as described using default settings.20 Data were transformed using
r-log, and a randomvariancemodel20was used to identify differential expression
using data from cytosolic or polysome-associated mRNA while changes in
polysome-associated mRNA that were independent of changes in cytosolic

mRNA levels (ie, differential translation) were identified using anota.21

Generally Applicable Gene-Set Enrichment was used to identify enrichment of
geneswith functions annotated by theGeneOntologyConsortiumusing data for
all genes as input,22 whereas GOstats was used to identify enrichment in
identified gene subsets (see supplemental Methods).

In vivo experiments

All experiments were approved by the ethical review board at Karolinska
Institutet (ethical approval #N175/15). NOD/SCID/g2/2 (NSG) mice (bred and
maintained at the Department of Microbiology, Tumor and Cell Biology,
Karolinska Institutet) were injected intraperitoneally with 13 106 to 5 3 106

IL-2– or IL-15–expanded NK cells. Prior to injection, NK cells were labeled for
20minuteswith 12.5mg/mL of the near infrared dyeDiIC18(7) (1,19-dioctadecyl-
3,3,39,39-tetramethylindotricarbocyanine iodide [DiR; Invitrogen]). On day 4 to 5
after infusion, livers, lungs, and spleens were resected, mechanically homoge-
nized, passed through a 70-mm nylon mesh filter, and evaluated for live-dead
fixable aqua dead cell marker (Invitrogen) and anti-CD56-PeCy7 (clone HCD56;
Biolegend) using a BDLSRII flow cytometer and analyzed by FlowJo (TreeStar)
(see supplemental Figure 7A for gating strategy).

Statistics

Data were analyzed using Prism (GraphPad) and evaluated for normality before
appropriate Student t test or nonparametric Mann-Whitney U tests were
performed. Data from at least 3 donors and 3 independent experiments are
presented as mean 6 standard deviation (SD). Representative fluorescence-
activated cell sorter (FACS) analysis histogramswere selected to resemble across
replicate mean values. The association between IL-15 and GZMB/PRF1 was
quantified by Spearman correlation.We explored the association between IL-15
expression and risk of death using martingale residuals plots.23,24 Patients were
grouped according to IL-15 expression and IL-15’s association with overall
survival was assessed using a score (log-rank) test and visualized using Kaplan-
Meier plots.

Results

IL-15 primes for survival and cytolytic activity in human

NK cells

We reasoned that an in vitro model assessing IL-15 and IL-2 effects
after their withdrawal may allow us to uncover cytokine-specific
properties relevant for postinfusion performance of NK cells. At the
selected concentration, activation with IL-15 or IL-2 induced a
comparable increase in primary human NK-cell proliferation and
cytolytic activity (P , .05; Figure 1A). However, at suboptimal
cytokine concentrations (,9.15 ng/mL), IL-15 was superior to IL-2 in
maintaining NK-cell proliferation (data not shown). After cytokine
withdrawal, IL-15–treated NK cells maintained a higher level of
cytotoxicity (P, .05; Figure 1B) and showed lower levels of apoptosis
(P , .05; Figure 1C) compared with cells treated with IL-2.
Furthermore, reexposure of IL-15–treatedNK cells with IL-15 resulted
in higher levels of CD251/CD1371–activated NK compared with
reexposure of IL-2–treated NK cells with IL-2 (data not shown). This
suggests that IL-15 and IL-2 differ in their ability to sustain cytokine
signaling, induce expression of cytokines and/or their receptors, and/or
induce STAT-3 and/or -5 phosphorylation. Indeed, IL-15 induced
expression of IL-2Ra (CD25), but not IL-15Ra or IL-2/15Rb
(P , .001), retained membrane binding of IL-15 and IL-2, increased
phosphorylation of STAT-3 (Y705) and STAT-5 (Y694), and elevated
expressionof theantiapoptoticproteinBcl-2comparedwith IL-2–activated
NK cells (Figure 1D-E; supplemental Figure 1A).

Critically, after cytokine withdrawal, the expression levels of
membrane-bound cytokines, cytokine receptors, andBcl-2were higher
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in IL-15–activatedNKcells comparedwith IL-2–activatedNKcells. In
contrast, similar expression of IL-15 receptor a (IL-15Ra), phosphor-
ylated STAT-3 (pSTAT-3), and pSTAT-5 were observed between
IL-2– and IL-15–treated NK cells after cytokine withdrawal (sup-
plemental Figure 1B). Notably, the frequencies of CD56bright/CD16neg

NK cells were comparable after IL-2 or IL-15 activation. However,
after cytokine withdrawal, the percentages of CD56bright NK cells
increased more in IL-15– than IL-2–activated NK cells (supplemental
Figure 1C). Thus, IL-15 inducesNK-cell characteristics consistentwith
improved post-cytokine-withdrawal activity.

IL-15 and IL-2 differentially modulate steady-state mRNA

levels and translational efficiencies in NK cells after

cytokine withdrawal

To explore why stimulation with IL-15 results in superior function
of NK cells after cytokine withdrawal compared with IL-2, we
assessed steady-state cytosolic mRNA levels (commonly referred
to as the transcriptome although both transcription and RNA
degradation modulate such mRNA levels) and the translatome
(by measuring polysome-associated mRNA levels, ie, mRNAs
associated with .2 ribosomes) in NK cells from 6 donors after

cytokine activation and following their withdrawal using RNA-
seq,12 resulting in 5 complete replicates (Figure 2A). Because
polysome-associated mRNA levels reflect changes in translational
efficiency and steady-state mRNA levels, we used anota analysis,25

which adjusts changes in polysome-associated mRNA for those
observed in steady-state mRNA to identify genes that are regulated
via differential translational efficiency (hereafter “differential
translation”). The data set (supplemental Table 3) showed good
treatment effects as indicated by principal components analysis
(supplemental Figure 2A-B) and, consistent with FACS analysis,
both polysome-associated and cytosolic IL-2Ra mRNA levels were
increased in IL-15–treated cells as compared with IL-2–treated cells
before and after cytokine withdrawal whereas expression of CD56
remained largely unchanged (Figure 2B; supplemental Figure 2C). As
differences in cytolytic ability were most notable after cytokine
withdrawal, false discovery rates (FDRs) were calculated for
differential expression between IL-15– and IL-2–treated NK cells
under this condition using data from polysome-associated or cytosolic
mRNA, or differential translation using anota analysis. Substantial
congruent changes in polysome-associated and cytosolic mRNA was
observed and a gene subset was regulated by differential translation
(Figure 2C-D).
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Figure 1. IL-15 primes NK cells with improved survival and cytolytic activity following cytokine withdrawal. Primary human NK cells were isolated from fresh

peripheral blood mononuclear cells (PBMCs) and activated with IL-2 or IL-15 (both at 18.3 ng/mL) for 48 hours. (A) Cytolytic capacity against NK-sensitive target K562

(effector-to-target [E:T] ratio 5 5:1) and proliferation of resting or cytokine activated human NK cells were measured by chromium release assay and thymidine incorporation

assay, respectively. Following cytokine activation for 48 hours, NK cells were cultivated without cytokines (cytokine withdrawal) for an additional 24 hours and tested for their

(B) cytolytic activity against K562 cells or (C) viability. Flow cytometry analysis of NK cells following cytokine activation including (D) frequencies of CD251 cells, (E) expression of

membrane-bound cytokines, and cytokine receptor complexes; intracellular expression of Bcl-2; and phosphorylation of STAT-3 (Y705) and STAT-5 (Y694). Results from

multiple donors (n . 5) were summarized and are presented as mean 6 SD. *P , .05; ***P , .001; Mann-Whitney nonparametric U test. cyt., cytokine; n.s., not significant.
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IL-15 modulates expression of genes related to the cell cycle

and mitochondrial function

Because polysome-associated mRNA levels reflect changes in both
cytosolic mRNA levels and differential translation, subsequent analy-
sis was focused on data from polysome-associated mRNA while
monitoring which changes weremediated via differential translation as
determined by anota analysis. One thousand two hundred twelve
mRNAs showed significantly different polysome-association (FDR
,0.15 and fold change .1.5) with minor donor heterogeneity
(Figure 2E) in IL-15– vs IL-2–treated NK cells after cytokine
withdrawal (639 upregulated genes and 573 downregulated genes)
out of which 350 genes (29%) were differentially translated. Gene set
enrichment analysis revealed selective upregulation of genes related
to mitochondrial functions (eg, electron transport chain and cellular
respiration) and cell cycle (supplemental Figure 3; Figure 2F).
Mitochondria-related genes were largely upregulated by IL-15 with
only a fewexceptions includingnegative regulators ofmetabolismsuch
as TXNIP. In contrast, genes involved in cell cycle regulation were
upregulated or downregulated. Nevertheless, several promotors for cell
survival and proliferation including BIRC5 (Survivin), TOP2A, CKS2,
and RACGAP1were upregulated by IL-15 whereas antiproliferative or

proapoptotic proteins such as TGFB1, ATM, and PTCH1 were
downregulated. Thus, gene expression signatures are consistent with
improved functional activity of NK cells after cytokine withdrawal.

IL-15 orchestrates gene expression programs in NK cells

via priming

The observed differences in gene expression after cytokine withdrawal
between cells activated with IL-15 or IL-2 can be the result of
“cytokine-induced” (ie, altered during cytokine activation and
maintained after cytokinewithdrawal) or “cytokine-primed” regulation
(ie, emerging following the stress-response associated with cytokine
withdrawal). Indeed, clustering of identified differentially expressed
genes using both pre- and post-cytokine-withdrawal data identified
4 distinct groups (Figure 3A): cytokine-primed upregulated (IL-15 vs
IL-2) genes (n5 466), cytokine-primed downregulated genes (n5286),
cytokine-induced upregulated genes (n 5 173), and cytokine-induced
downregulated genes (n 5 287). Thus, surprisingly, IL-15 primarily
regulates gene expression in NK cells via cytokine priming (62% of
all genes). Intriguingly, cytokine-primed genes were preferentially
regulated by differential translation as compared with cytokine-induced
genes (1.7-fold, Fisher exact test P 5 .0002). Moreover, each
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regulatory mode targeted a specific set of functions: cytokine-primed
upregulated genes were enriched for functions related to respiration,
metabolic processes, and translation; cytokine-primed downregulated

genes were enriched for transcription, cell signaling, and developmental
processes; cytokine-induced upregulated genes were enriched for cell
cycle functions; and cytokine-induced downregulated genes were
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enriched for processes including cell motility, development, and cell
signaling (Figure 3B).Thus, IL-15orchestrates gene expressionprograms
via cytokine-induced and cytokine-primed modes of regulation thereby
targeting distinct cellular functions consistent with improved NK-cell
activity.

mTOR mediates improved metabolic and cytotoxic functions

following cytokine withdrawal in IL-15–activated human

NK cells

Our finding that cytokine-primed upregulated genes are enriched
for regulation via differential translation and mitochondria-related

functions parallels recent data on translational control of mito-
chondrial function via selective translation of mRNAs encod-
ing mitochondria-related proteins downstream of the mTOR
pathway.25,26 Thus, it is plausible that differential activation of
mTOR signaling by IL-2 or IL-15 could, at least partly, explain
observed gene expression differences and associated cellular
phenotypes.25,27 Consistently, IL-15 induced increased phosphor-
ylation of the mTOR substrate S6K, as compared with IL-2 and
IL-15, associated S6K phosphorylation was maintained, albeit at a
lower level, after 24 hours of cytokine withdrawal (Figure 3C). We
therefore investigated the impact of mTOR activity on NK-cell
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function using the selective active site mTOR inhibitor torin-1
during in vitro cytokine activation of primary human NK cells.

NK cells treated with IL-15 showed a higher basal and maximal
cellular respiratory function compared with those treated with IL-2
(supplemental Figure 4A). Torin-1 treatment eliminated IL-15–
associated S6K phosphorylation pre- and post-cytokine withdrawal
(Figure 3C) and reduced respiratory activity inducedby IL-15 (P, .05;
Figure 4A; supplemental Figure 4B). Moreover, torin-1 reduced the
expression intensity (but not frequency) of CD25 (P, .05; Figure 4B)
and expression of membrane-bound IL-2 (P , .01) and IL-15Ra
(P, .001; Figure 4C) in IL-15–treatedNKcells. In contrast, torin-1 did

not affect IL-15–associated expression of membrane-bound IL-15
or expression of Bcl-2 or IL-2/15Rb (Figure 4C; supplemental
Figure 4C). Torin-1 also reduced the cytolytic activity by NK cells
activated with IL-2 (P , .001; Figure 4D) or IL-15, but for the latter
only at low effector-to-target ratios. Critically, torin-1 treatment
reversed the improved postwithdrawal cytolytic activity of IL-15–
activated, but not IL-2–activated, NK cells at all effector-to-target ratios
tested to a level observed in IL-2–activated NK cells post-cytokine
withdrawal (P, .01; Figure 4D). Thus, augmented mTOR activity
is essential for improved cytotoxic andmetabolic activities ofNKcells
treated with IL-15 following cytokine withdrawal.
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STAT-5 mediates mTOR-independent NK-cell phenotypes

during IL-15 activation but not following withdrawal

As mTOR inhibition did not completely reduce the cytolytic
ability of IL-15–activated NK cells in the presence of cytokines,
additional pathways are likely involved. In contrast to reduced
STAT-3 phosphorylation, STAT-5 phosphorylation was higher
in IL-15–activated NK cells as compared with those activated by
IL-2 also in the presence of torin-1 (P , .05; Figure 5A). As
inhibition of STAT-5 or mTOR reduced STAT-3 phosphoryla-
tion (supplemental Figure 5A), we compared STAT-5 plus
mTOR inhibition to mTOR inhibition alone to study the role
of STAT-5 signaling (supplemental Figure 5B). Indeed, this
treatment reduced the cytolytic functions of IL-15–activated NK
cells at all effector-to-target ratios (P, .05; Figure 5B). Notably,
concurrent inhibition of STAT-5 and mTOR did not influence the
cytolytic activity of NK cells after cytokine withdrawal in
comparison with torin-1 alone, indicating that IL-15–primed
prolonged NK-cell activation is mTOR dependent but STAT-5
independent (Figure 5B). Moreover, STAT-5 and mTOR in-
hibition reduced expression of CD25 and intracellular Bcl-2 (P,
.05; Figure 5C-D) but enhanced expression of common IL-2/
15Rb and membrane-bound IL-2 on IL-15–activated NK cells as
compared with mTOR inhibition alone (P , .01; supplemental
Figure 5C). Consistent with the role of mTOR in maintaining

metabolic processes, mitochondrial and glycolytic properties of
activated NK cells were not modulated by additional STAT-5
inhibition (Figure 5E). Thus, although STAT-5 affects some
IL-15–associated NK-cell phenotypes, cytotoxic and metabolic
improvements after cytokine withdrawal mainly depend on mTOR
and not STAT-5 signaling.

NK cells expanded with IL-15 are resistant to cytokine

withdrawal

Next, we sought to investigate whether NK cells expanded in the
presence of IL-15 using a clinically approved protocol would also
display improved functions compared with those expanded with IL-2.
Although no difference inNK-cell yieldwas observed (supplemental
Figure 6A), expansion with IL-15 resulted in higher expression of
CD25 on NK cells as compared with IL-2 (Figure 6A). After
cytokine withdrawal, the expression of CD25 and several other
activating receptors including CD69, NKp30, NKp44, CXCR3, and
NKG2D remained elevated on IL-15–expanded NK cells com-
pared with IL-2–expanded NK cells (Figure 6B). Although the
release of IFN-g was comparable between IL-2– and IL-15–expanded
NK cells (supplemental Figure 6B), NK cells expanded with IL-15
showed higher lytic ability after cytokine withdrawal (Figure 6C).
To investigate whether NK cells expanded with IL-15 would have
improved persistence in vivo, NK cells were injected intraperitoneally
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into NSG mice. Indeed, the frequency of IL-15–expanded human
NK cells was higher in livers compared with IL-2–expanded NK
cells 4 to 5 days postinfusion (Figure 6D). Although no statistically
significant differences (P 5 .27) were observed in lungs, the
median frequency of NK cells was 0.16% and 0.05% for mice
injectedwith IL-15–NKand IL-2–NK, respectively. No differences
in NK-cell frequencies between mice injected with IL-15–
expanded and IL-2–expanded NK cells were observed in the
spleens (supplemental Figure 7B).

After adoptive NK-cell therapy, patients are often treated with
recombinant IL-2 to sustain NK cells in vivo. To mimic this, the
effect of intermediate cytokine dosage on NK cells expanded
in different conditions was investigated. Short-term exposure of
IL-15 substantially improved activation of IL-2–expanded NK
cells, as demonstrated by enhanced expression of various surface
markers (Figure 6E; supplemental Figure 6C). In contrast, the
same dose of IL-2 failed to sustain activation of expanded NK
cells in either condition (Figure 6E; supplemental Figure 6C).
This effect was not mediated through IFN-g (supplemental
Figure 6D), but relied on STAT-5 signaling (supplemental
Figure 6E).

The expression of IL-15 is associated with improved clinical

outcome in patients with B-cell lymphoma

To evaluate the prognostic potential of IL-15 expression, a publicly
available data set assessing steady-statemRNA levels in tissue samples
from patients with B-cell lymphomawas reanalyzed.14 The effect of
IL-15 expressiononoverall survivalwas exploredbyplotting residuals
of an empty Cox model (interpreted as excess deaths23) against IL-15
expression. This revealed that low expression of IL-15 is associated
with worse outcome (Figure 7A). This was also observed when
comparing survival of 3 patient subgroups based on IL-15 expression
(Figure 7B). Notably, IL-15 mRNA levels correlated with the ex-
pression of cytotoxic proteins granzyme B (R5 0.54; P, .001) and
perforin 1 (R 5 0.37; P , .001) (Figure 7C-D). The corresponding
analysis for IL-2 could not be performed as the DNA-microarray
signals for IL-2 did not exceed background levels.

Discussion

Persistence of transferred NK cells, commonly activated with IL-2, is
associated with clinical responses in patients with hematological
malignancies.1,28 Various cytokines including IL-7, IL-15, IL-12,
IL-18, and IL-21 have been assessed for improvingNK-cell activity.29

IL-15 has been of particular interests as it is essential for NK-cell
development and mice lacking IL-15,9 IL-15Ra,30 IL-2Rb,31 or gc

32

subunits showed reduced NK-cell frequency. In contrast, NK cells in
IL-2–deficient mice remained functional.32,33 Nevertheless, several
studies indicate that IL-15 does not provideNKcellswith proliferative
or cytolytic advantages compared with IL-2.33,34 We confirm that
short-term IL-2– or IL-15–activated or expanded NK cells show
comparable activities. IL-15 has been shown to augment intracellular
signaling and recruit antiapoptotic proteins, which could support
functional durability of NK cells.35,36 This agrees with studies
showing that IL-15–activated human NK cells are functionally
resistant to steroid inhibition37 and sustain their superior in vivo
proliferation.1,35,38

In T cells, IL-15 promotes survival via upregulating Bcl-239,40 and
antioxidant proteins41,42 and limiting proapoptotic caspase-3.43 In
addition, we show that the expression of activatingNK-cell receptors is
upregulated on IL-2–expanded NK cells after short-term in-
cubation with IL-15, possibly contributing to the result that, upon
injection into immunodeficient mice, the frequency of IL-
15–expanded NK cells in the liver was higher as compared with
IL-2–expanded NK cells. Thus, our findings support implemen-
tation of IL-15 into current adoptive cellular therapy protocols,
either during the expansion phase or infused at low doses after
NK-cell transfer.

To date, a few studies have explored in vivo administration of
IL-15. The study by Conlon et al concluded that IV infusion of
0.3 mg/kg per day for 12 consecutive days was the maximum-
tolerated dose and resulted in a 10-fold increase in NK-cell
numbers.10 Similarly, subcutaneous or IV intermittent administra-
tion of IL-15 was shown to be safe and to expand NK cells in
nonhuman primates.44,45 Thus, these reports and our data showing
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Figure 6. NK cells expanded with IL-15 are resistant

to cytokine withdrawal. For expansion, 0.5 3 106 to

2 3 106 purified NK cells were cultured at a 1:10 ratio

with irradiated EBV-transformed B cells in X-VIVO

20 medium supplemented with 10% heat-inactivated

human AB serum, in the presence of recombinant human

IL-2 (1000 IU/mL; Proleukin) or IL-15 (61 ng/mL). Fresh

media supplemented with AB serum and cytokines

(500 IU/mL for IL-2 or 30.5 ng/mL for IL-15) was added

on day 5 and thereafter every 3 days and cells were

harvested between 11 and 14 days. Expression levels of

various activation markers on NK cells (A) freshly after

expansion or (B) following 48 hours of cytokine with-

drawal were measured by FACS. (C) Comparison of

cytolytic capacity of IL2-NK (circles, dashed line) and

IL15-NK (squares, solid line) cells against K562 target

cells after expansion or cytokine withdrawal (48 hours).

(D) NSG mice were injected (intraperitoneally) with

1 3 106 to 5 3 106 DiR-labeled IL-2– or IL-15–expanded

NK cells. The liver was resected 4 to 5 days after injec-

tion of NK cells. Single-cell suspension of the liver was

stained with a live-dead fixable aqua dead cell stain and

anti-CD56 and thereafter acquired by flow cytometry. The

frequency of NK cells calculated is based on viable

CD561/DiR1 cells. Each symbol represents 1 mouse

injected with IL2-NK (n 5 9) or IL15-NK (n 5 8). Error

bars show mean and SD and P value is calculated by a

t test. (E) NK cells expanded with IL-2 or IL-15 were

cultured in the same or alternative cytokines for 24 hours

and expression intensities of various activating markers

including CD25, CD69, NKp30, and DNAM-1 were

measured by FACS. Results from 4 independent ex-

pansions were summarized and presented as mean6SD.

Representative histograms were chosen based on prox-

imity to average values. *P , .05; **P , .01; ***P , .001;

Mann-Whitney nonparametric U test.
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that IL-15 can reactivate NK cells after cytokine withdrawal
suggest the use of low-dose intermittent treatment with IL-15.

Because of potential organ-detrimental effects of inappropriately
activated immunecells, it is likely essential that gene expression circuits
in immune cells are governed by several regulatory levels including
transcription, mRNA stability, and mRNA translation.12,13 This also
implies that for a more complete understanding of immune cell
functions each of these regulatory levels needs to be assessed.

Although measurement of steady-state mRNA levels (ie, transcrip-
tomes) estimates the combined regulatory impact from transcription
and mRNA stability, such studies will not capture regulation occurring
via differential translation. Studies of translatomes are therefore
powerful tools to enable a more complete understanding of how
immune cell functions are controlled. Studying the translatome is likely
particularly important when phenotypes involving modulated mTOR
signaling are included as mTOR primarily regulates gene expression
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residuals of the survival outcome in an empty Cox model) vs IL-15 gene expression (log2); tertile categories are separated by vertical dashed lines: low (,4.9), intermediate

(4.9-5.9), high (.5.9). A loess curve with 95% confidence bands (gray) is indicated. (B) Kaplan-Meier plot for overall survival of patients categorized according to tertiles

of IL-15 expression. (C) Correlation between IL-15 and Granzyme B (GZMB) or (D) Perforin 1 (PRF1) mRNA levels visualized using scatter plots and fitted linear model

estimates with 95% confidence bands. Rs, Spearman rank correlation coefficient.
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via translational control.46 This is consistent with the result that;30%
of the observed differences in gene expression between IL-2– and IL-
15–activated NK cells, which leads to differential mTOR activation,
were mediated via differential translation but also underlines that
other mechanisms acting at the level of transcription or mRNA
stability largely shape the proteome in IL-15–activatedNKcells. The
time point we selected following cytokine withdrawal is relatively
late (24 hours) whereas most studies of the effects of mTOR on gene
expression are performed at earlier time points (2-12 hours) and the
proportion of genes regulated via different mechanisms is likely to
change over time.

It was recently demonstrated that activation with IL-15 or IL-2
resulted in similar steady-state mRNA profiles in murine CD81

T cells.47 In contrast, we show striking steady-state mRNA differences
and differential translation between IL-15– and IL-2–activated human
NK cells. Intriguingly, by comparing cells during activation and
after cytokine withdrawal, we discovered 2 modes for how IL-15
orchestrates gene expression programs. While IL-15 directly induces
expression changes in a distinct set of genes, it also primes NK cells
to respond differently to cytokine withdrawal as compared with
IL-2. Although both modes of regulation (ie, induced and primed) in-
volve alterations in steady-statemRNAlevels and translation, priming is
to a larger extent mediated via translation. This is consistent with
posttranscriptional programs being essential for efficient adaptation to
changes in the environment, such as stress. Moreover, induced and
primedmodes of regulation coordinate distinct cellular functions where
priming appears important for superior postwithdrawal capabilities by
stimulating selective expression of, for example, mitochondria-related
genes.48

One of the key pathways that targets mRNA translation and
regulates cell proliferation and metabolism is the mTOR path-
way.25,46,49,50 Although the precise mechanisms remain elusive,51

recent findings provide evidence that IL-15 activates multifaceted
metabolic activities during maturation and survival of NK cells via
mTOR.27,51 Indeed, we found that selective inhibition of mTOR
decreases recruitment of survival signals and abolishes metabolic and
functional advantages of IL-15–activated NK cells. These results
suggest that NK-cell metabolic activity associates with antitumor
immunity.48 Consistently, Keppel et al recently demonstrated that
IL-15 potentiates glycolytic functions on human NK cells which are
essential for their effector functions.52 Furthermore, Chang et al showed
that tumor-infiltrating lymphocytes that regained glycolytic potential
after checkpoint blockade therapy are more efficient in eliminating
tumor cells.53 In this context, it would be of interest to monitor NK-cell
activity in patients treated with mTOR inhibitors, such as rapalogs.
Although such data are scarce, Sarkaria et al reported, in agreement
with herein presented data, robust suppression of NK, T, and B cells
in patients with glioblastoma multiforme after treatment with a
combination of temsirolimus with chemoradiation.54 Taken together,
high glycolytic capacity appears to enable NK cells to sustain their in
vivo performance.

IL-2 and IL-15 are potent in eliciting signaling transduction through
STAT-3 and STAT-5.4,5 mTOR has been reported to phosphorylate
STAT-3 at S727, which increases STAT-3 transcriptional activity,55,56

and, under someconditionsof augmentedmTORsignaling, alsoY70557

whichwas assessed in this study.We identify enhancedphosphorylation
of STAT-3 and -5 in human NK cells by IL-15 prior to cytokine
withdrawal and, consistent with the ability of mTOR to phosphorylate
STAT-3 at Y705, mTOR inhibition reduced STAT-3 Y705 but not
STAT-5 phosphorylation. Indeed, mTOR-independent STAT-5 activa-
tion was necessary for some NK-cell functions during cytokine
activation but not following cytokine withdrawal. Although

combined inhibition of STAT-5 andmTOR abolishes some favorable
phenotypes, no additional impact was observed on metabolic or
cytotoxic activities.

In conclusion, this study adds to our understandings about es-
tablishment and maintenance of tumor-reactive NK cells and
support clinical implementation of IL-15 for adoptive NK-cell
therapy. More broadly, our studies suggest that a large aspect of
cytokine-mediated gene expression programs and downstream
cellular functions, including antitumor capacity, are overlooked if
postactivation conditions are omitted. This is likely not limited to
NK cells and should hence be considered in similar studies of
immune cells.
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27. Marçais A, Cherfils-Vicini J, Viant C, et al. The
metabolic checkpoint kinase mTOR is essential
for IL-15 signaling during the development and
activation of NK cells. Nat Immunol. 2014;15(8):
749-757.

28. Miller JS. Therapeutic applications: natural killer
cells in the clinic. Hematology Am Soc Hematol
Educ Program. 2013;2013:247-253.

29. Cheng M, Chen Y, Xiao W, Sun R, Tian Z.
NK cell-based immunotherapy for malignant
diseases. Cell Mol Immunol. 2013;10(3):230-252.

30. Lodolce JP, Boone DL, Chai S, et al. IL-15
receptor maintains lymphoid homeostasis by
supporting lymphocyte homing and proliferation.
Immunity. 1998;9(5):669-676.

31. Suzuki H, Duncan GS, Takimoto H, Mak TW.
Abnormal development of intestinal
intraepithelial lymphocytes and peripheral natural
killer cells in mice lacking the IL-2 receptor beta
chain. J Exp Med. 1997;185(3):499-505.

32. DiSanto JP, Müller W, Guy-Grand D, Fischer A,
Rajewsky K. Lymphoid development in mice with
a targeted deletion of the interleukin 2 receptor
gamma chain. Proc Natl Acad Sci USA. 1995;
92(2):377-381.

33. Dunne J, Lynch S, O’Farrelly C, et al. Selective
expansion and partial activation of human NK
cells and NK receptor-positive T cells by IL-2 and
IL-15. J Immunol. 2001;167(6):3129-3138.

34. Suck G, Oei VY, Linn YC, et al. Interleukin-15
supports generation of highly potent clinical-grade
natural killer cells in long-term cultures for
targeting hematological malignancies. Exp
Hematol. 2011;39(9):904-914.

35. Miller JS, Rooney CM, Curtsinger J, et al.
Expansion and homing of adoptively transferred
human natural killer cells in immunodeficient mice
varies with product preparation and in vivo
cytokine administration: implications for clinical
therapy. Biol Blood Marrow Transplant. 2014;
20(8):1252-1257.

36. Arneja A, Johnson H, Gabrovsek L, Lauffenburger
DA, White FM. Qualitatively different T cell
phenotypic responses to IL-2 versus IL-15 are
unified by identical dependences on receptor
signal strength and duration. J Immunol. 2014;
192(1):123-135.

37. Chiossone L, Vitale C, Cottalasso F, et al.
Molecular analysis of the methylprednisolone-
mediated inhibition of NK-cell function: evidence
for different susceptibility of IL-2- versus IL-15-
activated NK cells. Blood. 2007;109(9):
3767-3775.

38. Imamura M, Shook D, Kamiya T, et al.
Autonomous growth and increased cytotoxicity
of natural killer cells expressing membrane-
bound interleukin-15. Blood. 2014;124(7):
1081-1088.

39. Naora H, Gougeon ML. Interleukin-15 is a potent
survival factor in the prevention of spontaneous
but not CD95-induced apoptosis in CD4 and
CD8 T lymphocytes of HIV-infected individuals.
Correlation with its ability to increase BCL-2
expression. Cell Death Differ. 1999;6(10):
1002-1011.

40. Malamut G, El Machhour R, Montcuquet N, et al.
IL-15 triggers an antiapoptotic pathway in human
intraepithelial lymphocytes that is a potential new
target in celiac disease-associated inflammation
and lymphomagenesis. J Clin Invest. 2010;
120(6):2131-2143.

41. Kaur N, Naga OS, Norell H, et al. T cells
expanded in presence of IL-15 exhibit increased
antioxidant capacity and innate effector
molecules. Cytokine. 2011;55(2):307-317.

42. Kesarwani P, Al-Khami AA, Scurti G, et al.
Promoting thiol expression increases the
durability of antitumor T-cell functions. Cancer
Res. 2014;74(21):6036-6047.

43. Saligrama PT, Fortner KA, Secinaro MA, Collins
CC, Russell JQ, Budd RC. IL-15 maintains T-cell
survival via S-nitrosylation-mediated inhibition of
caspase-3. Cell Death Differ. 2014;21(6):
904-914.

44. Berger C, Berger M, Hackman RC, et al. Safety
and immunologic effects of IL-15 administration
in nonhuman primates. Blood. 2009;114(12):
2417-2426.

45. Waldmann TA, Lugli E, Roederer M, et al. Safety
(toxicity), pharmacokinetics, immunogenicity,
and impact on elements of the normal immune
system of recombinant human IL-15 in rhesus
macaques. Blood. 2011;117(18):4787-4795.

46. Larsson O, Morita M, Topisirovic I, et al. Distinct
perturbation of the translatome by the antidiabetic
drug metformin. Proc Natl Acad Sci USA. 2012;
109(23):8977-8982.

47. Ring AM, Lin JX, Feng D, et al. Mechanistic and
structural insight into the functional dichotomy
between IL-2 and IL-15. Nat Immunol. 2012;
13(12):1187-1195.

48. Biswas SK. Metabolic reprogramming of
immune cells in cancer progression. Immunity.
2015;43(3):435-449.

49. Thoreen CC, Chantranupong L, Keys HR,
Wang T, Gray NS, Sabatini DM. A unifying
model for mTORC1-mediated regulation of
mRNA translation. Nature. 2012;485(7396):
109-113.

50. Hsieh AC, Liu Y, Edlind MP, et al. The
translational landscape of mTOR signalling steers
cancer initiation and metastasis. Nature. 2012;
485(7396):55-61.

51. Miloslavski R, Cohen E, Avraham A, et al. Oxygen
sufficiency controls TOP mRNA translation via
the TSC-Rheb-mTOR pathway in a 4E-BP-

1488 MAO et al BLOOD, 15 SEPTEMBER 2016 x VOLUME 128, NUMBER 11

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/128/11/1475/1395288/1475.pdf by guest on 08 June 2024



independent manner. J Mol Cell Biol. 2014;6(3):
255-266.

52. Keppel MP, Saucier N, Mah AY, Vogel TP,
Cooper MA. Activation-specific metabolic
requirements for NK cell IFN-g production.
J Immunol. 2015;194(4):1954-1962.

53. Chang CH, Qiu J, O’Sullivan D, et al. Metabolic
competition in the tumor microenvironment is a driver
of cancer progression. Cell. 2015;162(6):1229-1241.

54. Sarkaria JN, Galanis E, Wu W, et al. Combination of
temsirolimus (CCI-779) with chemoradiation in newly
diagnosed glioblastoma multiforme (GBM) (NCCTG
trial N027D) is associated with increased infectious
risks. Clin Cancer Res. 2010;16(22):5573-5580.

55. Yokogami K, Wakisaka S, Avruch J, Reeves SA.
Serine phosphorylation and maximal activation of
STAT3 during CNTF signaling is mediated by the
rapamycin target mTOR. Curr Biol. 2000;10(1):47-50.

56. Kim JH, Yoon MS, Chen J. Signal transducer and
activator of transcription 3 (STAT3) mediates
amino acid inhibition of insulin signaling through
serine 727 phosphorylation. J Biol Chem. 2009;
284(51):35425-35432.

57. Weichhart T, Costantino G, Poglitsch M, et al.
The TSC-mTOR signaling pathway regulates the
innate inflammatory response. Immunity. 2008;
29(4):565-577.

BLOOD, 15 SEPTEMBER 2016 x VOLUME 128, NUMBER 11 IL-15–PRIMED GENE PROFILE EXTENDS NK CELL ACTIVITY 1489

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/128/11/1475/1395288/1475.pdf by guest on 08 June 2024


