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Key Points

• Agents that inhibit both
complexes containing the
mammalian target of
rapamycin are particularly
toxic to acute lymphocytic
leukemia cells.

• This killing reflects engagement
of a 4EBP1/c-MYC/PUMA axis
downstream of mTORC1 and
an NF-kB/EGR1/BIM axis
downstream of mTORC2.

The mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and

apoptosis, has been extensively evaluated as a therapeutic target in multiple malignan-

cies. Rapamycin analogs, which partially inhibit mTOR complex 1 (mTORC1), exhibit

immunosuppressive and limited antitumor activity, but sometimes activate survival

pathways through feedbackmechanisms involving mTORC2. Thus, attention has turned

to agents targetingbothmTORcomplexesbybinding themTORactivesite.Hereweshow

thatdisruptionofeithermTOR-containingcomplex is toxic toacute lymphocytic leukemia

(ALL) cells and identify 2 previously unrecognized pathways leading to this cell death.

Inhibition of mTORC1-mediated 4EBP1 phosphorylation leads to decreased expression

of c-MYC and subsequent upregulation of the proapoptotic BCL2 family member PUMA,

whereas inhibition of mTORC2 results in nuclear factor-kB–mediated expression of the

Early Growth Response 1 (EGR1) gene, which encodes a transcription factor that binds

and transactivates the proapoptoticBCL2L11 locus encoding BIM. Importantly, 1 or both

pathways contribute to death of malignant lymphoid cells after treatment with dual

mTORC1/mTORC2 inhibitors. Collectively, these observations not only provide new

insight into the survival roles of mTOR in lymphoidmalignancies, but also identify alterations that potentially modulate the action of

mTOR dual inhibitors in ALL. (Blood. 2016;127(22):2711-2722)

Introduction

The mammalian target of rapamycin (mTOR) is a serine/threonine
kinase implicated in cell growth, actin cytoskeleton modulation, and
inhibition of apoptosis.1-4 The observation that mTOR is aberrantly
activated in a variety of malignancies has generated intense interest
in this kinase as a target for antineoplastic therapy, particularly for
lymphoid malignancies.1,3,5-11 Over the last decade, rapamycin-based
mTOR inhibitors have proven effective in certain lymphomas.7,9,10

However, their efficacy is limited by incomplete inhibition of mTOR
complex 1 (mTORC1) and by activation of AKT and downstream
prosurvival pathways through a variety of feedbackmechanisms.6,11-15

To overcome this limitation, inhibitors targeting the kinase activities of
bothmTORC1 andmTORC2 have been developed.6,9,11,16-21 Because
these agents also more effectively inhibit mTORC1,16-18,21,22 it has
beenunclearwhether inhibitionofmTORC1ormTORC2 is responsible
for the cytotoxic effects.Moreover, the specificmechanisms underlying
killing by these agents remain incompletely understood.

We previously showed that mTOR dual inhibitors induce apoptosis
in a variety of malignant lymphoid cell lines and clinical samples of

certain lymphoid neoplasms, with some cases of acute lymphocytic
leukemia (ALL) being particularly sensitive.21 Further investigation
indicated that this killing involves upregulation of the proapoptotic
BCL2 family members BIM and PUMA.21 The present study was
performed to better understand this response, which is not observed in
other cell types.23 Genes encoding both BIM and PUMA are known
to be transcriptionally activated by FOXO3A when phosphoryla-
tion of this transcription factor by AKT is inhibited24,25 or by a c-Jun
N-terminal kinase (JNK)/cJUN axis after mTORC1 inhibition in other
cell types.26,27 Surprisingly, however, we demonstrate here that upregu-
lation of PUMA and BIM by mTOR dual inhibitors appears to occur
independent of these pathways. Instead, mTOR dual inhibitors induce
PUMA by inhibiting mTORC1-mediated phosphorylation of 4EBP1,
thereby stabilizing its interaction with EIF4E to inhibit translation,
downregulate c-MYC (abbreviated MYC throughout this work), and
derepress PUMA mRNA. Simultaneously, mTOR dual inhibitors
activate nuclear factor (NF)-kB, leading to transactivation of EGR1,
which encodes a transcription factor for BIM. These observations
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provide new insight into the antineoplastic activity of mTOR inhibitors
in lymphoid neoplasms.

Methods

Reagents

Reagents were purchased as follows: OSI-027 andMLN0128 from ChemieTek
(Indianapolis, IN), allophycocyanin-conjugated annexinV fromBDBiosciences
(San Jose, CA); propidium iodide (PI) and rapamycin from Sigma-Aldrich (St
Louis,MO); 7-methyl-guanosine triphosphate-Sepharose (7Me-GTP-Sepharose)
from GE Healthcare (Pittsburgh, PA); the broad spectrum caspase inhibitor
Q-VD-OPh from SM Biochemicals (Anaheim, CA); and 4EGI-1 from EMD
(Billerica,MA).Antibodieswere obtained as follows:b-ACTIN,BAX, PUMA
(SC-28226 and SC-374223), LAMIN B1 and cRAF from Santa Cruz Biotech-
nology (Santa Cruz, CA), cleaved poly(ADP-ribose) polymerase 1 from
Promega (Madison,WI), heat shockprotein 90b (HSP90b) fromD.Toft (Mayo
Clinic, Rochester, MN), andMYC fromChi Dang (University of Pennsylvania
School of Medicine, Philadelphia, PA). A second antibody to MYC and anti-
bodies to all other proteins, including phosphorylated epitopes, were from Cell
Signaling Technology (Beverly, MA).

Tissue culture

P388 cells were from Y. Pommier (National Cancer Institute, Bethesda, MD).
All other cell lines were obtained as previously described.21 Cell lines were
propagated at densities of,13106 cells/mL inRPMI 1640medium containing
10% heat-inactivated fetal bovine serum, 100 U/mL penicillin G, 100 mg/mL
streptomycin, and2mMglutamine (mediumA) except for SeAx,which received
medium A with 15% fetal bovine serum.

Assessment of cell killing

Annexin V binding and PI staining were assayed as previously described.21,28

Lentiviral transduction

For hairpin-mediated knockdown, lentivirus encoding 4EBP1 short hairpin
RNAs (shRNAs) #31 (AGGATCATCTATGACCGGAAA) and #35
(GCCAGGCCTTATGAAAGTGAT) (R. Bram, Mayo Clinic, MN) or control
shRNAs A8 and A9 in pLKO1 (Addgene, Cambridge, MA) were packaged in
HEK293T cells as previously described.29 Cells were exposed to virus for 48
hours, washed, and selectedwith 2mg/mL puromycin. Knockdownwas verified
by immunoblotting.

Transient transfections

For transient knockdown or overexpression, 5 to 10 3 106 cells were
electroporated with 40 mg DNA consisting of plasmid encoding shRNAs
targeting RAPTOR or RICTOR (Addgene), myristoylatedAKT (myrAKT), or
AKTS473D (F. Sinicrope,MayoClinic,Rochester,MN) at 240Vwith a single
10-ms pulse using a BTX830 square-wave electroporator (Harvard Apparatus,
Holliston, MA). Cells were incubated for 12 hours before drug treatment.

7Me-GTP pulldown assay

23 107 cells were treated with OSI-027, MLN0128, rapamycin, or 4EGI-1 for
48 hours in the presence of 5 mMQ-VD-OPh. All further steps were performed
at 4°C. Cells were washed in PBS and lysed in Nonidet P-40 (NP-40) lysis
buffer (150 mM NaCl, 1.0% [w/v] NP-40, 50 mM Tris-HCl, pH 8.0). After
sedimentation at 14 000g for 10 minutes to remove insoluble material, lysates
were incubated with 7Me-GTP-Sepharose beads overnight. Bound protein was
washed 5 times with NP-40 lysis buffer, released in 23 sodium dodecyl sulfate
sample buffer, and subjected to immunoblotting.

Luciferase assays and chromatin immunoprecipitation

Dual luciferase assays21 and chromatin immunoprecipitation (ChIP)30 were
performed using previously published approaches that are described in detail in
the supplemental Material, available on the BloodWeb site.

RNA sequencing analysis

Jurkat cells were treated with diluent or 10 mMOSI-027 for 48 hours in 5 mM
Q-VD-OPh. Total RNAwas extracted using a Qiagen RNA extraction kit. After
RNA sample quality was assessed by RNA integration number, an Illumina
TruSeq mRNA kit was used to generate cDNA for next-generation sequencing.
RNAs were poly-A selected and fragmented, then subjected to reverse
transcription with random primers and second-strand synthesis to generate
double-stranded cDNA. Ends were repaired and poly(adenyl)ated, followed by
adaptor and index ligation. The cDNAs were then denatured and polymerase
chain reaction (PCR) enriched to generate the final genomic library, which was
analyzed on an Illumina HiSeq 2000. Each mRNA count number was nor-
malized to counts per million.

Human primary ALL cells

After pretreatment bone marrow aspirates from newly diagnosed ALL patients
(supplemental Table 1) were obtained with institutional review board approval,
cells were isolated on Histopaque-1077 (Sigma-Aldrich) step gradients, washed
with serum-free RPMI 1640 medium, cultured for 48 hours in medium A with
5 mM Q-VD-OPh and the indicated concentrations of OSI-027 or MLN0128,
sedimented at 100g, washed once with ice cold RPMI containing 10 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (pH7.4 at 4°C), lysed in buffered
6 M guanidine hydrochloride, and prepared for sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and immunoblotting as described.31 Alterna-
tively, samples cultured for 5 days in the presence of 10 nM rapamycin or the
indicated concentrationsofOSI-027andMLN0128 (in the absenceofQ-VD-OPh)
were assayed for viable cell mass by 3-(4,5 dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) as-
say21 or induction of DNA fragmentation by flow cytometry after propidium
iodide staining.28

Statistical methods

Unless otherwise indicated, all error bars represent mean 6 standard error of
the mean of 3 independent experiments. Effects of OSI-027 or MLN0128 vs
rapamycin on the same samples were compared using paired Student t tests for
all ALL samples treated with dual mTORC1/mTORC2 inhibitor vs rapamycin.
All other comparisons involved unpaired Student t tests with P values that are
corrected for the effects of multiple comparisons.32

Results

Effects of dual mTORC1/mTORC2 inhibitors on human ALL

ex vivo

Building on previous work, which found that ALL cells are more
sensitive to dual mTORC1/mTORC2 inhibition than other lymphoid
neoplasms,21 we assessed the sensitivity of ALL samples (supplemen-
tal Table 1) to the mTORC1/mTORC2 dual inhibitors OSI-027 and
MLN0128 using tetrazolium dye reduction assays and flow cytometry.
The dual inhibitor-sensitive human T cell ALL cell line Jurkat21 served
as a control. As indicated in Figure 1A-B, clinical ALL specimens
exhibited IC50 values of 80 to 2000 nM for OSI-027 and 2 to 100 nM
for MLN0128 in MTS assays but were generally as sensitive as Jurkat
cells. Further experiments demonstrated DNA fragmentation (sub-
diploid cells), a hallmark of apoptosis, in clinical ALL specimens after
treatment with either agent (supplemental Figure 1), extending earlier
observations that OSI-027 induces phosphatidylserine externalization
and poly(ADP-ribose) polymerase cleavage in clinical lymphoma
isolates.21 Both dual inhibitors were also more cytotoxic to ALL
isolates than the maximum clinically achievable rapamycin concen-
tration (Figure 1C-D), providing the impetus for trying to better
understand the unique action of mTORC1/mTORC2 dual inhibitors
in malignant lymphoid cells.
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mTORC1 and mTORC2 inhibition both contribute to lymphoid

cell death

To confirm that the effects of these inhibitors reflect mTOR inhibition,
we examined the effect of shRNA-mediated downregulation of
RAPTOR and RICTOR (Figure 2; supplemental Figure 2), critical
components of mTORC1 and mTORC2, respectively.33,34 Knock-
down of either RAPTOR or RICTOR induced apoptosis in multiple
malignant human lymphoid lines (Figure 2B; supplemental Figure 2B,E),
with a trend toward a further increase in apoptosis when both were

knocked down (Figure 2B; supplemental Figure 2E). Moreover,
knockdown of either RAPTOR or RICTOR sensitized cells to
OSI-027 (Figure 2C; supplemental Figure 2C,F). Collectively, these
results suggest that inhibition of both mTORC1 and mTORC2 can
contribute to apoptosis.

Further experiments examined the possibility that mTORC1/
mTORC2dual inhibition induces apoptosis inALL through previously
described pathways. In view of earlier suggestions that mTORC1/
mTORC2 dual inhibitors are more cytotoxic because they inhibit
mTORC2-mediated AKT activation, we assessed the impact of
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Figure 1. OSI-027 and MLN0128 diminish viable cell

mass in ALL cultures ex vivo. After samples from

patients with newly diagnosed ALL were treated for 5

days with (A-B) OSI-027 or MLN0128 as indicated or

(C-D) with 5 mM OSI-027, 250 nM MLN0128, or 10 nM

rapamycin, MTS reduction was assayed. Results in

cells treated with diluent (0.1% dimethylsulfoxide) were

set at 100%. Numbers next to lines in panels A and B

refer to patient numbers in supplemental Table 1.

Mean values for Jurkat cells (included in each assay)

are indicated by circles. (C-D) The same data separated

by (C) patient or (D) treatment. In D, *P , .001 and

**P 5 .011.
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constitutively active AKT constructs on dual inhibitor-induced
apoptosis. Although myr-AKT and AKT S473D preserved AKT
activity during dual inhibitor treatment, as indicated byPRAS40Thr246

phosphorylation, neither prevented dual inhibitor-induced apoptosis
(supplemental Figure 3). Because upregulation of BIM and PUMA
contributes to dual inhibitor-induced apoptosis,21 we also examined
involvement FOXO3A, which transactivates the genes for both
BH3-only family members after AKT inhibition.24,25,35 FOXO3A
depletion did not affect OSI-027–induced cell death (supplemental
Figure 4A-B). Moreover, luciferase assays showed undiminished
dual inhibitor-induced activation of the BIM promoter when the
FOXO3A binding sites were mutated (supplemental Figure 4C).
We similarly investigated whether an ASK1/JNK/cJUN pathway
implicated in rapamycin-induced death in osteosarcoma cell lines26,27

plays a major role in mTOR dual inhibitor-induced lymphoid cell
death. In Jurkat cells, OSI-027 increased cJUN phosphorylation
(supplemental Figure 5A) and activation of an AP1 reporter construct
(supplemental Figure 5B). Importantly, however, dominant-negative
(dn) cJUN or JNK inhibited apoptosis induction by cytarabine
(another JNK-dependent apoptotic stimulus36) but did not alter dual
inhibitor-inducedBIM promoter activation or apoptosis (supplemental
Figure 5C-E). These observations prompted us to explore alternative
explanations for OSI-027- and MLN0128-induced killing of ALL cells.

4EBP1 dephosphorylation induces apoptosis through

PUMA upregulation

The observation that 4EBP1 phosphorylation is inhibited by
mTOR dual inhibitors, but not rapamycin (Figure 3A; supple-
mental Figure 6),21,22,37,38 led us to hypothesize that 4EBP1
dephosphorylation might contribute to mTOR dual inhibitor-
induced apoptosis, perhaps through 4EBP1-mediated disruption of
EIF4E/EIF4G interactions and inhibition of translation.39 Consistent
with this possibility, 7Me-GTP pulldown assays showed that mTOR
dual inhibitors, but not rapamycin, cause dissociation of the EIF4E/
EIF4G translational complex and enhanced 4EBP1/EIF4E binding
(Figure 3B-C). Moreover, expression of 4EBP1 T37A/T46A/S65A/
T70A (4A), which mimics dephosphorylated 4EBP1 (Figure 3D), in-
creasedPUMAmRNAand protein levels and apoptosis (Figure 3E-G).
In contrast, a 4EBP1 4A construct lacking the EIF4E binding domain
(D4E 4A; Figure 3D) failed to increase PUMA protein or apoptosis
(Figure 3H and E, respectively).

If 4EBP1-mediated disruption of EIF4E/EIF4G interactions contrib-
utes to apoptosis, the effect should be phenocopied by 4EGI-1, a small
molecule that disruptsEIF4E/EIF4G interactions,40-44 anddiminishedby
4EBP1 knockdown. In agreement with these predictions, 4EGI-1 not
only decreased EIF4G binding to EIF4E (Figure 3C), but also increased
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PUMA expression (Figure 3C,I) and induced apoptosis (Figure 3J) that
was PUMA dependent (Figure 3K). Conversely, 4EBP1 knockdown
(Figure 4A) diminished the ability of mTOR dual inhibitors to induce
PUMA mRNA (Figure 4B), PUMA protein (Figure 4C-D), and apo-
ptosis (Figure 4E-F); this phenotype was reversed by expression of
shRNA-resistant 4EBP1 (Figure 4G-H). Collectively, these observations
indicate that mTORC1 inhibition, acting through 4EBP1 to disrupt
EIF4E/EIF4G interactions, leads to PUMA upregulation.

Role of MYC in dual mTOR inhibitor-induced

PUMA upregulation

In accord with the known dependence of MYC translation on the
EIF4E/EIF4G complex,45 we also observed MYC downregulation
after treatment with OSI-027, MLN0128, and 4EGI-1, but not

rapamycin (Figure 5A; supplemental Figure 7A-B). Importantly,
MYC downregulation paralleled PUMA induction under a variety of
conditions, including expression of nonphosphorylatable 4EBP1 in
parental Jurkat cells (Figure 5B)orwild-type4EBP1 in4EBP1-deficient
cells (Figure 4H).Conversely, neitherMYCdownregulation nor PUMA
induction occurred after dual inhibitor treatment if 4EBP1 was
downregulated (Figure 4C).

In further studies examining the role of MYC loss in PUMA
upregulation, MYC shRNA not only induced PUMA mRNA and
protein (Figure 5C-D), but also increased apoptosis (Figure 5E) in a
PUMA-dependent manner (supplemental Figure 7C). Conversely,
MYC expression from a construct lacking the long 59 untranslated
region (UTR; and therefore less dependent onmTORC1 for translation)
suppressed OSI-027–induced PUMAmRNA and protein upregulation
(Figure 5F-G). Further experiments indicated that OSI-027 failed to
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activate the PUMA promoter (supplemental Figure 7D), but instead
stabilized constructs containing the PUMA 39 UTR (supplemen-
tal Figure 7E), consistent with the possibility that MYC represses
PUMA through its widespread effects on microRNAs.46 Similar
effects of OSI-027, but not rapamycin, on 4EBP1 phosphory-
lation, MYC expression, and PUMA upregulation, were observed
in Nalm6 and Jeko cells (supplemental Figure 8A-B), ruling out
the possibility that observed effects are unique to Jurkat cells.
Moreover, OSI-027 caused decreased 4EBP1 phosphorylation,
MYC downregulation, and PUMA upregulation in Jeko xenografts
in vivo (supplemental Figure 8C). Collectively, these results
support a model in which mTORC1 inhibition, acting through
4EBP1, induces PUMA upregulation and apoptosis through MYC
downregulation.

Dual inhibitors transcriptionally activate BIM through EGR1

To assess the basis for BIM upregulation during dual inhibitor-induced
killing,21 we used RNA interference, reporter assays, and RNAseq
experiments. Initial experiments demonstrated that BIM increases
after RICTOR and, to a lesser extent, RAPTOR knockdown
(Figure 6A). Because this reflects BIM promoter activation (supple-
mental Figure 7D), we investigated dual inhibitor-induced activation
of a series Bim promoter truncations in P388 mouse lymphoma cells,
which have awider dynamic range for these assays. OSI-027–induced
promoter activity decreasedmarkedlywhen thenucleotides229 to218
(relative to the transcription start site) were removed (Figure 6B-C).
Similarly, the 800-bp Bim promoter lacking these 12 bp (Δ113-125)
was activated much less (Figure 6B), suggesting that this response
element is critical for OSI-027–induced promoter activation. In silico
analysis using the transcription factor databases TRANSFAC and
TFSEARCH identified 8 transcription factors, including EGR1, SP1,
MYB, and HSF2, that potentially bind this 12-bp region (supplemental
Figure 9A).

In RNAseq experiments examining the impact of OSI-027 on the
Jurkat cell transcriptome (supplemental Figure 9B), we detected not
only 11- and 2-fold increases of PUMA and BIM mRNA (Figure 6D;
supplemental Figure 9C), in good agreementwith previous quantitative
reverse transcriptase-PCR (qRT-PCR) data,21 but also a 9-fold increase
in EGR1 mRNA and 4- to 7-fold increases in the EGR1 targets47-50

EGR2, EGR3, and EGR4 (Figure 6E). In contrast, changes in mRNAs
encoding SP1 and other transcription factors predicted to bind
to the same region of the BIM promoter region were minimal
(Figure 6E). Dual inhibitor-induced EGR1 upregulation was con-
firmed in Jurkat cells by qRT-PCR (Figure 6F) and immunoblotting
(Figure 6G). Moreover, RICTOR knockdown was found to induce
EGR1 (Figure 6A), suggesting that mTORC2 inhibition is responsible
for this effect.

Consistent with a critical role for EGR1 in BIM induction, dnEGR1
lacking the N-terminal transactivation domain51 diminished dual
inhibitor-induced BIM promoter activation (Figure 6H) and BIM
upregulation (Figure 6I-J). Similarly, mTORC1/mTORC2 dual
inhibitors induced EGR1 and BIM in Molt4 T-cell ALL, and
EGR1 knockdown diminished this BIM upregulation (supple-
mental Figure 9D-E).

Subsequent ChIP assays (Figure 6K-L) demonstrated that OSI-027
enhances binding of EGR1 to a region of the BIM promoter including
base pairs 229 to 218, further confirming that EGR1 functions as a
direct transcriptional activator for BIM during mTOR dual inhibitor
treatment. Collectively, these observations support a model in which
mTORC2 inhibition induces EGR1 upregulation followed by BIM
transactivation.

Dual inhibitors activate NF–kB, which transactivates EGR1

To determine how EGR1 is upregulated, we examined the impact of
dual inhibitors on the NF-kB pathway because (1) NF-kB is a known
EGR1 transcription factor,52 (2) mTOR has been shown to regulate
NF-kB,53-56 and (3) ourRNAseqdatademonstratedOSI-027–induced
upregulation of NF-kB target genes (supplemental Figure 10A).
Consistent with a role for NF-kB in dual mTOR inhibitor-induced
EGR1 upregulation, we observed increased p65 in the nucleus
(Figure 7A) and increased NF-kB transcriptional activity (supple-
mental Figure 10B) after dual inhibitor treatment. Importantly,
overexpression of S32A/S36A IkB (IkB SS/AA) impaired dual
inhibitor-induced NF-kB transcriptional activation (supplemental
Figure 10B), EGR1 mRNA and protein upregulation (Figure 7B-C),
BIM promoter activation (Figure 7D), and BIM mRNA and protein
upregulation (Figure 7C,E). Likewise, pharmacologic inhibition of
NF-kB activation with BAY 11-7082 diminished dual inhibitor-
induced EGR1 upregulation (supplemental Figure 10C).

BIM upregulation in vivo

The engagement of the 4EBP1/MYC/PUMA and NF-kB/EGR1/BIM
pathways was not limited to Jurkat cells. The 4EBP1/MYC/PUMA
pathway was activated in SeAx Sézary syndrome cells (supple-
mental Figure 11A), which express PUMAbut lack detectable BIM
and EGR1, whereas the NF-kB/EGR1/BIM pathway was activated
in Molt4 T-cell ALL cells (supplemental Figure 9D-E), which
lack detectable PUMA. Moreover, both pathways were activated
in Nalm6 B-cell ALL cells (supplemental Figures 8A and 11C)
and in SuDHL-4 B-cell lymphoma cells in vitro (supplemental
Figure 12A).

Curiously, after mTOR dual inhibitor administration to mice har-
boring Jurkat xenografts, increased BIM mRNA and protein were not
detected (N.D.V. and P.A.S., unpublished observations, July 2014 and
September 2015). Further investigation demonstrated that Jurkat cells
contained an average of 15-fold less enhanced green fluorescent pro-
tein (EGFP)-BIM in vitro when expressing a transgene encoding this
protein in the absence vs presence of caspase inhibitor (supplemental
Figure 13A), suggesting high sensitivity of Jurkat cells to BIM-induced
apoptosis. Moreover, mRNAs encoding BIM and other proteins de-
creased 4- to 32-fold when Jurkat cells underwent apoptosis
(supplemental Figure 13B-C), further indicating that this line is not a
good model for detecting BIM upregulation in the absence of caspase
inhibition.

When the xenograft experiments were repeated using SuDHL-4
cells, which contain higher baseline BCL2, BCLXL, and MCL1 levels
(supplemental Figure 12A, fourth lane), upregulation ofEGR1 followed
by BIM was readily detected in vivo (supplemental Figure 12B, red
boxes), providing evidence for activation of the EGR1/BIM axis by
mTOR dual inhibitors in vivo.

BIM and PUMA upregulation in human ALL samples

When fresh clinical ALL isolates were exposed to OSI-027 or
MLN0128 exvivo,we likewise sawactivation of oneor both apoptotic
signaling cascades described above. In particular, some ALL samples
displayed upregulation of EGR1 and BIM (Figure 7F; supplemental
Figure 11D), and other samples displayed MYC downregulation
accompanied by PUMA induction (supplemental Figure 11C) or
activation of both pathways (Fig. 7G; supplemental Figure 11E),
indicating that the pathways identified in ALL cell lines can also
potentially be engaged in clinical ALLs.
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Discussion

Previous studies have shown that mTORC1/mTORC2 dual inhibitors
are particularly active against certain lymphoid neoplasms. Here
we demonstrate the contribution of 2 separate killing mechanisms
(Figure 7H): one involving mTORC1 inhibition leading to 4EBP1
dephosphorylation, MYC downregulation, and concomitant PUMA

upregulation, and another involving mTORC2 inhibition leading to
NF-kB activation, increased EGR1, and transcriptional activation of
the BCL2L11 gene encoding BIM. These results have implications
for ongoing efforts to develop these new antineoplastic agents for
lymphoid malignancies.

Although rapalogs are active against a number of hematologic
malignancies, responses are limited.7,9,10 The realization thatmTORC2
often remains active during rapalog treatment has spurred development
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of small molecules targeting the mTOR kinase domain.6,9,16-18,20,21

These dual mTORC1/mTORC2 inhibitors were originally thought to
be more effective because mTORC2 inhibition diminishes activation
of the prosurvival kinaseAKT through variousmechanisms.14,57 In the
present study, however, forced expression of 2 different constitutively
active AKT constructs failed to rescue ALL cells from mTOR dual
inhibitors (supplemental Figure 3). Moreover, downregulation of
FOXO3A, an AKT-regulated transcription factor for BIM and
PUMA, also failed to protect cells (supplemental Figure 4).
Although AKT and its substrate FOXO3A mediate dual inhibitor
effects in other cell types and might contribute to dual inhibitor-
induced killing in lymphoid cells, we were unable to confirm
involvement of this pathway in OSI-027– or MLN0128-induced
killing of the cells studied here.

Our further studies demonstrated that downregulation of either
RAPTOR or RICTOR is toxic to malignant lymphoid cells (Figure 2;
supplemental Figure 2), suggesting the possibility of at least 2 distinct
killingmechanisms.Whenwe explored 4EBP1 dephosphorylation as a
determinant of dual inhibitor killing, we observed that mTOR dual
inhibitors facilitated binding of 4EBP1 to EIF4E, disrupting EIF4E/
EIF4G interactions (Figure 3B-C) that are critical for translation of
messages with 59 terminal oligopyrimidine tracts. Some effects of dual
inhibitors, notably disruption of EIF4E/EIF4G interactions, down-
regulationofMYC,upregulationofPUMA,and inductionof apoptosis,
were reproduced by nonphosphorylatable 4EBP1 mutants, the
EIF4G antagonist 4EGI-1, or MYC knockdown (Figures 3 and 5).
Conversely, these effects were diminished by expression of MYC
constructs that are unaffected by EIF4E/EIF4G interactions or by
PUMA downregulation (Figure 5F-G; supplemental Figure 7C). Col-
lectively, these observations identify an mTORC1/4EBP1/MYC/
PUMA pathway as a major determinant of dual mTOR inhibitor-
induced killing in ALL cells (Figure 7H, left arm) and provide a
mechanistic explanation for the recent observation that cells displaying
incomplete inhibition of 4EBP1 phosphorylation or absence of 4EBP1
expression exhibit resistance to mTOR dual inhibitors.58,59 Although
MYC is generally viewed as a transcription factor that mediates
proliferation, its ability to induce cell death under unfavorable growth
conditions has long been known60-62; the present studies provide an
additional mechanism by which changes in MYC contribute to
apoptosis under unfavorable growth conditions.

In accord with the model shown in Figure 7H (right arm), mTOR
dual inhibitors also caused elevated expression of NF-kB target
genes, including the transcription factor EGR1, which bound the
BCL2L11 promoter to facilitate BIM upregulation and subsequent
apoptosis. Some of the effects of the dual inhibitors, notably
induction of BIM mRNA and protein, as well as apoptosis, were
reproduced by RICTOR knockdown (Figures 2 and 6A). Con-
versely, proapoptotic signaling through this second pathway was
inhibited by the IKK inhibitor BAY 11-7082, IkB SS/AA, dnEGR1,
or EGR1 knockdown (Figure 6H-J; supplemental Figures 9E and
10). These observations identify an mTORC2/NF-kB/EGR1/BIM
pathway as another major determinant of dual mTOR inhibitor-
induced killing in ALL cells.

Collectively, the present studies not only identify unique pathways
leading tomTOR-induced suppression of 2 different BH3-only proteins
in lymphoid cells, but also raise several new questions. First, our studies
indicate that PUMA upregulation is predominant in some lymphoid
lines (eg, Jeko), whereas BIM and PUMA are almost equally important
in other lines (eg, Jurkat).21 Second, the present results indicate
that mTORC2 suppresses NF-kB/EGR1/BIM signaling in ALL cells,
whereas previous studies have reported mTOR-induced NF-kB
activation.53-56 Further experiments are needed to identify the factors

that determinewhich pathway (4EBP1/MYC/PUMAorNF-kB/ERG1/
BIM) predominates in various cells and to elucidate the contexts in
which mTOR complexes activate versus inhibit NF-kB.

Studies in xenografts also demonstrated that each of the 2 pathways
can be activated in vivo by therapeutically achievable mTOR dual
inhibitor concentrations (supplemental Figures 8C and 12B). On the
other hand, our studies also revealed that certain cell lines such as Jurkat
are extremely sensitive to upregulation of BH3-only proteins. As a
consequence, these cells are killed with relatively modest upregula-
tion, leaving little trace of the lethal BH3-only protein upregulation
at the mRNA or protein level in the absence of caspase inhibitors
(supplemental Figure 13). This factor needs to be taken into account
when mechanisms of cytotoxicity are evaluated.

Earlier studies also implicated diminished translation of the
short-lived Bcl-2 family memberMCL1 as mechanism of rapamycin-
induced cytotoxicity in lymphoid cells.63,64 OSI-027 and MLN0128,
which inhibit mTORC1more effectively than rapamycin (Figure 3A),
also downregulate MCL1 to a certain extent in some ALL cell
lines (supplemental Figure 11A-B)21 and clinical samples (Figure 7F;
supplemental Figure 11E), suggesting a third mechanism that
might also promote ALL sensitivity to dual mTOR inhibitors.
Although MCL1 downregulation does not always contribute to
cytotoxicity of protein synthesis inhibitors,65 the loss of MCL1
might be particularly deleterious when dual mTOR inhibitors
simultaneously upregulate BIM and PUMA, which are known to
be neutralized by MCL1.66

Conversely, the present results also identify multiple biochemical
changes (eg, variations in 4EBP1 levels or inducibility of EGR1,
BIM, and PUMA) that could potentially affect sensitivity to this
class of agent in lymphoid cells. Accordingly, these results not only
support the notion that agents inhibiting both mTORC1 and
mTORC2 may provide superior therapeutic benefit because of
their ability to induce multiple distinct cell death pathways, but
also identify factors that need to be examined further as preclinical
and early clinical studies of mTOR dual inhibitors move forward in
hematologic malignancies.
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