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Key Points

• Aberrations in genome
maintenance and DNA repair
genes including POT1 occur
at a high frequency in Sézary
syndrome.

• Candidate driver genes and
affected pathways in Sézary
syndrome show extensive
heterogeneity but overlap with
other mature T-cell
lymphomas.

Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and

represents an ideal model for study of T-cell transformation. We describe whole-exome

and single-nucleotide polymorphism array–based copy number analyses of CD41 tumor

cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases.

A total of 824 somatic nonsynonymous gene variants were identified including indels,

stop–gain/loss, splice variants, and recurrent gene variants indicative of considerable

molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which

has not been previously reported in CTCL; and TP53 and DNMT3A, which were also

identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of

tumors includingnovel variantsnot previously described inSS.This study is also the first

to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in

PRKCQwere found tooccur in20%of tumorshighlightingselection foractivationofT-cell

receptor/NF-kB signaling. A complex but consistent pattern of copy number variants

(CNVs)wasdetectedandmanyCNVsinvolvedgenes identifiedasputativedrivers.Frequent

defects involving the POT1 and ATM genes responsible for telomere maintenance

were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated

in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-kB signaling; epigenetic regulation (DNMT3A,

ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed

functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment. (Blood. 2016;

127(26):3387-3397)

Introduction

Primary cutaneous T-cell lymphomas (CTCL) represent a heteroge-
neous group of mature T-cell lymphomas. Targeted treatment options
for advanced stages of CTCL are limited and associated with modest
and short-lived responses.1,2 Sézary syndrome (SS) is a leukemic variant
of CTCL and represents an ideal model for defining the molecular
pathways involved in the malignant transformation of mature T cells.

Recent studies3-9 have revealed marked genomic heterogeneity
in SS illustrated by extensive copy number variants (CNVs) and
single-nucleotide variants (SNVs) affecting many genes, including
known cancer genes, and selection for genes involved in T-cell
receptor (TCR), JAK-STAT, and NF-kB signaling3,5,6,9 and epigenetic
regulation.3,7,8

Furthermore, nodal T-cell lymphomas (TCL) show consider-
able genomic overlapwithCTCL.10-13Although adultT-cell leukemia

lymphoma (ATLL) is associated with HTLV-1 transformation, both
ATLL and CTCL are mature T-cell lymphomas of skin-homing
memoryCD41Tcellswithmarked clinical and phenotypic overlap.A
recent comprehensive genomic studyofATLLhas also shown striking
similarities at the genomic level with high rates of CNV.13 However
the underlying basis for genomic instability, reflected in the high
prevalence of CNVs detected in mature T-cell lymphomas, including
CTCL, has yet to be clarified.

We have performed a discovery screen using next-generation
sequencing (NGS) to analyze enriched tumor cell populations and
matched normal DNA from samples obtained at diagnosis from
untreated patients using whole-exome sequencing and SNP arrays.
This was followed with a prevalence screen in a large cohort of SS
samples using targeted resequencing.
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Patients, materials, and methods

Samples

All patients fulfilled the WHO-EORTC diagnostic criteria for SS.2 Patient
samples were obtained from the nationally approved CTCL research tissue bank
(National Research Ethics Committee: 07/H10712/11115); healthy control
samples were obtained with the approval of the Guy’s and St Thomas’Hospital
Research Ethics Committee (EC01/301). Written and informed consent were
obtained from all patients and volunteers. Discovery samples: DNA was
extracted fromCD41-enriched peripheral bloodmononuclear cells (PBMCs)
using RosetteSep (Stemcell Technologies, Cambridge, UK) and matched
primary fibroblasts from skin explants obtained from 10 untreated patients
with SS at diagnosis. Targeted capture samples: DNA was extracted from
PBMCs of 101 SS and 32 healthy control samples (supplemental Table 1,
available on the Blood Web site).

Whole-exome sequencing (WES) and targeted capture

The workflow overview is summarized in Figure 1. Paired-end sequencing
library preparation was performed according to manufacturer’s instructions
and sequenced on an Illumina Hi-Seq2000 with reads aligned to Hg19 using
Novoalign v2.07.11 and postalignment processing performed by picard tools.

For WES, Varscan2 Somatic was used to separate tumor variants from
patient-matched fibroblasts. ANNOVAR was used for variant annotation.14

Somatic and nonsynonymous variants were selected based on exclusion of

variants in dbSNP, the 1000-genomes project, exome variant server, in-house
exome database, and genes reported to be error prone in NGS analysis because
of sequence repeats and high GC content.15

For targeted capture, Varscan2 and ANNOVAR were also used but the
threshold on the minimum allele frequency for calling tumor variants was
calibrated to account for the heterogeneity of tumor samples derived from
PBMCs (supplemental Methods). Mpileup2cns was used for SNV and INDEL
identification with $203 depth, $15 phred score, $6% minimum variant
frequency, and read frequency #90% in either direction. Variants from 32
nonmatched healthy controls were used to identify tumor-specific variants and
exclude sequencing artifacts. Variants selected from WES and targeted capture
data were validated by Sanger sequencing on original tumor and additional skin,
lymph node, and tumor-derived cDNA samples from the same patients.

Mutational pattern analysis

Several types of mutational pattern analysis were conducted using custom in-
house Perl scripts. These included proportions of different types of variant
(synonymous, nonsynonymous), SNV base change patterns, and mutation
context (motif) analysis upstream and downstream at 3 bp.

Identification of SNV drivers

Several parallel criteria were used to identify genes affected by SNVs. These
includedMutSigCV,16 the 20/20 rule17 (see supplementalMethods for details),
and simple frequency filtering of.5% after removing genes previously iden-
tified as problematic.15 We also compared the list of candidate driver genes to
those present in the network of cancer genes.18
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Figure 1. Workflow overview of experimental methods. Discovery screen (whole-exome sequencing), prevalence screen (targeted capture), and CNV analysis.
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Gene copy number analysis

Tumor-specific CNVs were identified through integrative analysis of discovery
and targeted capture data generated using exome/targeted sequencing and SNP
array technologies.Data fromWESwere analyzedbyExcavator v2.2 inmatched
pairs. HumanOmni5Exome arrays were analyzed using OncoSNP, v1.4. Raw
data (BAF and LRR) required for OncoSNP was extracted using Illumina
Genome Studio software. Data from WES and SNP array were combined for
final analysis (n5 16). Remaining prevalence samples (n5 91) were analyzed
with ExomeDepth software19 using the targeted capture data and 32 healthy
controls (Figure 1). This analysis was restricted to targeted capture genes
(n5 549) but allowed deeper resolution. The genotype array data have been
deposited in NCBI’s Gene Expression Omnibus and are accessible through
GEO Series accession number GSE80650 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc5 GSE80650).

Pathway analysis

To investigate for significant perturbations at the pathway level, we performed a
gene set enrichment analysis on WES and TC SNVs (supplemental Methods)
using the MSigDB repositories. Pathway-level perturbations were quantified
using 2 inter-related metrics. One metric, “fraction of pathway genes mutated,”
captures the proportion of pathway genes involved in nonsynonymous SNVs
or indels across all patients. The secondmetric, “pathway perturbation frequency
score,” captures how often each pathway is perturbed as a proportion of
all samples (both uncorrected and corrected for pathway size), assuming
perturbation occurs if at least one of the pathway’s genes is mutated.

Results

Whole-exome sequencing of CD41-enriched cells and matched

controls (discovery screen)

For 10 CD41-enriched/control-matched DNA samples, we obtained
depth .20 reads covering 82% to 95% of the target region across all
samples, with a median of 91.12%. The most frequent type of variant
effect (Figure 2A) was nonsynonymous (63%) followed by synony-
mous (26%) and stop-gain (3.5%). After filtering, we identified 824
somatic, nonsynonymous variants (750 genes; supplemental Table 2)
fromwhichwe selected 549genes for targeted capture analysis.Overall
mutation rates for filtered somatic tumor variants were between 0.54
and4.2mutations permegabasewith total nonsynonymousvariants per
tumor from 23 to 182, with amedian of 98 comparable with other NGS
studies of CTCL.3,4,7 Furthermore this rate is similar to rates reported
for other non-Hodgkin lymphomas13 and distinct from tumors with a
higher median (130-160) associated with specific carcinogens such
as lung cancer and melanoma.16 Two samples showed low levels of
nonsynonymous variants (23 and 41 SNVs) with the youngest patient
having the lowest number (supplemental Table 2). The most common
type of nucleotide change (Figure 2B) was C.T and G.A (61%), in
keeping with what has been observed already in many types of
cancers.20 Specifically, 42% of the C.T variants occurred at NpCpG
sites, reflecting age-related spontaneous deamination at methylated
CpG sites, and 27.5% occurred at NpCpC sites, but there were ,1%
CC.TT mutations (14 of 1520 SNVs affecting 6% of samples).
Although interpretation is limited by our sample size, mutation context
analysis shows consistency with several trinucleotide signatures
(Figure 2C) identified in a recent study.20

Copy number analysis of WES sequence data from the discovery
panel (Figure 3, outer track) revealed recurrent (.1) tumor-specific
CNVs consisting of large (.1 MB) and focal (,1 MB) regions of
amplification and deletion and confirmed using SNP array (Figure 3,
inner track). Noticeably, 2 deleted regions on chromosomes 7 and 14

containing the g and a TCR genes occurred in all samples, reflecting
clonal TCR gene rearrangements.

Analysis of SNP array and WES CNV data confirms and ex-
tends previous findings in SS using array CGH and cytogenetic
techniques,21-25 including large complex chromosomal abnormal-
ities such as isochromosome 17q (loss of 17p .70% and gain
of 17q .50% of tumor samples),26-28 and recurrent focal CNVs
often affecting individual genes already subject to SNVs. Other
frequently observed large CNVs were losses on 1p, 2p, 13p, and
10q, and gains on 8, consistent with previous reports.3,21-25 However,
array data showed gains on chromosome 4 that were not observed in
the WES data, although these have been previously reported in SS.21

Targeted capture sequencing of 101 SS samples from patients

(prevalence screen)

In the targeted custom capture of 549 genes—depth was between 149
and 848 reads starting from the list of all variants in tumors—we filtered
out those also present in the healthy control panel. To enrich for somatic
variants, we further filtered out variants present in dbSNP, the 1000
Genomes Project, Exome Variant Server (National Heart, Lung, and
Blood Institute Exome Sequencing Project), and our in-house exome
database.Wealsofilteredout variants ingenes reported tobeerror-prone
in NGS analysis because of sequence repeats and high GC content.15

From this list we focused on the final subgroup of nonsynonymous
variants including Indels, stop gain/loss, splice variants, and indels, for a
total of 1520 variants. There were between 2 and 93 variants per tumor,
with a median of 13 variants per tumor (supplemental Table 3).

Analysis of CNVs in the targeted capture samples revealed
a similar distribution of CNVs to the discovery WES samples.
Overall, 453 of 549 genes in the targeted capture were affected by
CNVs in at least 1 tumor (supplemental Table 4). Illustration of CNVs
and mutations occurring in each gene are reported in Figure 4 and
supplemental Figure 2.

Identification of potential driver genes

In view of the marked genomic heterogeneity, we applied different
parallel criteria (supplemental Methods) to identify 21 potential driver
genes based on SNVs and 42 genes based on high rates of CNVs
(Figure 4; supplemental Tables 4 and 5).

We identified 51 genes with SNVs occurring in .5% of tumors.
Analysis of all SNVs using MutSigCV16 confirmed that 5 of these 51
genes (DNMT3A,FAM47A, POT1,CADPS, TP53)weremutatedmore
often than expected by chance (q, 0.1) and all except FAM47A have
been implicated as driver gene mutations in other cancer types. Two
genes (PREX2 and PCLO) hadMutSigCV values close to significance
(q50.11). In thisdata set,ATM andbothTP53 andDNMT3A identified
withMutSigCV, have been previously defined as driver genes based on
specific criteria applied to COSMIC and the Cancer GenomeAtlas and
functional validation.17,29 In contrast CSMD1, CSMD3, PCLO, and
CNTNAP516 have been identified as likely false-positive cancer genes,
although overexpression of CSMD3 has been associated with growth
advantage in epithelial cells.30 Finally, correlation of these putative
driver genes with data sets annotating candidate driver genes18

identified 21 genes as potential or established driver genes. Analysis
of SNVs using the “20/20” rule17 identified 16 of these 21 genes (sup-
plemental Table 5) as either potential oncogenes (5 genes including
FAM47A, PLCG1, andGPR158) or tumor-suppressor genes (11 genes
including POT1, ANK3, UNC13C, ATM, DNMT3A, and TP53).

The overall frequency of SNVs affecting these 21 potential driver
genes in our prevalence data set ranged from 5.5% to 19% (6-21), with
7 mutated genes affecting.10% of tumors. These consisted of known
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tumor suppressor genes TP53 and FAT3/FAT4 (upstream regulators of
theHpopathway31) andputative oncogenes such asPLCG1,6,32 aswell
as GPR98, CADPS, and CACNAIE,33 whose potential functional role
in cancer has yet to be established. Of these potential driver genes, 15
had identical recurrent variants, with 2 genes having more than one
recurrent variant, namely GPR98 (2) and PLCG1 (5).

Two tumor samples were notable for having relatively few SNVs
detected in thewhole-exomestudy(supplementalTable2).Both tumors
had aberrations affecting only a few of our potential driver genes
including identicalvariants reported inCOSMICv71namelyPOT1R117C,
JAK3A573V, and PREX2 in one tumor and PREX2, DNMT3A,
STAT5BN642H, FAT4R3615W, and GPCR158R757C in the other tumor,
suggesting that these gene mutations could be sufficient for tumor
development.

We identified 42 genes with at least 1 SNV and CNVs affecting
.10% of tumors as additional potential driver genes. CNVs affected all
21 potential driver genes identified based on analysis of SNVs. We also
identified a higher prevalence of aberrations (14%-48%of tumor samples)
for other putative driver genes such asDNAH9, ENPP2, ELAVL2, RFX6,
PDCD11, GPR158, PTPRK, PRKCQ, BRAC2, TET1, RAD51C, and
PREX2. Notably few tumor samples had SNVs affecting individual JAK
and STAT genes, but overall 55% of tumors had combined SNVs and
CNVsaffecting thesegenes including regulatorsofSTAT3 suchasSOCS7.

Overall, 510 of 549 genes in our targeted capture had SNVs and/or
CNVs reported in recent studies of SS and mycosis funcgoides (MFs)
(supplemental Table 6). Specifically, SNVs affecting 15 of our 21
potential driver genes have been detected in recent studies of SS and/
or MF.3-9 Identical gene variants have also been functionally

validated in these and other studies, namely TP53,34, POT1,35

PLCG1,3,6,36-38 ATM,39 JAK3,40,41 STAT3,42 and STAT5B43-46

(Table 1). In addition, identical variants without functional validation
have been reported in COSMICv71 for 4 other genes from our 21
potential drivers, namely FAT3R4213C, FAT4R3615W, GPR158R757C,
and UNC13CR2037H/G2150R.17

Analysis of signaling pathways affected by SNVs

Our gene set enrichment analysis highlighted aberrations affecting
numerous pathways involved in cell fate, cell survival, genome
maintenance, and immune-related functions in both the TC and
WES data sets (Figure 5; supplemental Figure 3). Notably, several
pathways have SNVs affecting the same gene(s), specifically JAKs,
STATs, PLCG1, and TP53. This analysis showed enrichment for
genetic aberrations involving many of the putative driver genes
affecting pathways including homologous recombination (RAD51C,
BRAC2, POLD1: 45%) and DNA repair (ATM, TP53, BRAC2: 32%).

Gene perturbations (SNVs andCNVs; supplemental Figure 4)were
also grouped into families with related functions including DNA repair
(at least 1 perturbation 64%;.1 perturbation 36%), global epigenetic
regulation (at least 1 perturbation 42%; .1 perturbation 14%), and
programmed cell death (at least 1 perturbation 64%; .1 perturbation
37%) in line with well-known hallmarks of cancer.47

Lack of correlation with clinical outcome

A pairwise analysis of gene mutations using Bonferroni adjustment
failed to identifyanySNVsandCNVs,whicheitheroccurred togetheror
were mutually exclusive. In addition, we did not detect any correlation
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betweenmutational load (including total SNVs and CNVs) and overall
survival. Analysis of individual genes in the targeted capture data set
identified 10 genes affected by SNV, CNV, or a combination of both,
which were associated with a worse overall survival (supplemental
Table 7). Only one of these 10 genes (RELN) was identified as a
potential driver gene. However in view of lack of power, these results
should be interpreted cautiously because the likelihood of chance
occurrence is 1 in 5.

Validation of potential driver gene mutations

Sanger resequencingwasperformedonvariants from55genes from the
Discovery Panel (supplemental Table 8). A total of 97 of 101 variants
were validated, consistent with other NGS cancer studies.48-52 Similar
proportions of variants were successfully validated on the prevalence
screen data (134/139). Highly recurrent gene mutations in the targeted
capture analysis were also validated in multiple and different tissue

samples (blood, lesional skin, and lymph node) from the same patients
at diagnosis and at disease progression, further supporting their role as
candidate drivers (supplemental Table 8). In contrast for those patients
who achieved a complete clinical remission after reduced intensity
allogeneic transplantation, we could not detect specific gene variants,
identified in the diagnostic samples, in the post-transplant tissue
samples consistent with the absence of the original T-cell clone and
a complete molecular remission.

The presence of POT1R117C and ATMG2863V variants were con-
firmed in additional blood and skin samples and at the transcriptional
level in mRNA from enriched CD41 tumor cells (Figure 6 and
supplemental Table 8). Interestingly, for POT1R117C, predominant
expression of the mutant was detected over the wild-type allele.
This is likely attributable to LOH affecting the wild-type allele.
This was confirmed by sequencing genomic DNA from the same
CD41-enriched tumor cells, inwhichPOTR117Cwas also predominantly
detected (data not shown).
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Finally, we sought to identify variants from our study that had been
detected and/or functionally validated in previous studies. Several such
variants (Table 1) were identified includingPLCG1(S345F, S520F, D342N),

3,6,36-38 JAK3A573V,40,41 STAT3Y640F,42 STAT5B(Y665F N642H),43-45

ATME2423K,39 and POT1R117C,35. Other candidate driver genes from
our study including PTPRK and FAT3 (as opposed to proven drivers
such as TP53) have also been functionally validated based on analysis
of different variants.18

Discussion

Our analysis of a large series of SS patient samples has identified novel
variants and CNVs predicted to be potential drivers. Specifically, we
found a high frequency of perturbations in POT1, ATM, and BRCA2,
which are involved in genomemaintenance. Dysregulation of genome
maintenance processes may contribute to the high prevalence of
structural variation observed in CTCL. We also detected mutations of
JAK-STAT,DNMT3A,TP53, andPLCG1, genes previously reported as
likely drivers in other lymphomas17,53 and CTCL.3-5,7-9 These putative
driver gene mutations were present in diagnostic blood, skin, and node
samples and samples collected at disease progression time points,
but that were absent in samples from those patients who achieved a
complete remission after stem cell transplant.

Genomic instability is a feature of SS with complex copy number
variation reportedusingdifferent techniques.3,21,22,24More than50%of
tumors hadSNVsand/orCNVsaffectinggenes involved inDNArepair
and telomere maintenance. Notably, a significant number of tumors
(23%) had mutations and/or loss of genes involved in telomere
maintenance such as POT1 and ATM. POT1 is part of the multiprotein
Shelterin complex responsible for telomere length and loss of POT1
function increases chromosomal instability.54 All the POT1 variants
occurred in the oligonucleotide/oligosaccharide binding (OB) domains

and loss of OB function has been shown to cause extensive telomere
elongation55 and frequent telomere fusions.56 Recurrent POT1 muta-
tions have also been detected in a subset of patients with CLL (5%)57

and ATLL.13 In addition, the POT1R117C variant has recently been
identified as the cause of an inherited cancer syndrome inwhich loss of
function causes an age-related increase in telomere length and genomic
instability, contributing to the development of malignancies including
lymphomas.35ATM is a PI3 kinase involved in the recognition ofDNA
double-strand breaks and recruitment of telomerase, and copy number
losses have recently been reported in SS.3,58 The ATME2423K variant is
associated with loss of function in non–small-cell lung cancer.39 POT1
also represses the ATM damage response checkpoint.56 Other genes
involved in telomere maintenance include ATRX and TEP1, both
with somatic mutations. We also detected frequent SNVs/CNVs
affecting genes involved in homologous recombination such as
RAD51C, BRCA2, andPOLD1, a component of the DNA polymerase
d complex,59 and lossof functionTP53mutations,which are described
in CTCL.60,61 Previous mouse models showed that combined defects
of telomerase and cell-cycle genes are associatedwith thedevelopment
ofmature T-cell lymphomas.62 Loss of cell-cycle control (TP53), telo-
mere maintenance (POT1/ATM), and DNA repair initiation (BRCA2)
could contribute to the genomic instability, which is a consistent
feature of SS.

Overall, 40% of tumors had somatic mutations affecting genes in-
volved in TCR/NF-kB signaling. We detected recurrent PLCG1 gene
variants in 11 patients including several variants reported previously3-9,37

inMF andSS, aswell as PTCL,AITL, andATLL.13,36 ThePLCG1S345F

variant has been shown to induce expression of both NFAT via
IP3 activation and NF-kB via DAG activation of PKC signaling.
This mutation is predicted to impair the auto-inhibitory function
of PLCG1, which limits TCR signaling downstream of receptor
ligation.6,63 In addition, a further recurrent variant (PLCG1D342N)
has been shown to increase inositol phosphate production in COS-7
cells.38 It is not yet clear whether the other recurrent PLCG1
variants identified affect this same catalytic function and whether
these variants are sufficient alone to enable constitutive TCR signaling
without costimulatory signals, but recent studies in SS andATLLhave
detected activating CD28 mutations and CTLA4-CD28 and ICOS-
CD28 gene fusions.3,13 Although we did not detect abnormalities of
CD28, key findings in our study included mutations of other TCR/
NF-kB signaling genes, notably PRKCQ (20% of cases) as well as
NFATC2, NFkB1, and PAK7. PRKCQ belongs to the PKC family
of serine/threonine kinases, is highly expressed in T cells, and has
a pivotal role downstream of PLCG1 in transducing TCR and cost-
imulatory CD28 signals.13 In all but 2 cases,PRKCQ aberrations were
independent of PLCG1 mutations. In ATLL, studies have identified
gain-of-function PRKCB mutations and associated downstream acti-
vating mutations ofCARD11, leading to enhanced NF-kB activation.13

CARD113-5,7,8 activating mutations and PRKCQ3,4 SNVs and CNVs
have also been detected recently in SS.

Constitutive activation of NF-kB is described in CTCL,64,65 and
recurrent gain-of-function mutations affecting the TNFRSF1B gene in
MF/SS have been shown to enhance noncanonical NF-kB signaling.5

In PTCL, the t(5;9)(q33;22) results in an ITK-SYK fusion kinase, which
induces constitutive TCR activation,66 and LCK mutations have been
documented in lymphoma.67 These findings now provide compelling
support for the hypothesis that the survival of malignant T cells in

Table 1. Identical gene variants reported in other studies

Gene Variant Functional validation References

JAK3 A573V Yes 40, 41

STAT3 Y640F Yes 42

STAT5B Y665F Yes 43, 44

STAT5B N642H Yes 43, 45, 46

STAT5B E150Q Yes 46

PLCG1 S345F Yes 3-6, 8, 9, 13, 36, 37

PLCG1 S520F Yes 4, 6, 8

PLCG1 D342N Yes 3, 37, 38

PLCG1 R48W Not done 3, 4, 7, 13

PLCG1 E1163K Not done 3, 4, 7, 8, 13

PLCG1 D1165H Not done 4, 13

POT1 R117C Yes 35

TP53 S127F Yes .10 papers

TP53 H20R Not done 5

TP53 R37X Not done 5

ATM E2423K Yes 39

CSMD1 A408V Not done 4

ENPEP V97L Not done 7

LRP1B R790Q Not done 4

Several specific variants have been reported previously in CTCL and other

malignancies. Functionally validated specific variants are indicated.

Figure 4. Genomic data of 549 genes from 101 Sézary tumors identifies candidate driver genes. Heat map showing all genes (y-axis) and all tumors (x-axis) (left);

pathways identified as frequently perturbed are aligned below the main panel (bottom). The color code represents the percentage of mutationally perturbed genes in each

tumor sample for each pathway. Candidate driver genes showing high frequencies of SNVs (top right), frequently deleted genes (middle right), and frequently amplified genes

(bottom right) are subsetted from the main panel.
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SS and other mature T-cell lymphomas is at least partly dependent
on TCR and NF-kB signaling: In mature T-cell lymphomas such as
SS, selection for activating mutations of PLCG1, PRKCQ, PREX2,
and CARD11 is likely to enhance cell survival if accompanied by
appropriate costimulatory signals and resistance toTNFRSF-mediated
apoptosis.68-72

Although we did not detect a high frequency of SNVs affecting
individual JAKSTAT genes, the presence of activating JAK1/3, STAT3,
and STAT5A/B mutations and copy number gains of 17q including
STAT3 and STAT5 could explain constitutive STAT3 activation in
some cases of SS.63,65,73-75 STAT5B mutations have recently been
described in gd T-cell lymphomas10 and JAK/STAT mutations have
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nowbeen documented in other extranodal and nodal T-cell lymphomas
including SS.8,42,44,76 Recent studies have also shown that constitutive
STAT3 expression in ALCL can be the result of gene fusions.77

Previously we reported constitutive STAT3 protein expression in 10
patientswithSS, all ofwhomwere included in this study.76Overall, 6of
these cases showed copy number gains but no SNVs of JAKs, STAT3,
or SOCS7, suggesting that other upstream events can lead to aberrant
STAT3 signaling in SS. There is growing interest in the role of GPCRs
in malignancy, and one, SIPR1, is involved in noncanonical activation
of JAK STAT signaling in lymphoid cells via PI3K signaling.78

Whether other GPCRs are implicated in JAK STAT signaling is
unclear, but SNVs affecting 2 GPCRs (98, 158) were detected in 30%
of tumors. One variant (GPR158R757C) has been reported in COSMIC,
and recent studies in ATLL also detected a high prevalence of GPCR
aberrations including SNVs affecting GPR183.13

Overall, 40% of tumors had either SNVs and/or CNVs affecting
genes involved in epigenetic regulation includingASLX3, TET1,TET2,
andDNMT3A,whichhavebeendescribed inmyeloidmalignancies and
lymphomas.79,80 These include inactivating mutations of TET1/2,
ASLX3, and DNMT3A, which have a role in DNA methylation, and
IDH2mutations affecting histonemethylation inAITL.81 Both histone
acetylation and methylation are known to be critical for T-cell dif-
ferentiation and memory. Loss of epigenetic regulation in SS is
reflected by promoter hypermethylation of multiple genes82 and
clinical responses to HDAC inhibitors such as Romidepsin.83 In
addition, recent studies in both CTCL and PTCL have shownmutations
of ARID1A/B involved in chromatin remodeling.3,84 These findings
suggest that chromatin modification plays a key role in malignant
transformation of mature T cells as recently described for B-cell
non-Hodgkin lymphoma.85

Analysis of our data sets revealed that 42% of the C.T variants
occurred at NpCpG sites, which could be consistent with at least 5 of
21 recently described signatures including age-related deamination
of methylated cytosines.21,86,87 Although UV-specific TP53 mutations
(CC.TT transversions at pyrimidine sites) have been described
previously inMF,61 we only detected very rare CC-TT transversions in
SS.MF is considered tobederived fromskin residentmemoryTcells,88

which may be exposed to environmental UV, and MF patients are
often treated with phototherapy. In contrast, SS is thought to derive
from central memory T cells. Further studies of larger data sets are
required to define the mutational signatures associated with SS and
other CTCL variants including MF.

In conclusion, our findings illustrate that the genomic landscape of
SS is markedly heterogeneous. We suggest that the high prevalence of
perturbations in genes maintaining genome integrity is a likely cause
of the loss of genome stability in SS. Furthermore, there is selection
for gene mutations/structural variation contributing to deregulation of
key pathways regulating T-cell homeostasis, cell survival, and global
epigenetic processes. These findings provide the basis for detailed
functional analyses to define novel therapeutic targets for CTCL.
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