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PLATELETS AND THROMBOPOIESIS
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Key Points

• CCL5 increases MK ploidy
and subsequent proplatelet
formation in a CCR5-
dependent manner.

• CCL5 may act to increase
platelet counts during
physiological stress.

In times of physiological stress, platelet count can transiently rise. What initiates this

reactive thrombocytosis is poorly understood. Intriguingly, we found that treating

megakaryocytes (MKs) with the releasate from activated platelets increased pro-

platelet production by 47%. Platelets store inflammatory cytokines, including the

chemokine ligand 5 (CCL5, RANTES); after TRAP activation, platelets release over

25 ng/mL CCL5. We hypothesized that CCL5 could regulate platelet production by

binding to its receptor, CCR5, on MKs. Maraviroc (CCR5 antagonist) or CCL5 immu-

nodepletion diminished 95% and 70% of the effect of platelet releasate, respectively,

suggesting CCL5 derived from platelets is sufficient to drive increased platelet pro-

duction throughMKCCR5.MKs culturedwith recombinant CCL5 increased proplatelet

production by 50% and had significantly higher ploidy. Pretreating the MK cultures with maraviroc prior to exposure to CCL5

reversed the augmented proplatelet formation and ploidy, suggesting that CCL5 increasesMKploidy and proplatelet formation in

a CCR5-dependent manner. Interrogation of the Akt signaling pathway suggested that CCL5/CCR5 may influence proplatelet

production by suppressing apoptosis. In an in vivo murine acute colitis model, platelet count significantly correlated with

inflammation whereas maraviroc treatment abolished this correlation. We propose that CCL5 signaling through CCR5 may

increase platelet counts during physiological stress. (Blood. 2016;127(7):921-926)

Introduction

Circulating blood platelets are specialized cells that function to
minimize bleeding and blood vessel injury. As such, platelets play a
critical role in both normal and disease physiology. Large progenitor
cells in the bone marrow called megakaryocytes (MKs) release
platelets by extending long processes, designated proplatelets, into
sinusoidal blood vessels.1 Despite the importance of platelets in
thrombosis and hemostasis, themechanism bywhichMKs complete
differentiation and release platelets is poorly understood. Specifi-
cally, very little is known about what triggers mature, restingMKs to
form proplatelets. Platelet counts rise transiently in the setting of
physiological stress, such as myocardial infarction, infection,
inflammation, and malignancy.2-4 What initiates this upregulation is
not well understood and has largely been attributed to an inflammatory
response and increased cytokine release.5-7 One cytokine that is highly
expressed in inflammatory states is CCL5 (RANTES).8 CCL5, which
is abundant in humanplatelets, signals predominantly throughCCR5, a
7-transmembrane G-protein–coupled receptor that mediates diverse
signaling cascades.9

Methods

Platelet purification and activation

Blood collection was performed with institutional review board/institutional
animal care and use committee approval and in accordance with the
Declaration of Helsinki. Platelets were isolated from healthy volunteers
or mice as described previously.10 Platelets were activated for 10 minutes
at 37°C and CCL5 measured by enzyme-linked immunosorbent assay
(R&D Systems).

Megakaryocyte cultures

Murine fetal livers were collected from CD1 mice (Charles River Laboratories)
on embryonic day 13.5 and cultured in the presence of 70 ng/mL recombinant
mouse thrombopoietin (rTPO). Mature MKs were isolated as described
elsewhere.11,12

Microscopy

MKs were purified and probed as previously described.11,12
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Figure 1. Platelet-derived CCL5 enhances proplatelet production. (A) Generation of activated platelet releasate. Platelet number was counted using a fluorescence-

activated cell sorter and adjusted to 2 3 108/mL. The resting state of platelets was confirmed by P-selectin antibody (BD Biosciences) labeling by flow cytometry. Platelets

were either activated with 25 mM TRAP (Thrombin Receptor Activator Peptide, Sigma-Aldrich) or incubated with vehicle control for 10 minutes at 37°C. The resulting

supernatant, or “releasate,” was separated from the cell pellet by centrifugation and used in subsequent experiments. (B-C) MKs from fetal liver cultures on day 4 of maturation

were resuspended in 300 mL TRAP-activated or unactivated platelet releasate (with or without addition of anti-CCL5 antibody). 100 nM maraviroc (MIR) was added to

indicated cultures 30 minutes prior to resuspension in platelet releasate. Proplatelet production from MKs was manually quantified after 6 hours based on images generated

from a Nikon TE-2000-E Microscope (Nikon) equipped with a 203 (0.3 numerical aperture) Plan-Fluoro objective, using a Hamamatsu charged-coupled device camera, as

previously described.14-16 Briefly, for each replicate, at least 100 cells per condition were counted and scored as either “round” or “proplatelet-producing.” n 5 3-6; *P , .05,
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Flow cytometry

MK and platelet CCR5 expression and MK number were determined by
flow cytometry (BD FACSCanto II) using anti-CCR5 (R&D Systems) and
anti-CD41/61 (Emfret), respectively. Ploidy was determined by DNA
binding via propidium iodide. Data were analyzed with BD FACSDiva
6.1.3 software.

Murine colitis model

Dextran sulfate sodium (5% wt/vol in drinking water) was used to induce acute
colitis in C57/BL/6 mice. Maraviroc (100 mg/kg) or saline vehicle was injected
intraperitoneally daily. After 7 days, mice were euthanized and blood was
collected.

Results and discussion

Releasate from activated platelets increases

proplatelet production

Platelets contain proteins such as platelet factor 4 that act onMKs to
negatively regulate platelet production.13 We hypothesized that
platelets also contain positive regulators of megakaryopoiesis.
We therefore tested the effect of total platelet releasate on MK
proplatelet production. Releasate derived from TRAP (thrombin
receptor activator peptide)-activated platelets was added to MK
cultures (Figure 1A). Intriguingly, platelet releasate increased
MK proplatelet production 47% (Figure 1B-C).14-16 This novel and
unexpected finding prompted further exploration. Previously, we
observed that platelets release agonist-dependent factors and cyto-
kines including abundant amounts of CCL5.10 We hypothesized
that CCL5 may be the component of platelet releasate causing
increased proplatelet formation. We pretreated MKs with mar-
aviroc, an antagonist specific for the CCL5 receptor CCR5, prior to
addition of platelet releasate or immunodepleted CCL5 from the
platelet releasate using a neutralizing antibody. Maraviroc and
CCL5 neutralization diminished the effect of platelet releasate on
proplatelet production by 95% and 70%, respectively, suggesting
that platelet-derived CCL5 significantly increased MK proplatelet
production through CCR5.

Platelets release CCL5

We measured the amount of CCL5 released from platelets after
stimulationwith various agonists including TRAP,ADP, thromboxane
A2, orMCF-7 tumor cells (Figure 1D). Consistent with previous work,
CCL5 release was not agonist dependent.17

CCL5 is present in MKs and platelets, but CCR5 is restricted

to MKs

Using immunofluorescence, we confirmed that platelets and MKs
contain CCL5 (Figure 1E).18 We measured CCR5 surface expression
on human and mouse platelets and MKs utilizing flow cytometry
(Figure 1F-G), finding that MKs expressed CCR5 on their surface
whereas platelets did not, suggesting that platelet-released CCL5 can
signal through MK-localized CCR5. Although lack of CCR5 on
platelets has been demonstrated,19 it is rare for a receptor to be present
on MKs but not platelets, indicating that MK CCR5 is specifically
excluded or degraded from the platelet surface.

Recombinant CCL5 recapitulates platelet releasate

We next tested whether recombinant CCL5 could recapitulate the in-
creased proplatelet production seen with platelet releasate. Indeed,
CCL5significantly increasedproplatelet productionby50%(Figure2A),
and Maraviroc significantly and dose-dependently reversed the effect
of CCL5 up to 97% (Figure 2B-C).

Although the relationship between ploidy and proplatelet formation
is complex, elevated ploidy correlates with increased proplatelet
formation.20 Therefore, we probedCCL5’s impact onMKendomitosis
(repeated DNA replication without cell division).21 Interestingly,
CCL5 treatment caused significantly higher ploidy; 65% fewer MKs
were 2N, whereas 76% more were 16N (Figure 2D). Maraviroc pre-
treatment inhibited theCCL5augmented ploidy, substantiating the idea
that the increased ploidy was mediated though CCR5.20

The mechanism of CCL5/CCR5’s effect on MKs may be through

apoptosis suppression

We next examined the mechanism by which the CCL5/CCR5 axis
enhanced MK maturation and proplatelet formation. We examined
the Akt pathway because it is downstream of CCR5 and has a role
in megakaryocyte maturation.22 We performed an antibody-based
bioarray probingAKTpathway signaling (Cell SignalingTechnology).
The results from the array revealed a .1.5-fold increase in BAD,
4E-BP1, and PDK1 phosphorylation, proteins crucial for apoptosis
suppression (Figure 2E).23-25 Maraviroc alone had no affect on BAD,
4E-BP1, and PDK1 phosphorylation, indicating that maraviroc does
not have off-target effects. Additionally, the increase observed with
CCL5 administration was reversed when megakaryocytes were pre-
treated with maraviroc, confirming the specificity of CCL5 for CCR5
(Figure 2E). In megakaryocytes, the role of apoptosis in proplatelet
formation is an area of active investigation, and recent studies have
revealed that the intrinsic apoptosis pathwaymust be restrained in order
for cells to undergo proplatelet formation.26,27 Therefore, these results

Figure 1 (continued) **P , .01, with data plotted as mean and standard error of the mean and statistical analysis done by 1-way ANOVA with Tukey’s multiple comparisons

test. Representative images of proplatelet formation are shown in panel C, indicating enhanced, long proplatelet strings with the addition of TRAP-activated platelet releasate.

(D) Platelets were prepared as above and activated with 25 mM TRAP, 25 mM ADP (Biodata), 100 mM Thromboxane A2 (Caymen), or 3 3 106/mL MCF-7 breast tumor cells

(ATCC). CCL5 in releasate was measured using the Quantikine human CCL5 enzyme-linked immunosorbent assay kit according to the manufacturer’s instructions (R&D

Systems). n5 3; *P, .05, **P , .01, with data plotted as mean and standard error of the mean and statistical analysis done by 1-way ANOVA showing differences compared

with resting platelet control. (E) Platelets and mouse MKs were isolated and prepared as previously described. Human MKs were isolated from umbilical cord blood collected

with institutional review board approval from healthy full-term neonates (38-42 weeks gestation) at Brigham and Women’s Hospital Labor and Delivery. Briefly, CD341 cells

were then isolated using a positive magnetic selection system (Miltenyi Biotec) and plated in 24-well plates at 1 3 105 cells/mL and cultured in serum-free medium with rTPO

(50 ng/mL, PeproTech), with twice-weekly medium changes for 14 days. Live-cell number was quantified twice weekly by staining with 0.4% Trypan blue. For immunofluorescence,

samples were fixed in 4% formaldehyde and centrifuged onto poly-L-lysine (1 mg/mL)-coated coverslips, permeabilized with 0.5% Triton-X-100, and blocked in blocking buffer.18

Samples were examined with a Zeiss Axiovert 200 (Carl Zeiss, Thornwood, NY) equipped with a 633 or 1003 (1.4 numerical aperture) Plan-ApoChromat oil-immersion objective,

and images were obtained and analyzed using Metamorph software (Molecular Devices, Sunnyvale, CA) and ImageJ (National Institutes of Health; http://rsb.info.nih.gov/ij/). Scale

bars represent 2 mm (platelets) and 20 mm (MKs); green indicates CCL5. In platelet samples only, red indicates b-tubulin. In MK samples only, blue indicates Hoechst (nucleus).

(F-G) Surface expression of CCR5 was determined on mouse and human MKs and platelets using a phycoerythrin-conjugated anti-human/mouse CCR5 antibody (R&D

Systems) compared with an isotype control. (G) Representative histograms are shown with CCR5-positive staining (red) overlayed onto isotype control (gray). (H) CCR5

expression was quantified. n 5 3. Ab, antibody; plt, platelet; rlsate, releasate.
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suggest that CCL5/CCR5 may support platelet production by facili-
tating apoptosis inhibition.

Maraviroc inhibits the correlation between inflammation and

platelet count in vivo

Finally, we employed an in vivo murine colitis model in which CCL5
has been linked with inflammation. Mice were given dextran sodium
sulfate (DSS) with or without maraviroc to examine the role of the
CCL5/CCR5 axis in platelet production during acute inflammation.

The platelet counts of DSS-treated mice positively correlated with
the white blood cell (WBC) count (Figure 2F; Pearson’s correlation,
P5 .018). This correlationwas not present in sham-treatedmice (water
or maraviroc alone). Importantly, maraviroc eliminated the correlation
between platelet and WBC counts (Figure 2F), suggesting that the
component of the inflammatory response that regulates platelet count
is mediated through CCR5.

Our data demonstrate that in vitro, CCL5 increased MK ploidy
and subsequent proplatelet formation in a CCR5-dependent man-
ner. We propose that CCL5 may increase platelet counts during

Figure 2. The CCL5/CCR5 axis enhancesmegakaryocyte maturation and proplatelet formation through apoptosis suppression. (A) Recombinant CCL5 (5, 50, or 500 ng/mL)

or vehicle control was added to MK cultures on day 4 of maturation. Proplatelet production from MKs was manually quantified after 6 hours as described in Figure 1 and

previously.14-16 n5 6; *P, .05, **P, .01, with statistical analysis done by Student t test compared with vehicle control. (B) Maraviroc (10 or 100 nM) was added to indicated cultures

and allowed to incubate for 30 minutes. 50 ng/mL CCL5 or vehicle control was then added to MK cultures on day 4 of maturation. Proplatelet production from MKs was manually

quantified after 6 hours as described elsewhere.14-16 n5 3; **P, .01, with statistical analysis done by Student t test compared with vehicle control. (C) Representative images of proplatelet

production in MKs treated with CCL56maraviroc (MIR). Images were obtained with a Zeiss Axiovert 200 (Carl Zeiss) equipped with a 203 objective, and images obtained and analyzed

usingMetamorph software (Molecular Devices) and ImageJ. Scale bars represent 20 mm. (D) On day 1 of MKmaturation, maraviroc (100 nM) was added to indicated cultures and allowed

to incubate for 30minutes. 50 ng/mL CCL5 or vehicle control was then added toMK cultures. On day 4, MK ploidy was determined using a fluorescence-activated cell sorter (30000 events

per sample) by gating on fluorescence intensity based on DNA binding via propidium iodide (Sigma Aldrich). Statistical analysis was done using 2-way ANOVAwith a5 0.05, comparisons

made between vehicle control and various treatment groups, as indicated. n5 6; *P, .05, **P, .01, ***P, .005, andsP, .0001, with data plotted as mean and standard error of the

mean and statistical analysis done by 2-way ANOVAwith Dunnett’s multiple comparisons test. (E) To interrogate the Akt signaling pathway, maraviroc (100 nM) was added to indicatedMK

cultures on day 4 of maturation and allowed to incubate for 30 minutes prior to the additional of 50 ng/mL CCL5 or vehicle control. Lysates were generated 15 minutes after the addition of

CCL5 and analyzed using the PathScan Akt Signaling Antibody Array (Cell Signaling Technology), which detects phosphorylation levels of 18 proteins in the Akt signaling pathway. The

array was performed according to themanufactures instructions, imaged using a G:Box Imaging System (Syngene) and analyzed with ImageJ software. Data were normalized to untreated

day 4 MK lysate, and fold changes of 1.5 or greater are shown. (F) Mice were exposed to DSS (5% wt/vol in drinking water) to induce colitis or given untreated drinking water and treated

with maraviroc (10mg/kg intraperitoneally, daily) or saline vehicle. After 7 days, mice were euthanized and blood was collected to determine platelet and WBC count (HemaVet, Drew

Scientific). Platelet count was correlated with WBC (a marker of inflammation) in each of the four treatment groups using GraphPad Prism 6 software. Pearson’s correlation, P 5 .018.

(G) Proposed model of CCL5/CCR5-induced thrombocytosis. In a state of physiological stress, platelet activation by agonists leads to release of platelet CCL5. CCL5 binds to MKCCR5,

causing increased MK maturation and proplatelet formation and a subsequent increase in circulating platelet levels. Thus, a positive feedback loop is established.
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acute inflammation (Figure 2G, schematic); this is supported by our
in vivo data. CCR5 knockout mice do not demonstrate thrombo-
cytopenia, suggesting that CCL5/CCR5 functions in times of stress
and not hemostatic platelet production. Although a prior mecha-
nistic link between platelet production and CCL5 has not been
identified, clinical data support this association; patients with
thrombocytopenia due to idiopathic thrombocytopenic purpura or
aplastic anemia have a direct correlation between CCL5 level and
platelet count.28 Our data (1) provide a possible explanation for the
elevated platelet counts observed in reactive thrombocytosis and
(2) suggest that CCR5 may be a therapeutic target for treating
thrombocytopenia. Although CCL5 itself may not be a good
therapeutic candidate owing to its role in the body’s immunogenic
response, small molecules could work to stimulate CCR5 directly.
This would provide a therapeutic intervention to stimulate platelet
release from existing bone marrowMKs, resulting in an immediate
increase in platelet count, representing a significant advantage
over current TPO-based therapies, which take 5 to 12 days to be
effective.
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