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Gene editing enables the site-specific

modification of the genome. These tech-

nologies have rapidly advanced such that

they have entered common use in exper-

imental hematology to investigate genetic

function. In addition, genome editing is

becoming increasingly plausible as a

treatment modality to rectify genetic blood

disorders and improve cellular therapies.

Genome modification typically ensues

from site-specific double-strand breaks

and may result in a myriad of outcomes.

Even single-strand nicks and targeted bio-

chemical modifications that do not perma-

nently alter theDNA sequence (epigenome

editing) may be powerful instruments. In

this review, we examine the various tech-

nologies, describe their advantages and

shortcomings for engendering useful

genetic alterations, and consider future

prospects for genome editing to impact

hematology. (Blood. 2016;127(21):2525-2535)

Introduction

The immense potential of site-specific genomic modification has
been appreciated since the advent of molecular genetics. Prior to
the availability of engineerable targeted nucleases, homologous
recombination could be instigated in mammalian cells by the
presence of extrachromosomal donor templates, including small
oligonucleotides.1-4 The uses of triple helix forming oligonucleotides
as triggers and viral genomes such as adeno-associated virus (AAV) as
donors for homologous recombination in the absence of additional
nucleases continue to demonstrate promise as effective means of
targeted genome modification.5,6 However, the relatively low rates of
gene correction that can typically be realized by these approaches has
both limited research and deterred clinical applications.7 Following
the introduction of a double-strand break (DSB) at a locus, rates
of homologous recombination increase by roughly 3 orders of
magnitude.8-10 Thus, the discovery and subsequent development of
targeted nucleases has provided important novel mechanisms for site-
specific homologous recombination. In addition, targeted nucleases
may be used to produce additional sequence-specific genetic and epi-
genetic outcomes that may be exploited to gain knowledge of genome
function and produce desirable alterations.11

Each of the targeted nucleases described below contains 2 major
functional moieties, the first of which is specific DNA recognition.
The various platforms differ based on the biochemical nature of the
recognition (by protein or RNA), by the modularity of recognition
(whether 1, 2, or more components are involved), the size of the
recognition domain (and its attendant challenges to cellular delivery),
the ease with which the interaction may be engineered to recognize a
variety of target sequences, and the specificity of such recognition. The
second function is endonucleic DNA cleavage. The nature of both the
cleaving enzyme (monomeric vsmultimeric organization, size) and the
resultant cleavage (blunt-ended, staggered-ended, single-strandednick)
are distinguishing characteristics.

A number of recent reviews have covered the fundamental
discoveries and engineering breakthroughs that have yielded the

current toolkit of genomeediting reagents.12-15Hereweprovide a brief
overview of the major classes of targeted nucleases and then focus on
considerations and opportunities for the widespread application of
these tools for laboratory research, as well as clinical application to
ameliorate hematologic disorders.

Genome editing tools

Meganucleases

Meganucleases (also called homing endonucleases) were the first
targeted nuclease described.16 These 20- to 37-kDa (;0.6-1 kb)
sequence-specific nucleases are active as monomers and named based
on their ability to recognize relatively long (14-40 bp) target se-
quences.17 Meganucleases are distinguished from restriction endonu-
cleases by theirmuch larger target site,whoseoccurrencemaybe as rare
as a single instance per genome.17

Applications of meganucleases are limited by the low frequency of
target site presence at most genes, thus essentially preventing the use of
naturally occurring forms for functional genomics or therapeutic
development.18,19 Meganucleases may be engineered by both rational
structure-guided design and high-throughput screening to recognize
diverse targets, including those within human genes, although this
remains a nontrivial task.18,20 In addition, the tendency of mega-
nucleases to tolerate some target sequence degeneracy may limit their
specificity.21

Zinc-finger nucleases

Zinc-finger nucleases (ZFNs) are chimeric nucleases that consist of
individual zinc-finger protein (ZFP)motifs, each of which is capable of
specifically recognizing 3 to 4 bases of DNA.22 Linking multiple ZFPs
together allows for the targeting of extended stretches of DNA
(typically 9-18 bp). The coupling of a FokI nuclease (which cleaves
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without sequence specificity but requires dimerization) to each of a pair
of monomers allows the composite dimeric enzyme to introduce a site-
specific DSB.23 Each ZFN target site is composed of 2 ZFP binding
sites on either side of a spacer region of 5 to 7 bp within which the
dimerized FokI cleaves.24 Although the need for dimerization allows
for increased target site specificity (due to the increased binding site
size), wild-type FokI can still homodimerize and lead to undesired
breaks. FokI domains containing mutations (ELD/KKR) in the
dimerization interface result in increased specificity via obligate
heterodimerization.25-27 Each ZFNmonomer is encoded by a roughly
1.2 kb (;45 kDa) gene, a pair of which need to be delivered to target
cells to execute genome editing. Like meganucleases, the requirement
for de novo design and testing of ZFN target sequence recognition is a
barrier to their widespread use.

Transcription activator–like effector nucleases

Similar to ZFNs, transcription activator–like effector nucleases
(TALENs) are chimeric nucleases composed of an engineerable
DNA-binding domain and a FokI nuclease. TheDNAbinding domain
consists of an array of individual TALE repeats composed of 34 amino
acid modules that determine DNA specificity based merely on the
sequence of the 12th and 13th residues (so-called repeat variable
diresidues [RVDs]).23 Like ZFNs, TALENs are typically designed to
act as obligate heterodimers to increase specificity. Thus, active
TALENs consist of a pair of monomers (2.5-3.0 kb or 90-110 kDa)
separated by a 12- to 20-bp spacer region that introduce aDSBonFokI
dimerization.24

TALEN design and assembly is more straightforward than that of
ZFNs as each RVD targets a single DNA base and multiple RVDs can
be stitched together in essentially any order. Online resources are
available to assist with design and cloning from preformed modules.15

Hybrid nucleases consisting of the easily engineerable TALE binding
domain and the site-specificmeganuclease head (so-calledmegaTALs)
may offer additional specificity, affinity, and potentially simplified
cellular delivery because they are active as ;75-kDa (;2-kb)
monomers.28

Clustered regularly interspaced short palindromic repeat/Cas

Clustered regularly interspaced short palindromic repeat (CRISPR)
sequences are a defining component of a prokaryotic adaptive immune
system. From these loci, bacteria express genomically encoded RNAs
to guide nuclease cleavage to matching sequences of invading phage
and plasmid DNA.29,30 The widely studied type II system from
Streptococcus pyogenes consists of 3 components: (1) the nuclease
Cas9, containing both RuvC and HNH nuclease domains, which
produces blunt DSBs; (2) a DNA-binding CRISPR RNA (crRNA),
which includes a 20-nt guide RNA (gRNA) sequence with precise
complementarity to itsDNAtarget; and (3) anauxiliary trans-activating
crRNA (tracrRNA) bridging the crRNA to Cas9. Recognition of a
target site by SpCas9 depends on the presence of a protospacer adjacent
motif (PAM) sequence NGG immediately downstream of the gRNA
target sequence. Cleavage occurs 3 bp upstream of the PAM.31

The most common implementation of CRISPR genome editing in
eukaryotic cells relies on a 2-component system consisting of SpCas9
(;160 kDa, ;4.2 kb) and a single chimeric guide RNA (sgRNA) of
;110 nt that subserves the recognition and structural functions of the
crRNA and tracrRNA.32

The discrete rules underlying SpCas9/sgRNAgenome editing belie
the extensive diversity of CRISPR/Cas systems. Several naturally
occurring Cas9 orthologs have been adapted for genome editing
of human cells, and many more are likely to be discovered.33-35

For example, the smaller size of the Staphylococcus aureus Cas9
(;120kDa,;3.3 kb) comparedwithSpCas9mayprovide advantages
in terms of cellular delivery, but its restriction by a different PAM
sequence (NNGRRT)may limit SaCas9 to a somewhat narrower set of
genomic targets.33 Engineered variants of SaCas9 and SpCas9 with
novel PAM recognition sequences broaden the repertoire of possible
genomic targets.36,37 Cpf1, a member of a distantly related CRISPR
nuclease family, differs from SpCas9 in that it uses a single gRNA
without tracrRNA, has a different PAM sequence (TTN), appears to
act as a dimer rather than monomer, and introduces a staggered rather
than blunt DSB.35 This multitude of CRISPR/Cas variants provides
scientists with a rapidly expanding toolkit with extensive versatility
(Figure 1).

Molecular outcomes of genome editing

Following introduction of aDSB in thegenome, cellular repair prevents
disastrous chromosomal catastrophes. The varied repair responsesmay
be simplified into 2 major pathways, each of which relies on a large
number of host factors: nonhomologous end joining (NHEJ) and
homology-directed repair (HDR). NHEJ involves reuniting the 2
broken ends of the chromosome in a process that often leads to small
insertions or deletions (so-called indels) at the cleavage site. These
small “scars” left behind by indel mutations may result in functional
disruption of essential target sequences, such as producing missense or
frameshiftmutationsor interruptionof splice sites or transcription factor
binding sites24 (Figure 2A). The simultaneous introduction of 2 DSBs
some distance away from each other on the same chromosome may
result in large interstitial deletions and inversions or in translocations if
on different chromosomes38-42 (Figure 2B).

In contrast, HDR depends on a donor template for repair. In
“natural” HDR, following genotoxic injury, homologous sister
chromatids serve as template for precise repair in replicating cells. In
the case of genomeediting, an extrachromosomal donor sequencemay
be used to integrate sequences of choice adjacent to induced DSBs (or
even to single-strand breaks, asmay be produced by nickasemutants of
Cas9). Because expression of HDR pathway components is limited to
the S/G2 phase of the cell cycle, only dividing cells are competent for
this type of repair.43-45

Genome editing as a research tool

A fundamental goal of human genetics is to relate genotype to
phenotype. Genome editing provides a powerful means to rapidly
generate novel alleles to determine the function of coding and noncoding
sequences. Given its robustness and ease of use, CRISPR/Cas9 has
quickly become an indispensable tool for many experimental hematol-
ogists to evaluate gene function. The ability to create null alleles on
demand appears at least as powerful a paradigm shift as preceding RNA
interference technology for functional genomics. Various manifestations
of genome editing as a research methodology include the production of
knockout and knock-in alleles in hematopoietic cell lines and in
hematopoietic stem cells transplanted to mice, to model leukemia-
associated translocations, and toproducevariousanimalmodelsofgenetic
modification in both the zygote and restricted to somatic lineages.40,46-51

The control of Cas9 specificity merely by the nature of the 20-nt
gRNA sequence makes the generation and interrogation of large-scale
sgRNA libraries straightforward by massively parallel oligonucleotide
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synthesis and sequencing, respectively. With increased specificity and
efficiency over RNAi screens, CRISPR-based forward genetic screens
may be performed by introduction to cells of genome-wide libraries of
sgRNAs as mutagens, cells with a given phenotype retrieved, and then
the mutagens of interest easily identified.52,53 These approaches have
been successfully applied to identify unexpected dependencies for
various infectious diseases and cancers.54-56

SystematicCRISPR approaches not only provide an opportunity to
identifygenes of interest, but alsodelineate keycoding andnon-coding
sequences. Dense sgRNA libraries targeted throughout coding
sequences can identify functional domains within a gene, such as
druggable dependencies in hematologic malignancy.57 Methodical
perturbation of regulatory sequences, such as the fetal hemoglobin-

associated erythroid-specific enhancer ofBCL11A58 byCRISPR/Cas9
and ZFN/TALEN mutagenesis, have identified critical regulatory
sequences that themselves may serve as therapeutic targets.59,60

In contrast to conventional genome editing, which implies
permanent modification of genomic target sequences, genome editing
tools may be repurposed to engender potent biological outcomes
without mutagenesis. For example, catalytically inactive mutants of
Cas9 (dCas9) may be guided to proximal promoters or coding
sequences to block transcription.61 Linking the site-specific binding
domains of targeted nucleases to gene regulatory domains (along with
disabled nuclease function) may allow for potent modulation of gene
expression to characterize mechanisms of transcriptional regulation as
well as redirect cellular phenotype.62 For example, fusion of dCas9 to

Meganuclease

Zinc-finger
nuclease

TALEN

megaTAL

Cas9

Cpf1

Figure 1. Targeted nucleases. Schematic of genome

editing systems. DNA recognition and cleavage com-

ponents for each nuclease shown. ZFP motifs shown

as yellow boxes. TALE RVDs shown as red ovals. FokI

shown as blue rectangles. Single guide RNA shown as

purple lines. Red arrowheads indicate cleavage points

for each enzyme. Cpf1 illustrated as dimer.
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a repressor such as the Kruppel-associated box promotes repressive
histone modifications such as histone H3K9 trimethylation and
targeted gene silencing.62 Pairing TALEs or dCas9 with chromatin
regulators such as LSD1 histone demethylase can result in targeted
epigenetic regulation of noncoding elements and help define rela-
tionships between genes and distal regulatory elements.63-65

In addition to gene repression, gene activation can also be achieved
using modified targeted nuclease platforms. Coupling dCas9 to
individual positive transcriptional regulators such as the VP64
transactivation domain or the core region of the histone acetyltransfer-
ase p300 results in robust transcription of target genes, and higher-order
clusters of activation domains may serve as even more potent
activators.66-68 Targeting of such dCas9-based transcriptional activa-
tors or repressors to a large set of gene promoters with sgRNA libraries
permits genome-wide screens.69,70

Therapeutic considerations

Repair mode

The ultimate cure for a genetic disorder would be to revert the disease
mutation back to normal sequence. Conditions for which a single or

predominant mutation underlies the disease would seem to be most
amenable to this approach (because a single targeting strategy could be
broadly applicable). In addition, a point mutation might be simpler to
correct than a larger scale rearrangement. For example, sickle cell
disease, with its high incidence and characteristic causative b-globin
adenine-to-thymine transversion, would seem an auspicious target for
gene correction. In fact, HDR-based genome editing correction of
the sickle cell disease point mutation has been achieved in multiple
cell types, including induced pluripotent stem cells,71-73 although the
rates of editing that could be achieved in long-term hematopoietic stem
cells (HSCs) have thus far remained below the level of therapeutic
relevance.74

For other conditions with numerous mutations of an affected gene,
like the varied mutations of IL2RG underlying X-linked severe
combined immunodeficiency (X-SCID), a more universal strategy
might be attractive, such as the targeted integration of an entire gene
cassette.75,76 One strategy would be to target a gene cassette including
autonomous regulatory elements to a universal “safe harbor” locus.
Another option would be to target a minimal gene cassette to an
endogenous locus. Targeting to intronic sequences allows splicing of a
promoterless transgene downstream of the upstream exons and retains
the endogenous gene promoter and distal regulatory elements for gene
control.75 This strategy could be particularly advantageous for

Introduction of a single DSB

Non-homologous end joining

Insertions

Deletions

slednI

Introduction of two DSBs

Interstitial 
deletion

Inversion

Translocation

On the same 
chromosome

On different 
chromosomes

A

Homology directed repair

Single base

Targeted insertion   
of gene cassette

B

Figure 2. Molecular outcomes of genome editing.

Multiple possible repair outcomes of (A) 1 or (B) 2

DSBs in the genome. Schematics of indels, gene

insertion, and gene correction are shown. Solid gold

lines, inserted bases; dashed red lines, deleted bases;

solid dark blue boxes, gene cassettes. Outcomes depicted

are not exhaustive, and other outcomes, such as insertion

of a gene cassette via NHEJ, are possible.78,79
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conditions in which endogenous gene regulation is imperative. For
example, CD40 ligand (CD40L),whose deficiency results in combined
immunodeficiency, is typically only transiently expressed on activated
T cells. Constitutive expression of CD40L in T cells of CD40L-
deficient mice results in lymphoproliferative disorder, suggesting the
potential risks of nonendogenous gene regulation.77 Although targeted
integration often insinuates HDR repair, NHEJ pathways may also be
harnessed to achieve targeted integration, which may be particularly
important in nondividing cells.78-80 Even if a mutant gene were
effectively repaired or replaced, an additional challenge may be to
avoid immune responses against the novel gene product.81

Althoughgene correctionmight seem themost intuitive approach to
therapeutic genome editing, in fact the first clinical trial using targeted
nucleases in human patients has relied on NHEJ-based genetic
disruption rather than gene repair. One advantage of this strategy is
that NHEJ tends to be a more active repair pathway compared with
HDR, particularly in quiescent cells.82 Another benefit of gene
disruption may be that modulation of a disease-modifying pathway
could produce a more universal remedy for the disease comparedwith
individual mutation-specific corrections. The first-in-human genome
editing trial used ZFNs in autologous T cells to target the HIV5
coreceptor CCR5,83 inspired by individuals naturally resistant to HIV
infection due to CCR5 deficiency, as well as the remarkable case of an
HIV-positive recipient of an allogeneicCCR5-deficient hematopoietic
stem cell transplant (HSCT) whose HIV became undetectable without
antiretroviral therapy.66,84

The indels left behind followingNHEJ repairmaybeuseful not only
for disrupting coding sequences but also noncoding regulatory
sequences such as the erythroid-specific enhancer of BCL11A for the
b-hemoglobinopathies59,60 or DMD splice sites to promote exon
skipping in muscular dystrophy.85 Paired DSBs may also result in
desirable outcomes, such as interstitial deletions of mutant exons in
DMD85-87 or reversion of large chromosomal inversions underlying
hemophilia A.44

Even epigenetic editing approaches could be considered for therapeutic
utility, such as forced chromatin looping for the b-hemoglobinopathies
to redirect interactions with the powerful globin enhancer locus control
region away frommutant b-globin toward compensatory g-globin.88,89

To the degree that persistent expression of the artificial DNA binding
factor would be required to maintain therapeutic gene expression, the
kiss-and-run promise of therapeutic genome editing would be lost, and
the challenges of long-term stable and safe expression would be similar
to those facing conventional gene therapy.90

Target cell

The ideal somatic target cell for therapeutic gene editing depends on
the specific clinical situation. In general, the goal is for a durable,
potentially even lifelong (ie, curative), benefit from gene editing. The
ability to access and manipulate the appropriate target cell may
determine the feasibility of the endeavor. Limiting edits to disease-
associated cellsmayminimize risk of adverse clinical effects of genetic
perturbation of cell types unconnected to the disease, although the
nature of this risk depends on the particular perturbation.

Formany hematologic conditions, themost relevant cell type to edit
would be the HSC, the rare self-renewing cells atop the hematopoietic
hierarchy. Certainly for genetic disorders of the HSC itself (such as
inherited bone marrow failure disorders like Fanconi anemia or
dyskeratosis congenita), modification of this cell would be required for
a salutary effect. For monogenic disorders of downstream lineages,
such as of erythrocytes (eg, hemoglobinopathies91) or granulocytes (eg,
chronic granulomatous disease92,93), modification of the HSC appears

to be required to achieve a renewing source of corrected cells.
Engineering HSCs may even have the advantage to confer exceptional
properties (ie, more ameliorating than mere healthy cells) to
downstream progeny. For example, supraphysiologic expression of
arylsulfataseA in correctedmicroglia derived fromautologousHSCs in
metachromatic leukodystrophy appears to confer benefits beyond that
of allogenic HSCT due to cell nonautonomous cross-correction.94 For
all HSC-based therapies, in addition to any risks intrinsic to the gene
editing itself, risks of isolating the cells from the appropriate source and
preparative conditioning therapy must be considered.

One caveat to engineering hematopoiesis is that most knowledge of
HSC function is based on cellular capacity to reconstitute ablated
animals and patients. Emerging studies of steady-state hematopoiesis
suggest that a large fraction of hematopoietic output derives from long-
lived lineage-restricted progenitor cells,95-97 raising the question of
whether modifying appropriate lineage-restricted progenitors could
have durable therapeutic utility under specific conditions.

For inherited disorders of lymphocytes (eg, immunodeficiencies),
modification of long-lived T cells might sometimes be adequate,
although in some conditions, T cells may be absent. The results of gene
therapy for X-SCID suggest that modification of a barely measurable
fraction of HSCs can result in robust (although sometimes oligoclonal)
T-cell reconstitution, reflecting the intense selective advantage for
rescued T cells in certain immunodeficiencies.98 Another consideration
is the number of rescued cells required to provide a therapeutic
advantage. For example, in CD40L deficiency, allogeneic HSCT with
mixed chimerism may be curative.99 Therefore, in this type of
condition, correction of merely a subset of HSCs or even T cells might
be expected to be of therapeutic value.

Isolated T-cell modification may be desirable in various adoptive
immunotherapy applications.A technical advantagemaybe that T cells
canbe easier to expandandmanipulate exvivo comparedwithHSCs100

(Figure 3).AlsoT-cell editing could have a theoretical safety advantage
with respect to myeloproliferative risk. Allogeneic T-cell therapies
could be useful in a wide variety of immune, infectious, and malignant
conditions. Autologous T cells with enforced expression of chimeric
antigen receptors (CARs)101-103 recognizing tumor-associated anti-
gens have shown remarkable clinical responses; however, the current
approaches require expensive, labor-intensive, time-sensitive autolo-
gous cell processing.Genedisruptionof the endogenousT-cell receptor
(TCR) might allow for production of allogeneic CAR T cells while
avoiding risk of suboptimal or graft-versus-host responses.104-107

Recently, a report of a single remarkable casewithmolecular remission
following treatment with TALEN TCR-edited allogeneic CAR T cells
(with subsequent allogeneic HSCT) for multiply relapsed B-cell acute
lymphoblastic leukemia has generated great excitement.108

Other long-lived hematopoietic cells in addition to HSCs might be
considered as targets for therapeutic gene editing. For example,
congenital pulmonary alveolar proteinosis results from absence of
pulmonary alveolar macrophages due to granulocyte-macrophage
colony-stimulating factor deficiency. In mouse models, transplantation
ofgenecorrectedorhealthypulmonaryalveolarmacrophages can result
indisease reversal for$1year,109 suggesting that tissuemacrophagescan
be genetically manipulated, long-lived, and biologically potent under
particular clinical circumstances.

Avarietyof hematologic conditionsmight benefit fromgene editing
of nonhematopoietic lineages, chiefly the inherited bleeding disorders.
Hepatocytes are both the frequent target for various genetic therapies110

and the natural source of synthesis of various coagulation factors that
may be congenitally deficient such as factor IX in hemophilia B.
However, expression of factor IX from cells besides hepatocytes (eg,
myocytes, megakaryocytes111,112) and expression of factor VIII from
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hepatocytes113 (rather than endogenous endothelial cells) may be
restorative in the hemophilias. These results suggest that recapitulating
the endogenous cell source for secreted factors may be less important
than other considerations such as ease and safety of delivery and
achievable level of transgene expression.

Finally, genome editing of pluripotent stem cells has a number of
advantages, including the ability to select rare desired mutations and to
extensively characterize clonal on-target and off-target effects, in-
cluding by whole genome sequencing.114,115 The major challenge is to
develop efficient protocols to produce hematopoietic stem cells or other
clinically relevant cellular outputs.116 Irrespective of the target cell, a
successful clinical gene editing approach must consider the fraction of
the tissue that must be corrected to achieve therapeutic benefit. This
maydependon the degree of selective advantage of effector cell relative
to target cell (eg, survival advantage to be expected for erythrocytes and
erythroid precursors deriving from corrected HSCs in hemoglobinop-
athy or for B-lymphocytes derived from corrected HSCs in X-linked
agammaglobulinemia117).

Delivery

Robust cellular delivery may be the limiting factor for therapeutic
genome editing. Most strategies involve just a transient burst of
nuclease expression with the rationale that after desired edits have been
produced, nucleases serve no productive role. Meganucleases and
megaTALs need only the expression of 1 protein, ZFNs and TALENs
require the expression of 2 monomers, and the CRISPR/Cas9 system
depends on simultaneous expression of both a protein (Cas9) andRNA
(sgRNA) to yield an active ribonucleoprotein complex in target cells.31

For genome editing of hematopoietic cells, most attention has
focused on ex vivo delivery. TALENs have proven difficult to deliver
viaAAVor lentiviral vectors due to their large size andhighly repetitive
sequences.118 Delivery of SpCas9 via AAV is particularly challenging

given that the gene itself nearly outstrips the viral genome cargo limit,
leaving very little room for regulatory elements, sgRNA cassettes, or
homology donor sequences. Smaller orthologs such as SaCas9 appear
better suited for AAV delivery.33 Concerns of low-level AAV in-
tegration could become particularly relevant in the setting of clinical
delivery of active nucleases.119 Although widely tropic integrase-
defective lentiviral vectors might appear a logical approach, these are
hindered by relatively low gene expression levels compared with
integrating counterparts.120-122

Transient delivery of targeted nucleases to primary hematopoietic
cells has been most successfully achieved by electroporation.75,123-125

Interestingly, electroporation of mRNA has reduced risk of integration
and appears to result in reduced cellular toxicity compared with DNA.
Delivery of in vitro transcribed ZFN mRNA to HSCs and T cells
via electroporation may be compatible with clinical-scale genome
editing.60,83,126,127 CRISPR/Cas9 may be delivered to both HSCs and
T cells via electroporation of ribonucleoprotein complexes of Cas9
protein and sgRNA.123

Alternativedeliveryplatforms suchas osmocytosis, cell-penetrating
peptides, cationic lipids, and microfluidic devices have been proposed,
but their efficacy and lack of toxicity for primary hematopoietic cells
remain to be determined.128-131

In contrast to the focus on ex vivo delivery for hematopoietic cells,
in vivo delivery has been investigated particularly for therapeutic
genome editing of nonhematopoietic tissues. For example, intravenous
delivery by AAV of ZFNs and a donor cassette targeting the factor IX
locus allows for the targeted integration and therapeutic production
of factor IX in hemophilia B mice.80,132 An alternate strategy is to
use AAV delivery of ZFNs and a promoterless donor cassette to
target expression to the first intron of the albumin locus. Recent
proof-of-principle for this approach has been demonstrated to
ameliorate both factor VIII and factor IX deficiencies in relevant
mouse models.133

In vivo gene editing Ex vivo gene editing

Package genome
editing reagents
into vector

T cells

Modified
cells

HSCs

iPSCs

Isolation

Genome
editing and
expansion

Genome
editing

Genome
editing and

differentiation

Isolation

Isolation

Reprogramming

Re-infusion

Figure 3. Therapeutic genome editing. Schematic of

delivery strategies and target cells for in vivo and ex

vivo genome editing. iPSCs, induced pluripotent stem

cells.
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In addition, 3 groups recently showed that AAV delivery of Cas9
and a pair of sgRNAs could delete a mutant exon, resulting in
therapeutic exon skipping in mouse models of Duchenne muscular
dystrophy.85-87 Collectively, these studies demonstrate proof-of-
principle of systematic delivery of nucleases to target genome editing
in liver and muscle, each of which might serve as appropriate sites of
synthesis in coagulation factor deficiency.

In addition to viral vectors, nonviral delivery, particularly to the
liver, may be considered for in vivo genome editing. Already
hydrodynamic injection of CRISPR/Cas9 plasmids has been shown
to correct the metabolic liver disease hereditary tyrosinemia in
mice.134 Other forms of nonviral in vivo delivery, such as ultrasound
with microbubbles, cationic lipid complexes, and DNA nanoparticles,
have been investigated.135-137 Given the pace of advances, even in
vivo delivery of genome editing reagents targeted directly to
hematopoietic cells including HSCs seems conceivable. In contrast
to their typical use via ex vivo transduction, lentiviral and nonlentiviral
vectors may directly transduce HSCs following in vivo intra-
osseous or intravenous delivery.138,139 One issue that in vivo
delivery might face is development of immune responses against
the targeted nucleases themselves (ie, bacterially derived nucle-
ases in the case of CRISPR), which could restrict the potential for
successive therapies.

Editing efficiency and specificity

The ideal genome edit would occur with high efficiency at the desired
(“on-target”) site and with few if any consequences at other (“off-
target”) genetic loci.140 Both efficiency and specificity of editing may
depend on the nature of the nuclease platform itself, features of the
genomic target site, and the mechanisms by which the nucleases are
delivered to the target cells.

Various claims have been made about the relative superiority of
numerous platforms.141 Overall, it is unclear whether differences
observed in individual studies are true class effects or related to the
individual loci, target sequences, cell types, and delivery modalities.
Particularlygiven the numerous permutations ofCRISPR/Cas systems,
it is difficult to generalize. For an individual nuclease, its level
of expression appears to be a critical determinant of efficiency.142

Cell type–specific chromatin context may play an important role in
determining accessibility and subsequent modification of a given
nuclease at a target site.143,144

Typically alleles repaired by NHEJ exceed those repaired by HDR
following introduction of DSBs, particularly in nondividing cells.
A variety of strategies have been used to promote HDR compared
with NHEJ outcomes, including pharmacologic or genetic inhibi-
tion of NHEJ, augmentation of HDR, and synchronization of cell
cycle.45,145,146 Some have suggested that the unique 39 overhang
generated by a meganuclease head (including by megaTALs) may
enhance the rate of HDR relative to FokI or Cas9 cleavage.100

Gene therapy trials with integrating retroviral vectors targeting
HSCs have demonstrated both clinical efficacy and severe adverse
events due to vector integration-mediated oncogenesis, although
newer-generation lentiviral vectors appear to substantially reduce risk
of insertional mutagenesis.147-149 In contrast to conventional gene
therapy, which counts as success thousands of unique semirandom
vector integration events with many distributed near active genes,
genome editing raises the theoretical potential for seamless repair, with
only the desired genetic modification. Numerous strategies have been
described to minimize risks of off-target mutagenesis in response to
targeted nuclease exposure.

The first step is to design reagents with the lowest possible risk for
off-target cleavages. Target sequenceswith exact or closematches in the
genome in addition to the on-target site carry the greatest risk for
off-target cleavage because targeted nuclease DNA recognition may be
somewhat promiscuous. For CRISPR gRNAs, the so-called seed se-
quences proximal to the PAM are particularly intolerant of mismatches.

Second, once any close matching sequences (possible off-target
sites) are identified, their cleavage may be closely monitored
experimentally.150-152 However, the ability to predict off-target sites
may be imperfect, indicating the importance of systematic approaches
for unbiased assessment of off-target cleavage.153,154 Whole-genome
sequencingmaybe considered theultimateunbiased technique, but the
sensitivity is relatively low and thus unable to exclude rare off-target
effects inpopulations of cells.Anumber ofmethods for systematic off-
target identification have been developed, eachwith its own caveats in
terms of false positives and false negatives and ability to detect events
in therapeutically relevant cellular contexts.33,143,155-157 Also the basal
rate of DSBs and mutagenesis that exists in normal somatic tissues158

including HSCs,159 must be taken into account.
In addition to design of a highly unique recognition sequence,

several other technical approaches may promote specificity of genome
editing, including simply minimizing the duration and degree of
expression of the targeted nuclease. ZFNs may be engineered at both
their DNA recognition domains and linker and dimerization domains
to maximize specficity.160 For megaTALs, additional TALE
RVD recognition modules may improve effective specificity.100 For
CRISPR/Cas systems, a number of technical strategies have been
explored, including short gRNAs (of 17-18 nt), nickase mutants of
Cas9 coupled to paired gRNAs targeting opposing strands, dCas9-FokI
dimers for enforced heterodimerization, mutant Cas9 coupled to a
programmable DNA binding domain such as ZFP or TALE,161 and
engineered variants of Cas9 that reduce its interaction strength with
the gRNA:target DNA heteroduplex,162,163 each of which appear to
improve specificity.

For therapeutic translation, these approaches need to balance a
favorable portfolio of cellular delivery, on-target efficiency, and off-
target specificity, as measured under clinically relevant conditions.

Safety

In contrast to the above molecular considerations, the ultimate utility of
therapeutic genome editing approaches will be judged based on clinical
safety and efficacy. It is important to note that unlike insertional
mutagenesis, which is widely described as a mechanism of tumorigen-
esis, examples of biologically relevant nuclease off-target genotoxicity
under conditions thatwould approximate therapeutic genomeeditingare
vanishingly scarce. The vast majority of off-target cleavages would be
expected to result in neutral indels at noncoding sequences. Therefore,
rational nuclease design ought to prioritize avoiding cleavage
within critical sequences, such as within recurrently mutated tumor
suppressor genes. Extrapolating from regulatory requirements for
conventional gene therapy, evaluation for any biological aberra-
tions of target cells, such as propensity for clonal outgrowth or tumor-
igenesis in vitro or in animals, will justifiably receive emphasis rather
than reliance on merely molecular outcomes.

Conclusions

Genome (and epigenome) editing offers the opportunity to prospectively
alter DNA (and associated chromatin) to investigate fundamental
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genome function and to ameliorate disease. The fast pace of techno-
logical advancements in these areas appears poised to accelerate
knowledge of gene regulation and genome biology. Multiple pre-
clinical and early stage clinical programs are underway, initially using
ZFNs, TALENs, andmegaTALs, with CRISPR/Cas-based therapies
swiftly following. The continued improvement of the delivery and
specificity of these reagents promises to hasten clinical imple-
mentation of genuine precision medicine.
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