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Key Points

• IL-4 treatment augments sIgM
expression and subsequent
downstream signalling in a
JAK3/STAT6 dependent
manner within CLL samples.

• IL-4 exposure partially
opposes the activity of Bruton
tyrosine kinase or PI3K
inhibitors on sIgM-mediated
signalling.

Kinase inhibitors targeting the B-cell receptor (BCR) are now prominent in the treatment

of chronic lymphocytic leukemia (CLL). We have focused here on interleukin 4 (IL-4),

a cytokine that protects normal and malignant B cells from apoptosis and increases sur-

face immunoglobulin M (sIgM) expression on murine splenic B cells. First, we have

demonstrated that IL-4 treatment increased sIgM expression in vitro on peripheral blood

B cells obtained from healthy individuals. In CLL, IL-4 target genes are overexpressed in

cells purified from the lymphnodesof patients comparedwith cellsderived frommatched

bloodandbonemarrowsamples.As fornormalBcells, IL-4 increasedsIgMexpressionon

CLL cells in vitro, especially in samples expressing unmutated V-genes. IL-4–induced

sIgM expression was associated with increased receptor signalling activity, measured

by anti-IgM–induced calcium mobilization, and with increased expression of CD79B

messenger RNA and protein, and the “mature” glycoform of sIgM. Importantly, the ability

of theBCR-associated kinase inhibitors idelalisib and ibrutinib, approved for treatmentof

CLL and other B-cell malignancies, to inhibit anti-IgM–induced signalling was reduced

following IL-4 pretreatment in samples from themajority of patients. In contrast to stimulatory effects on sIgM, IL-4 decreasedCXCR4

andCXCR5 expression; therefore, CLL cells, particularly within the progressive unmutated V-gene subset, may harness the ability of

IL-4 topromoteBCRsignallingandB-cell retentionwithin lymphnodes.Effectsof IL-4weremediatedviaJAK3/STAT6andwepropose

apotential role for JAK inhibitors in combinationwithBCRkinase inhibitors for the treatmentof CLL. (Blood. 2016;127(24):3015-3025)

Introduction

The finding that clinical outcome is linked to the immunoglobulin
mutational status in chronic lymphocytic leukemia (CLL) focused
attention on the role of the B-cell receptor (BCR) in this disease.1-3 The
clinical success of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib
and the phosphatidylinositol 3-kinase d (PI3Kd) inhibitor idelalisib has
further highlighted a key role of theBCR. Interestingly, treatment-naive
mutated CLL (M-CLL) cases tend to respond more slowly to ibrutinib
and to have fewer complete remissions than unmutated V-gene CLL
(U-CLL).4 This difference could reflect that, although surface
immunoglobulin M (sIgM) expression and signal capacity is down-
modulated in all cases compared with normal B cells, U-CLL samples
tend to retain higher levels of sIgM expression and signalling capacity
compared with M-CLL.5-8 Although the drivers of BCR signalling
in CLL are unknown, in vitro investigations suggest microbial-
derived antigens, autoantigens, and autonomous signals could be
involved.9-12 Antigen/autoantigen binding to the BCR results in
phosphorylation of CD79A and CD79B by Src family kinases,13

leading to assembly and activation of the signalosomewhich comprises

proteins essential for BCR-induced signal transduction including BTK
and PI3Kd.3 sIgM expression appears to be the main determinant of
variable sIgM-signalling capacity.5 However, the specific factors that
may influence sIgM expression in CLL cells are not known.

Binding of interleukin-4 (IL-4) to the IL-4 receptor (IL-4R) on
B cells results in JAK1/3-mediated phosphorylation of STAT6
(pSTAT6).14 pSTAT6 dimerizes and translocates to the nucleus, where
it induces expression ofmultiple target proteins (includingBcl-2 family
members, Bcl-XL and Mcl-1,15 MHCII and CD23) and promotes
immunoglobulin class switching.16,17Moreover, IL-4 is also important
for B-cell proliferation and differentiation, and the formation of the
germinal centers in mice.18-20 In CLL samples, IL-4 suppresses basal
and chemotherapy-induced apoptosis,15,21-23 probably via increased
expression of anti-apoptotic proteins.15

IL-4 is one of the cytokines classically synthesized by CLL
T cells.24,25 Importantly, CLL patients with progressive disease
have been reported to have a significantly greater number of T cells
that spontaneously produced IL-4 compared with patients with
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nonprogressive disease or healthy individuals.26 CLL cells themselves
express a significantly greater number of IL-4Rs comparedwith normal
B cells,27,28 and this is consistent with increased pSTAT6 expression in
CLL samples29 consequent to the augmentation of STAT6-dependent
signalling pathways. Furthermore, in an adoptive transfer model of
CLL, T cells were essential for tumor engraftment.30 Together, these
data suggest a role for T cells and perhaps IL-4 in CLL biology.

IL-4 has previously been shown to induce sIgM expression and
signalling capacity inmurine splenic B cells.31,32 An early study on the
effects of IL-4 on anti-IgM–induced proliferation using 6CLL samples
showed a heterogeneous response that could have reflected changes in
levels of sIgM, but this was before the description of the 2 subsets of
disease.33 Here, we show that IL-4 also augments sIgM expression and
signalling in the majority of CLL samples. Importantly, we show that
IL-4 partially overcomes ibrutinib- or idelalisib-mediated inhibition of
sIgM signalling. Stimulatory effects of IL-4 were reversed using JAK3
or STAT6 inhibitors. These results suggest that the ability of IL-4 to
enhance effects of antigen in tissues may have been captured by CLL
cells to promote tumorigenesis.

Methods

Patient and normal donor samples

Diagnosis of CLL was according to the International Workshop on Chronic
Lymphocytic Leukemia-National Cancer Institute 2008 criteria.34 Seventy-four
CLL cases were studied following informed written consent in accordance with
ethics committee approvals under the declaration of Helsinki (supplemental
Table 1, available on the Blood Web site). Procedures for the isolation of
malignant cells and the determination of their purity have been described
previously.5 All isolates contained .90% CD191CD51 cells. Normal donor
peripheral blood mononuclear cells (PBMCs) were obtained from anonymized
leukocyte cones from the National Blood Service (Southampton, UK) following
ethical approval. PBMCs were obtained using density gradient centrifugation
(Lymphoprep), resuspended in cryopreservation medium (90% fetal calf serum,
10% dimethyl sulfoxide) and frozen in liquid nitrogen before use to replicate our
procedure with CLL PBMCs.

Cell culture and protein extraction

CLL cells were cultured and protein extracted as previously described.15,35

Soluble anti-IgM F(ab9)2 was used at 20mg/mL,5 bead bound immobilized anti-
IgM F(ab9)2 was added at 2:1 ratio, bead:CLL cells as previously described.36

Flow cytometry

Cells were labeled for 30 minutes at 4°C with antibodies conjugated to various
fluorochromes. Data were acquired on a BD FACSCanto II. All mean
fluorescence intensity (MFI) and percent positive staining were measured
relative to an isotype control. Detection of intracellular calcium was quantitated
following incubation with 4 mMFluo3-AM (Life Technologies, UK) and 0.02%
(vol/vol) Pluronic F-127 (Sigma, UK). Results are presented as: % responding
cells 5 ([maximal peak height following anti-IgM treatment – mean of
unstimulated samples]/% CD191ve cells)3 100. A total of 1 mM Ionomycin
(Sigma) was added as a positive control. Analysis was performed using FlowJo,
version 10.

Biotinylation of cell-surface proteins

Biotinylation, isolation of cell-surface proteins and digestion using endoglyco-
sidase H (EndoH) was performed as previously described.37

Gel electrophoresis and Immunoblotting

Proteins were separated on 12% polyacrylamide gels (Thermo Fisher, UK),
transferred to nitrocellulose membranes (GE Healthcare, Buckinghamshire,

UK), and probed with anti-HSC70 (Santa Cruz, CA), anti-actin (Sigma Aldrich,
Poole,UK), and anti-Bcl-2 (Dako,Glostrup,Denmark) as loading controls.Anti-
CD79B was from Abcam. All other antibodies were from Cell Signalling
Technology (Hitchin, UK). Bands were detected by incubationwith horseradish
peroxidase–linked secondary antibodies (Dako), enhanced chemiluminescence
reagents (ThermoScientific,Rockford, IL), andvisualizedusing theChemiDoc-It
imaging system (UVP, UK). Band intensities were quantified using ImageJ and
normalized to HSC70, Actin, or Bcl-2 as indicated.

Results

IL-4 enhances sIgM expression in B cells from healthy

human donors

Previous studies have demonstrated that IL-4 enhances sIgM ex-
pression in murine B cells.31,32 Before initiating studies in CLL sam-
ples, we investigated the effects of IL-4 in normal human B cells.
PBMCs were obtained from 5 individual donors and sIgM expression
analyzed on the naive (CD191CD272) and memory (IgG2CD191

CD271) B-cell populations usingflow cytometry (Figure 1A). PBMCs
were treated for 24 hours with IL-4 or the vehicle control (RPMI1640
supplemented with 10% fetal calf serum and antibiotics) before
evaluation of sIgM levels. IgM-memoryBcells expressed higher levels
of sIgM compared with naive B cells, as previously demonstrated38

(Figure 1B). The IL-4–induced fold increase in naive cells (mean
2.7-fold) was significantly greater than that of IgM-memory cells
(mean 1.5-fold; P5 .0012). Modulation of sIgM was not secondary
to effects of IL-4 on cell death because the proportion of dead cells
was low (,5%) and not affected by IL-4 in either B-cell subset (data
not shown).

IL-4 target gene expression in CLL cells in vivo

We performed gene-set enrichment analysis (GSEA)39 to investigate
potential effects of IL-4 in CLLpatients in vivo.We identified a set of
IL-4–regulated genes from a previously published study of CLL cells
following treatment in vitro with IL-440 and investigated whether
these specific target geneswere enriched in the transcriptional profiles
of CLL cells purified from lymph node (LN) compared with matched
blood and bonemarrow.41GSEA revealed a significant enrichment of
expression of IL-4 target genes in LN-derived CLL cells, compared
withCLLcells isolated from theother tissues (supplemental Figure 1),
consistent with IL-4–dependent transcriptional activity in CLL LN
in vivo.

IL-4 enhances expression of sIgM on CLL cells

We investigated the effects of IL-4 on expression of sIgMonCLL cells
isolated from the blood of patients. In our initial analysis, CLL samples
were treated with or without IL-4 (10 ng/mL), and sIgM expression
quantified by flow cytometry at the start of the experiment, and at
various times up to 72 hours. A representative sample is shown
(Figure 2A) and summarized data are presented (Figure 2B). As
previously demonstrated,5 incubation in vitro without IL-4 was associ-
atedwith amodest increase in sIgMexpression,whichwasmost evident
at 72 hours. Compared with the vehicle control, IL-4 increased sIgM
expression at all time points. Due to potential confounding effects
of apoptosis at later time points (48-72 hours), we extended the analysis
by investigating effects of IL-4 on sIgM expression at 24 hours in
additional samples. In this extended analysis (n 5 33 samples), IL-4
increased overall sIgM expression (Figure 2C). However, there was
variability in response between individual samples. In contrast to sIgM,
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IL-4 treatment on the whole did not significantly alter expression of
sIgD, although a small subset with sIgD MFI levels .40 (in gray)
increased their receptor expression in response to IL-4 (Figure 2D-F).
We investigated whether the variation in effects of IL-4 on sIgM
expression at 24 hours correlated with CLL prognostic markers.
IL-4–increased sIgM expression was significantly greater in U-CLL
compared with M-CLL (P 5 .0016) (Figure 2G) and in ZAP701

compared with ZAP702 samples (P5 .016) (Figure 2H). In contrast,
IL-4 effects were not significantly different between CD381 and
CD382 samples (Figure 2I).

Effects of IL-4 on sIgM expression are mediated via

JAK/STAT signalling

We investigated effects of IL-4 on JAK3-mediated pSTAT6.CLL cells
were treated with varying concentrations of IL-4 (0.1–10 ng/mL) for
24 hours, and pSTAT6 quantified by immunoblotting. IL-4 induced
a dose-dependent increase in pSTAT6 with a maximal response de-
tected at concentrations.1 ng/mL (Figure 3A) and was paralleled by
increased sIgM expression (Figure 3B), but not sIgD (supplemental
Figure 2A). We also investigated responses to additional cytokines,
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including IL-13 (a known inducer of pSTAT6),16 IL-2, IL-6, IL-8,
IL-10, and IL-21. Only IL-4 increased pSTAT6 and sIgM expression
(Figure 3C-D). The type II IL-4R, which regulates IL-13 signalling, is
generally the exclusive receptor expressed by nonhematopoietic cells,
and may partially explain the lack of pSTAT6 induced by IL-13.42,43

None of the cytokines altered expression of sIgD (supplemental
Figure 2B).

To directly investigate the role of JAK3/STAT6 signalling in
IL-4–mediated sIgM induction, CLL cells were pretreated for 1 hour
with the JAK3 inhibitor tofacitinib (CP; 10mM)or theSTAT6 inhibitor
AS1517499 (AXON; 1 mM) and then incubated for an additional
23 hours in the presence or absence of IL-4 before analysis of sIgM
expression. Inhibitor concentrations selected for these experiments
were based on initial titration experiments to identify optimal inhibi-
tory concentrations (supplemental Figure 2C-D). AS1517499 and

tofacitinib had no effect on sIgM expression when tested alone, but
completely blocked the ability of IL-4 to enhance sIgM expression
(Figure 3E). The inhibitors had no effects on CLL cell viability at times
up to 24 hours (data not shown). Therefore, IL-4-induced increases in
sIgM expression appear to be mediated via JAK/STAT signalling.

Increased sIgM expression is associated with higher sIgM

signalling capacity in IL-4–treated cells

We investigatedwhether the ability of IL-4 to increase sIgMexpression
at 24 hours was associated with increased receptor function using
intracellular calcium fluxes as a highly quantitative measure of signal
responses.5 IL-4 increased anti-IgM–induced calcium mobilization,
shown in a representative sample (Figure 4A) and summarized in a
larger cohort (Figure 4B), andwas accompanied by an increased ability
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to phosphorylate extracellular signal-regulated kinase (supplemental
Figure 2E-F). Sixty-four percent of samples produced .1.2-fold
increase in calciumflux, 11%had a 1- to 1.2-fold change.No change or

a small reduction,0.3-foldwas observed in24%of samples; however,
thiswas partially confoundeddue to a small proportion (4/9) of samples
that were unable to increase calciummobilization further because they
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alreadyproduceda substantive signalling response (.50%)before IL-4
addition. Overall, IL-4 treatment did not alter responses to anti-IgD
(Figure 4C); however, 4 samples with unmutated IGHV did increase
.1.2-fold. Similar to effects on sIgM expression, stimulatory effects of
IL-4 on anti-IgM–induced calcium signalling were concentration-
dependent (Figure 4D; supplemental Figure 2G), with maximal re-
sponse at concentrations.1 ng/mL. Moreover, the JAK3 inhibitor
tofacitinib also inhibited the stimulatory effects of IL-4 on sIgM
signalling (Figure 4A).

IL-4 increases CD79B expression

We investigated the effects of IL-4 on expression of CD79A and
CD79B, 2 consort molecules that are essential for sIgM expression and
signalling.44 b2 microglobulin and Bcl-2 were used to normalize
loading for RNA and protein analysis respectively, because their
expression did not change upon IL-4 treatment. IL-4 increased

expression of CD79B at the RNA (Figure 5A) and total and surface
protein (Figure 5B-C; supplemental Figure 3A) at 24 hours. In contrast,
IL-4 treatment resulted in a slight reduction in expression of CD79A
RNA (Figure 5A) but with no discernible effects on protein expression
(Figure 5B). Similar to effects on sIgM expression, effects of IL-4
on CD79B were greater in U-CLL compared with M-CLL samples
(Figure 5D). However, no difference in IL-4R expression was
observed between U-CLL and M-CLL in a small cohort of CLL
(supplemental Figure 3B), indicating IL-4R expression does not
explain the differential response between the CLL subsets.

IL-4 increased expression of the “mature” sIgM glycoform

Previous investigations by our group found that them-chain of sIgM in
CLL cells exists in 2 forms with distinct N-glycosylation patterns: a
mature (fully glycosylated) glycoform typical of normal B cells and an
immature (high mannose) glycoform more characteristic of IgM in the
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Figure 4. Regulation of anti-IgM– and anti-IgD–induced calcium flux by IL-4. CLL samples were treated with IL-4 for 24 hours or left untreated as a control (NA). (A) CLL

cells were subsequently treated with the JAK1/3 inhibitor (CP) for 1 hour and then stimulated with soluble anti-IgM and calcium flux assessed by flow cytometry.

A representative flow cytometry plot is shown. (B) anti-IgM (n 5 38) and (C) anti-IgD (n 5 19) signaling responses were quantified using calcium flux analysis. Graphs

show fold change in signaling (%responsive cells with IL-4/%responsive cells in the absence of IL-4). Statistical significance of differences are shown. (D) Effect of IL-4 titration

on anti-IgM–induced calcium fluxes as previously described. Statistical significance was determined by paired Student t test or Wilcoxon matched pairs signed rank test.
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endoplasmic reticulum (ER), but found on the cell surface after BCR-
mediated activation.37 IncubationofCLLcells invitro led toa restoration
in expression of the mature sIgM glycoform.37 To investigate effects of
IL-4, we analyzed the expression and glycosylation of m-chain using
whole cell lysates and cell-surface protein-enriched fractions, isolated by
biotinylation and streptavidin capture. A representative sample is shown
(Figure 5E) and summarized for 12 samples (Figure 5F). Although
whole cell expression of m-chain was not altered, IL-4 significantly
increased the relative abundance of the mature m-chain glycoform on
the cell surface as shown by increased expression of a more slowly
migratingproteinband (Figure 5E). In 1casewith preexistinghigh levels
of the mature glycoform, this was stable (Figure 5F). Incubation with
endoglycosidase H to remove terminal mannose selectively removed
glycans from the more rapidly migrating protein, confirmed that this
glycoformcontained highmannose (Figure 5E). Therefore, IL-4 appears
to enhance the ability of CLL cells to replace the immature sIgM
glycoform with the fully glycosylated form typical of resting normal
B cells, but without changes in overall m-chain expression.

Effect of IL-4 on apoptosis and on inhibition of sIgM signalling

by ibrutinib and idelalisib

IL-4 appears to protect against ibrutinib and idelalisib induced
apoptosis.45,46 Here we investigated whether IL-4 influenced the
response of CLL cells to drug-induced inhibition of theBCR signalling

pathway at concentrations in accordance with the literature.45,46 CLL
samples were treated with IL-4 for 23 hours and then pretreated with
kinase inhibitors for 1 hour before anti-IgM–induced calcium flux.
A representative experiment is shown (Figure 6A-B), and the data
summarized (Figure 6C-D [idelalisib (5 mM) and ibrutinib (10 mM)];
supplemental Figure 4A-B [1 mM idelalisib or ibrutinib]). The kinase
inhibitors significantly reducedCLLviability at 48hours (supplemental
Figure 4C) and anti-IgM–induced signalling in the absence of IL-4 at 1
hour. IL-4 treatment alone increased both CLL viability and anti-
IgM–induced calcium responses in the absence and in the presence of
inhibitors. Clearly, IL-4 has 2 effects on CLL cells: first in protection
against apoptosis per se even in thepresenceof drugs, and secondon the
upregulation of sIgM. These may not be tightly linked however,
because upregulation of sIgMdid not appear to be linked to the level of
viability (supplemental Figure 4D). IL-4 treatment hadno impact on the
expressionofBTKorPI3Kd at themessengerRNA(mRNA)or protein
level, indicating that the reduced sensitivity to idelalisib and ibrutinib
was not due to reduction in expression of their target protein (data not
shown). Therefore, IL-4 may reduce the inhibitory effects of BCR
kinase inhibitors.

The effect of IL-4 on other cell-surface receptors

We investigated whether IL-4 modulated expression of other receptors
important for CLL cell behavior. We initially focused on CXCR4,
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which is thought to play an important role in homing and retention of
CLL cells in LNs.47,48 CXCR4 is downmodulated on tissue-localized
CLL cells41 (presumably because of ligand-induced receptor endocy-
tosis), andwehave shown that culture ofCLLcells in vitro is associated
with a recovery of CXCR4 expression.49 We therefore investigated
whether IL-4modulated this natural recovery by incubating cells in the
presence or absence of IL-4 and quantifying CXCR4 expression by
flow cytometry. A representative sample is shown (Figure 7A) and the
data summarized (Figures 7B-C; supplemental Figure 5A-C). As pre-
viously shown,49 culture in vitro was associated with a substantial
increase in CXCR4, which peaked at 24 hours. However, in contrast
to effects on sIgM, IL-4 significantly reduced CXCR4 expression.
Overall, IL-4 reduced CXCR4 expression by ;50% at 24 hours
(Figure 7C) and by 72 hours CXCR4 expression was almost unde-
tectable (Figure 7B). Effects on CXCR4 were specific for IL-4 among
tested cytokines (Figure 7D) and effectively blocked by JAK3 or
STAT6 inhibition (Figure 7E). Consistent with reduced CXCR4
expression, IL-4 also reducedCXCL12-dependentCLLcellmigration
(Figure 7F). In a subset of CLL samples treated with IL-4, we also
investigated CXCR4 expression in CD192CD51 cells (T cells). In
contrast to theCLLcells, IL-4 treatment ofCD192CD51 cells resulted
in an increase in CXCR4 expression (supplemental Figure 5C). This

indicated that the effects of IL-4 may be cell specific. The reduction in
CXCR4protein levels inCLLcellswas also transcriptionally regulated,
because IL-4 also reduced CXCR4 mRNA levels (supplemental
Figure 5D). IL-4 also reduced expression of the related chemokine
receptor CXCR5 (supplemental Figure 5E-F).

Themodulatory effects of IL-4were investigated on additional cell-
surface markers including CD19 and the activation markers CD69,
CD23, and CD71, which are generally overexpressed on CLL cells
compared with normal donor B cells.50 Although CD19 and CD71
expression were unaltered, IL-4 increased expression of CD69 and
CD23 (supplemental Figure 6A-D). These data indicate a considerable
degree of selectivity among the receptor modulating effects of IL-4.

Discussion

CLL appears to be a BCR-driven malignancy and the expression of
sIgM and subsequent downstream signalling are involved in disease
behavior. Cases of U-CLL, a subset of poorer prognosis, generally
express higher levels of sIgM and subsequently produce a stronger
signal compared with M-CLL in response to anti-IgM.3,51 Clearly,
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there is a potential for microenvironmental factors to influence BCR
signalling, and previous studies have shown that BAFF and CD40L
promote sIgM-mediated signalling in CLL cells.52 In those studies,
regulation appeared to involve an indirect potentiation of intracellular
signal transduction via microRNA-155–mediated suppression of the
inhibitory phosphatase SHIP1.52 By contrast, IL-4 appears to promote
sIgM signalling, at least in part, via direct upregulation of IgM
expression at the cell surface.

GSEA revealed a clear signature of IL-4–mediated transcription in
the LN of CLL patients, compared with matched blood and bone
marrow samples, indicating that IL-4 may be acting on the malignant
cells in the LN tissue. The source of IL-4 remains unknown, but CD41

T cells are detectable, and are likely to be involved.24,53 Follicular
helper T (TFH) cells a known source of IL-4 are also increased in the
blood of CLL patients and, although unambiguous identification in
tissues remains difficult, T cells with features of TFH have been
observed in CLL LNs.54 Interestingly, although circulating T cells
from CLL patients have increased exhaustion markers and have
impaired proliferation, cytotoxicity and synapse formation55,56 they
retain their capacity for cytokine production.56

In terms of effects of IL-4 onCLLcells, we found that sIgM, but not
sIgD expression, increased following IL-4 treatment in vitro. Because
there was no detectable increase in total cellular IgM following IL-4
treatment, the increase in surface expression may be due to “shunting”
of IgM from the ER to the cell surface. The relative increase in the fully

N-glycosylated glycoform is consistent with this. Our data in CLL
cells are similar to those described in mouse splenocytes where
IL-4 promoted sIgM expression, leading to enhanced downstream
signalling.31,32,57 In normal mouse splenocytes, there was co-
amplification of CD79A and CD79B, consort molecules for sIgM
expression,31whereas inCLL, therewas a clear accompanying increase
in CD79B expression, which is consistent with the reports that CD79B
limits BCR assembly in CLL.58 However, CD79A protein expression
wasmoredifficult to interpret becauseof thedetectionofmultiplebands
on the immunoblot caused by IL-4 induced glycosylation of this
protein. It seems therefore that theremay not be a defect in the ability of
m chains to undergo N-glycosylation and assembly with CD79A and
CD79B in theERofCLL cells.58 Instead, there appears to be regulation
of the subsequent process of movement through the Golgi complex to
the membrane, possibly via IL-4–mediated CD79B upregulation. In
contrast, there was little effect of IL-4 on sIgD expression, consistent
with the suggested reduced dependence on CD79A and CD79B.59

Expression in CLL cells of several other receptors (CD19, CD71)
did not significantly change following IL-4 pretreatment; however,
2 key receptors, CXCR4 and CXCR5, which are involved in cell
migration into the LNs were downregulated. In contrast, CXCR4 was
upregulated in CD192CD51 cells (T cells). These results suggested a
possible role by IL-4 in recruiting T cells to and retaining B cells within
the LN. This is also consistent with previous reports in which CXCR4
is upregulated by IL-4 in normal peripheral and cord blood T cells.60

D E F

NA CXCL12 NA CXCL12

P = .03

M
ig

ra
te

d 
ce

lls
 fo

ld
 c

ha
ng

e
(C

D5
+v

e/
CD

19
+v

e)

IL-4

0

10

20

30

B

0

500

1000

1500

2000

2500

NA 0
h

NA 2
4h

IL
-4

 2
4h

NA 4
8h

IL
-4

 4
8h

NA 7
2h

IL
-4

 7
2hCX

CR
4 

re
ce

pt
or

 d
en

si
ty

 (M
FI

)

P = .0052 P < .0001 P < .0003

C

NA 24h IL-4 24h
0

500

1000

1500

2000

2500

CX
CR

4 
re

ce
pt

or
 d

en
si

ty
 (M

FI
)

P < .0001

NA (2
4 

h)
IL

-4
Axo

n
IL

-4
 +

Axo
n CP

IL
-4

+
CP

P = .002

P = .004

P = .002

200

0

400

600

800

1000

CX
CR

4 
(M

FI
)

0

100

200

300

400

500

NA
IL

-4
IL

-2
IL

-6
IL

-8
IL

-1
0

IL
-1

3
IL

-2
1

P = .002

CX
CR

4 
(M

FI
)

A

0
100 101 102 103 104

100

200

300

Co
un

ts

CXCR4
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Importantly, these data indicated that in CLL the mechanism of IL-4
is both receptor- and cell type–dependent. The IL-4–mediated down-
regulation of CXCR4 expression and function byCLL cellsmirrors the
effect of BCR stimulation on this receptor,61,62 suggesting that these
influencesmay be acting together to locate cells to extrafollicular sites63

where enhanced IgM expression then increases antigen engagement
and subsequent downstream signalling events.

The effects of IL-4 appear to be common to all B cells, because both
naive andmemoryBcells respond to IL-4 in a similarway toCLLcells;
however, naive CD272 B cells responded to a greater extent than
CD271 memory B cells, indicating that the effect of IL-4 may be
dependent on the cell of origin. Therefore the higher level of response to
IL-4 inU-CLL casesmay simply reflect its origin from a naive B cell.49

We propose that CLL cells may highjack the naturally occurring IL-4
signalling pathway to augment BCR signalling and promote B-cell
proliferation and survival, especially within the U-CLL subset.

In addition to effects of IL-4 on sIgM expression and function, we
have also shown that this cytokine decreases the inhibitory effects of
idelalisib or ibrutinib on anti-IgM–induced signalling and protects
against BCR kinase inhibitor induced apoptosis. The presence of
significant numbers of CD41 T cells in proliferation centers,53 accom-
panied by an IL-4 gene signature (shown previously), might lead to an
increase in expression of sIgM in nonmobilized tumor cells and
therefore could protect a subpopulation from kinase inhibition. The
greater effect on U-CLL suggests that CLL cells with more responsive
signalling via sIgM engagement6-8 may be more sensitive to IL-4.
However, the clinical observation of a reduced effect of inhibitors on
disease load inM-CLLmight be due to the greater proportion of anergic
cells, which respond poorly to BCR signals and to IL-4 and would
therefore persist during therapy.51 Because IL-4 effects are mediated
by the JAK3/STAT6 pathway, we are currently investigating whether
JAK3 inhibition in combination with BCR kinase inhibitors is capa-
ble of promoting more durable remissions in vivo in the Em-TCL1
mouse model. These data clearly indicate that cytokines operating
within the tumor microenvironment enhance BCR signalling, reduce

sensitivity to BCR kinase inhibitors, and may have relevance for other
B-cell malignancies.
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41. Herishanu Y, Pérez-Galán P, Liu D, et al. The
lymph node microenvironment promotes B-cell
receptor signaling, NF-kappaB activation, and
tumor proliferation in chronic lymphocytic
leukemia. Blood. 2011;117(2):563-574.

42. Murata T, Taguchi J, Puri RK, Mohri H. Sharing
of receptor subunits and signal transduction
pathway between the IL-4 and IL-13 receptor
system. Int J Hematol. 1999;69(1):13-20.

43. Ranasinghe C, Trivedi S, Wijesundara DK,
Jackson RJ. IL-4 and IL-13 receptors: Roles
in immunity and powerful vaccine adjuvants.
Cytokine Growth Factor Rev. 2014;25(4):
437-442.

44. Reth M, Wienands J. Initiation and processing of
signals from the B cell antigen receptor. Annu Rev
Immunol. 1997;15:453-479.

45. Herman SE, Gordon AL, Hertlein E, et al.
Bruton tyrosine kinase represents a promising
therapeutic target for treatment of chronic
lymphocytic leukemia and is effectively targeted
by PCI-32765. Blood. 2011;117(23):6287-6296.

46. Herman SE, Gordon AL, Wagner AJ, et al.
Phosphatidylinositol 3-kinase-d inhibitor CAL-101
shows promising preclinical activity in chronic
lymphocytic leukemia by antagonizing intrinsic
and extrinsic cellular survival signals. Blood.
2010;116(12):2078-2088.

47. Burger JA. Chemokines and chemokine receptors
in chronic lymphocytic leukemia (CLL): from
understanding the basics towards therapeutic
targeting. Semin Cancer Biol. 2010;20(6):
424-430.

48. Burger JA, Burger M, Kipps TJ. Chronic
lymphocytic leukemia B cells express functional
CXCR4 chemokine receptors that mediate
spontaneous migration beneath bone marrow
stromal cells. Blood. 1999;94(11):3658-3667.

49. Coelho V, Krysov S, Steele A, et al. Identification
in CLL of circulating intraclonal subgroups with

varying B-cell receptor expression and function.
Blood. 2013;122(15):2664-2672.

50. Damle RN, Ghiotto F, Valetto A, et al. B-cell
chronic lymphocytic leukemia cells express a
surface membrane phenotype of activated,
antigen-experienced B lymphocytes. Blood. 2002;
99(11):4087-4093.

51. Packham G, Krysov S, Allen A, et al. The
outcome of B-cell receptor signaling in chronic
lymphocytic leukemia: proliferation or anergy.
Haematologica. 2014;99(7):1138-1148.

52. Cui B, Chen L, Zhang S, et al. MicroRNA-155
influences B-cell receptor signaling and
associates with aggressive disease in chronic
lymphocytic leukemia. Blood. 2014;124(4):
546-554.

53. Patten PEM, Buggins AGS, Richards J, et al.
CD38 expression in chronic lymphocytic leukemia
is regulated by the tumor microenvironment.
Blood. 2008;111(10):5173-5181.

54. Ahearne MJ, Willimott S, Piñon L, et al.
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