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Key Points

• SPRY2 is downregulated in
CLL cells from patients with
poor prognosis.

• SPRY2 is negative regulator
of Syk-mediated BCR and
MAPK-Erk signaling in CLL.

Clinical heterogeneity is a major barrier to effective treatment of chronic lymphocytic

leukemia (CLL). Emerging evidence suggests that constitutive activation of various

signaling pathways like mitogen-activated protein kinase–extracellular signal-regulated

kinase (MAPK-Erk) signaling plays a role in the heterogeneous clinical outcome of CLL

patients. In this study, we have investigated the role of Sprouty (SPRY)2 as a negative

regulator of receptor and nonreceptor tyrosine kinase signaling in the pathogenesis of

CLL.We show that SPRY2 expression is significantly decreased in CLL cells, particularly

from poor-prognosis patients compared with those from good-prognosis patients.

Overexpression of SPRY2 in CLL cells from poor-prognosis patients increased their

apoptosis. Conversely, downregulation of SPRY2 in CLL cells from good-prognosis patients resulted in increased proliferation.

Furthermore, CLL cells with low SPRY2 expression grew more rapidly in a xenograft model of CLL. Strikingly, B-cell–specific

transgenic overexpression of spry2 in mice led to a decrease in the frequency of B1 cells, the precursors of CLL cells in rodents.

Mechanistically,weshow that SPRY2attenuates theB-cell receptor (BCR) andMAPK-Erk signalingbybinding to andantagonizing

the activities ofRAF1,BRAF, andspleen tyrosine kinase (SYK) in normalBcells andCLLcells.Wealsoshow thatSPRY2 is targeted

by microRNA-21, which in turn leads to increased activity of Syk and Erk in CLL cells. Taken together, these results establish

SPRY2 as a critical negative regulator of BCR-mediated MAPK-Erk signaling in CLL, thereby providing one of the molecular

mechanisms to explain the clinical heterogeneity of CLL. (Blood. 2016;127(19):2310-2321)

Introduction

Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous
B-cell neoplasm that represents the most common form of adult leu-
kemia in the United States.1 Based on the immunoglobulin variable
heavychain (IgVH)mutational status, chromosomal abnormalities, and
cell surface markers, CLL patients are categorized into good- or poor-
prognosis groups. Recent studies have identified a small actively
proliferating population of CLL cells that reside in micro-anatomical
sites known as proliferation centers (PCs).2 CLL cells receive diverse
stimuli promoting their proliferation and survival in these PCs.3-5 We
have previously used Gene Expression Profiling to decipher the diverse
signaling that regulates the survival and proliferation of CLL cells in
PCs. These studies revealed a critical role forB-cell–receptor (BCR) and
mitogen-activated protein kinase–extracellular signal-regulated kinase
(MAPK-Erk) signaling in the survival and proliferation of CLL cells.5

Furthermore, Gardener et al have recently reported that 36% of CLL
patients possess mutations associated with activation of MAPK-Erk
signaling pathways.6 Similarly, BCR signaling is upregulated in CLL,
providing a chronic stimulus for their proliferation.3-5

Precise regulation of cellular processes, such as those mediated
byB cells, requires homeostatic integration between intrinsic and
extrinsic factors.7,8 Deregulation of such homeostaticmechanisms in

CLL cells can lead to aberrant activation of MAPK-Erk and BCR
signaling. Constitutive activation of BCR and MAPK-Erk
signaling promotes CLL cell survival and proliferation.9-14

However, the molecular mechanisms that lead to the constitutive
activation of these pathways have not been fully explored. Identifying
novel regulators of these pathways in CLL is crucial for understanding
the disease biology and for the eventual development of targeted
therapies.

To identify potential regulators of BCR and MAPK-Erk
signalinginCLL,weperformed a transcriptome analysis for genes that are
differentially expressed in CLL patients with good vs poor prognosis.
Of interest in relationship to MAPK-Erk signaling, we observed that
expression of Sprouty (SPRY)2, a member of the SPRY protein family,
to be significantly downregulated in CLL cells from poor-prognosis
patients compared with those from good-prognosis patients. SPRY pro-
teins play key roles in maintaining cellular homeostasis by attenuating
signaling, downstream to several ligand-induced receptor tyrosine kinases
(RTKs).7-10 Hence, we reasoned that SPRY2 might act as a negative
regulatorofBCRsignaling to inhibit the survival andproliferationofCLL
cells. Therefore, we hypothesized that low levels of SPRY2 lead to a
state of constitutive activation of BCR and MAPK-Erk signaling
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in poor-prognosis CLL patients. Consistent with such a possibility, a
recent study demonstrated the induction of SPRY2, but not SPRY1,
downstream of BCR signaling in mouse B cells.15 This study also
showed that SPRY2 levels negatively correlate with Erk signaling
in mouse B cells, a finding similar to that described in other cellular
systems.9,10,15 However, the molecular mechanism by which SPRY2
functions as a negative regulator of BCR signaling has not been
deciphered. Moreover, the role of SPRY2 in B-cell development and

function are unknown. SPRY2 was previously shown to be down-
regulated in diffuse largeB-cell lymphoma but the functional significance
of this downregulation remains ambiguous.15

In the present study, we identify SPRY2 downregulation as
a marker of poor prognosis in CLL and demonstrate that the loss of
SPRY2 provides a novel mechanism to constitutively activate BCR
and MAPK-Erk signaling in CLL through spleen tyrosine kinase
(Syk). Finally, we show that SPRY2 is targeted by microRNA-21
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Figure 1. Comparison of SPRY2 levels in CLL cells

from good- and poor-prognosis patients. To com-

pare the expression of SPRY2, CLL cells were isolated

from PB of good- and poor-prognosis patients. (A)

Relative messenger RNA level of spry2 from tran-

scriptome analyses of 7 good-prognosis and 8 poor-

prognosis CLL patients (n 5 15). RNA isolated from PB

CLL cells was used for sequencing. The expression

was normalized with glyceraldehyde-3-phosphate de-

hydrogenase (GAPDH) and genomic reference DNA

was used as control for transcriptome analysis. (B)

Real-time polymerase chain reaction measurement of

relative expression of spry2 in CLL cells from good- and

poor-prognosis patients, normalized with GAPDH. (C)

Levels of SPRY2 protein expression was measured in

good-prognosis patients (n 5 8) and poor-prognosis

patients (n 5 8). Displayed is a scanned western blot

showing reduced protein levels of SPRY2 in poor-prognosis

CLL patients. Mononuclear cells from healthy donors were

used as positive control for antibody. A total of 50 mg of

protein was loaded on 10% sodium dodecyl sulfate gel and

b-actin was used as loading control. (D) Microarray data

showing low relative expression of SPRY2 in patients with

high CD38 expression. Patients with .30% of CD38-

positive cells were considered CD38 high (n 5 15) and

patients with ,30% were considered low CD38 (n 5 23).

GAPDH was used to normalize the value. P 5 .0045.
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Figure 2. Effect of SPRY2 on BCR signaling. To study the role of SPRY2 in CLL and nB cells, we isolated CLL and nB cells from patients and healthy donors, respectively. (A)

nB cells, primary human CLL cells, and Mec-1 CLL cells were stimulated by BCR crosslinking for 0, 6, 12, 18, 24, and 48 hours. Cells were washed and protein lysate was

prepared. Protein level of SPRY2 was determined by western blotting. SPRY2 levels in nB cells (top), SPRY2 levels in primary CLL cells from patient (middle), and SPRY2 levels in

Mec-1 CLL cells (bottom) are shown. (B) To test the efficacy of siRNAs against SPRY2, nB cells were transfected with siRNAa and siRNAb after 48 hours of transfection cells, and

were washed and lysate was prepared. An equal amount of protein was loaded in each well, and scramble siRNA and b-actin was used as control. Displayed is scanned western

blot showing decrease in SPRY2 levels after siRNA treatment. (C) nB cells were isolated from healthy donors and nucleofected with scramble, siRNA A, and siRNA B. After

48 hours, calcium influx assay was performed using Indo-1 dye dots representing 20-second time intervals. Displayed is mean graph of Indo-1 violet/Indo-1 blue ratio, nB-cell

samples from different healthy donors (n 5 5), and P , .0001.
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(miR-21) in poor-prognosis CLL that leads to a constitutively acti-
vated state of BCR and MAPK-Erk signaling in CLL cells.

Methods

Isolation of CLL cells from patients and normal B (nB) cells

from healthy donors

Peripheral blood (PB) from CLL patients/healthy donors was obtained under an
approved Institutional Review Board protocol. Mononuclear cells were isolated
using Lymphoprep (Stemcell Technologies) following manufacturer’s instruc-
tion. CLL/nB cells were isolated by negative selection using CLL cells/B-cell
Isolation Kit (Miltenyi Biotech). The purity of the isolated CLL/nB cells was
tested by flow cytometry using CD191CD51/only CD191 cell surface markers.
When the CLL cell number was more than 90% in the PB from patients, the cell
purification step was not performed.

Calcium mobilization assay

Calcium influx assay of human nB cells from PB andmurine splenic B cells was
performed and analyzed as described.16

Animal studies

CD19-creanimalswerekindlyprovidedbyDrRunqingLu,UniversityofNebraska
Medical Center (UNMC). Spry2 conditional transgenic mouse17 was purchased
from theMutantMouseRegionalResourceCenter,UniversityofNorthCarolina.
To generate CD19-cre;Spry2(tg), CD19-cre and Spry2(tg)flox/flox mice were
crossed. Over-expression of spry2 in B cells was tested by western blot.
Expression of spry2 was tracked by green fluorescent protein (GFP)1 cells in
flow cytometry experiments. Nonobese diabetic-severe combined immunode-
ficiency g-chain–deficient (NSG) mice were purchased from The Jackson
Laboratory. All animal experiments were conducted under the Institutional
Animal Care and Use Committee-approved protocols.

Nucleofection

Primary B cells/CLL cells and Mec-1 were nucleofected with Spry2-
complementary DNA (cDNA), miR21 transcripts,18 or empty plasmid using
primary B cells and V Kit (Lonza), program U-16 and X-001.19

Western blot analysis

As previously described, western blotting was performed to analyze
protein expression.20 (See supplemental Methods, available on the Blood
Web site).
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Figure 3. Knockdown of SPRY2 increases proliferation of CLL cells from good-prognosis patients. To determine the effect of SPRY2 knockdown on human CLL cells,

we used Mec-1 cells and primary CLL cells from good-prognosis CLL patients. (A) Mean bar graph of 3 repeats showing Ki-67 staining of Mec-1 cells after SPRY2 knockdown

with anti-IgM and anti-IgD antibody stimulation (left) and scanned western blot (right), showing decrease in SPRY2 protein levels after siRNAs treatment. (B) Dot plot of

patient’s sample CLL-1 showing an increase in proliferation after SPRY2 knockdown using two different siRNA. (C) CLL cells were isolated from PB of different good-

prognosis CLL patients (n5 7). CLL cells were nucleofected with scramble, siRNA A and siRNA B, and coculture on S-17 stromal layer. After 48 hours, CLL cells were stained

with Ki-67 stain and proliferation was measured. Displayed bar graph is fold in the rate of proliferation of CLL cells. (D) Mean fold change of (C) showing significant (P 5 .01)

increase in proliferation after SPRY2 knockdown with siRNA B.
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Results

Spry2 expression is lower in CLL cells from

poor-prognosis patients

CLL is clinically heterogeneous, with varying clinical outcomes and
possibly distinctmolecular pathogenesis. In order to identifymolecular
mechanismsassociatedwithpoor-prognosisCLL,weperformedRNA-
sequencing–based transcriptome analysis of 15 CLL samples: 7 from
good-prognosis and 8 from poor-prognosis patients. Poor-prognosis
patientswere definedbyunmutated IgVHsegments,Ch11q22deletion,
Ch17p deletion, trisomy Ch12, and/or high CD38 expression. Good-
prognosis patients were defined as having mutated IgVH, Ch13q14
deletions, and/or lowCD38 expression (criteria used for Figure 1A-C).
Using these approaches, the expression levels of 146 genes were found
to be significantly different between good- vs poor-prognosis CLL
samples. We further selected genes based on their roles in B-cell
biology, or their putative tumor suppressor or pro-oncogenic
functions. Interestingly, spry2 was found to be significantly down-
regulated (3.4 log twofold) in the CLL cells from poor-prognosis
patients compared with those from good-prognosis patients
(Figure 1A). The differential expression was confirmed using
western blotting and real-time polymerase chain reaction of CLL
cells from good- vs poor-prognosis patients (Figure 1B-C). High
CD38 positivity of CLL cells is associated with poor patient
outcomes and constitutive activation of MAPK-Erk signaling.21

Therefore, we further compared spry2 expression in a larger cohort of
38 patients. Spry2 was significantly downregulated (;2.8-fold) in
CLL cells of patientswith high CD38 expression comparedwith those
with lowCD38expression (Figure 1D). Examinationof the expression

of other Spry family members (SPRY1, 3, and 4) in our data set
showed that none of them were significantly differentially expressed
between the good- and poor-prognosis CLL cells (data not shown).
Thus, our results show that the expression of SPRY2 is significantly
downregulated in CLL cells from patients with poorer outcomes.

SPRY2 is induced upon BCR crosslinking of nB cells and CLL

cells, and functions as a negative-regulator of BCR signaling

It is well established that BCR signaling is critical for survival and
proliferation of CLL cells; however, no known recurrent mutations
have so far been identified in this pathway among CLL pa-
tients. Moreover, it is known that SPRY2 functions as a negative-
feedback regulator of RTKs.22-25 To investigate if SPRY2 is
regulated by BCR signaling, we stimulated nB cells and CLL
cells using BCR-crosslinking with 5 mg of anti-IgM/IgD
antibody. Cells were collected at 0, 6, 12, 24, and 48 hours after
stimulation and the expression of SPRY2 was determined by
western blotting. We observed a gradual increase over time in
SPRY2 expression in BCR-stimulated nB cells (Figure 2A, top). On
the other hand, primary CLL cells and the Mec-1 CLL cell line
exhibited a biphasic induction of SPRY2 (Figure 2A, middle and
bottom). In CLL cells, SPRY2 expression peaked at 12 hours upon
stimulation and declined at later time points. Thus, we conclude that
SPRY2 expression induced by BCR-crosslinking is sustained in
nB cells but follows a cyclical expression pattern in CLL cells and
is not sustained.

We next studied the effect of downregulating SPRY2
expression on BCR signaling in nB cells. Compared with the
scramble small interfering RNA (siRNA) control, both SPRY2
siRNAs led to a decrease in the SPRY2 protein levels (Figure 2B).
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Next, we transfected nB cells and compared their anti–IgM-
induced calcium influx with that of unperturbed control following
with the Indo-1 dye. Compared with untransfected and scrambled
siRNA controls, B cells with SPRY2 knockdown exhibited elevated
calcium influx (Figure 2C). Even the basal levels of calcium were
increased in B cells upon SPRY2 knockdown. Taken together, these
results establish that SPRY2 functions as a negative regulator of
BCR signaling.

SPRY2 depletion in human CLL cells from good-prognosis

patients lead to increased proliferation

To assess if the downregulation of SPRY2 expression in poor-
vs good-prognosis CLL cells is of functional consequence, we
examined the impact of SPRY2 depletion in good-prognosis CLL
cells. For this purpose, we isolated CLL cells from newly diagnosed
patients with good-prognosis CLL. We also used the Mec-1 human
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CD19-cre;Spry2(tg) mice. B1 cells were stained with CD5 and B220 dye to determine the frequency of B1 cells using flow cytometric analysis. Displayed is a dot plot showing

B1a-cells frequency in CD19-cre;Spry2(wt) and CD19-cre;Spry2(tg) mice (middle). Bar graph of absolute number of B1a cells in the peritoneal cavity of CD19-cre;Spry2(wt)

and CD19-cre;Spry2(tg) mice (right). (B) Splenic B cells were isolated by negative selection from rtTA-positive CD19-cre;Spry2(wt) (top, left) and CD19-cre;Spry2(tg) (top,
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number of CLL-cell infiltration in pLenti-scr and pLenti-siRNA B CLL-cell–transplanted mice. (G) Protein lysates were prepared from tumors; equal amount of protein was

loaded in each lane of 10% sodium dodecyl sulfate gel. Shown is scanned western blot to determine the protein levels of p-Erk and SPRY2 in tumors from pLenti-scr and

pLenti-siRNA B CLL-cell–transplanted mice. Total Erk and b-actin were used as control. Densitometric measurements showing elevated p-Erk, normalized by total Erk in

SPRY2 knockdown tumors. LPS, lipopolysaccharide; rtTA, reverse tetracycline transactivator; WT, wild-type.
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CLL-cell line, a widely used cultured CLL-cell model, for these
studies. Mec-1 cells have an intermediate level of SPRY2 relative to
primary good- and poor-prognosis CLL cells (Figure 2A). Because
SPRY2 expression is induced in CLL cells upon BCR stimulation
(Figure 2A),we assessed the impact of SPRY2depletion on anti-IgM/
anti-IgD–induced Mec-1 cell proliferation, by analyzing changes
in Ki-671 fraction in fluorescence-activated cell sorter analyses.
SPRY2 knockdown led to an increase in proliferation of Mec-1
cells relative to scrambled siRNA control under both anti-IgM and
anti-IgD crosslinking conditions (Figure 3A). Next, we transfected
primary human CLL cells isolated from PB of 7 different good-
prognosis patients expressing higher levels of SPRY2with siRNAs
against SPRY2. At 24 hours posttransfection, the cells were
subjected to BCR crosslinking and proliferation was assessed
48 hours later. Knockdown of SPRY2 led to an increase in the
number of proliferating cells compared with the scrambled siRNA
transfected cells (Figure 3B-D). We observed an increase in pro-
liferation upon SPRY2 depletion compared with scrambled controls,
with increased proliferation seen in 6 out of 7 with siRNA-B and
in 5 out of 7 cases with siRNA-A–mediated knockdown. The effects
on proliferation were consistent with a more robust SPRY2

knockdown with siRNA-B than siRNA-A (Figure 3A). SPRY2
knockdown in these cells also showed decrease in survival; however,
the values did not reach statistical significance. Thismight be due to
the use of anti-IgM antibodies for induction of SPRY2 expression
as anti–IgM-stimulation itself has a positive effect on CLL-cell
survival. Therefore, we reason that differences in the effects on
survival may have beenmasked by anti-IgM stimulation. However,
more CLL samples need to be analyzed to confirm these findings.
These findings indicate that SPRY2 functions as a key negative
feedback regulator of BCR signaling in CLL cells, thus limiting
their BCR-induced proliferation.

SPRY2 expression induces apoptosis in human CLL cells from

poor-prognosis patients

To further elucidate the underlying basis for the downregulation
of SPRY2 expression in CLL cells from poor-prognosis patients,
we also examined the impact of ectopic SPRY2 expression on
CLL cells with low SPRY2 expression. First, we examined the
impact of increasing the expression of SPRY2 by transfecting
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Mec-1 cells with a SPRY2 construct co-expressing GFP. At
48 and 72 hours posttransfection, we observed an average of
58% and 18% of SPRY2-GFP1

–expressing Mec-1 cells to be
AnnexinV1, respectively, comparedwith36%and11%(Figure 4A-B).
Next, we isolated CLL cells from 5 different poor-prognosis
patients, ectopically expressed Spry2 to measure the proportion
of Annexin V1 cells after 48 hours (Figure 4C). An increase in
apoptosis was observed in CLL cells from all patients (Figure 4C-D).
Moreover, we did not observe a significant impact on the pro-
liferation of these cells compared with controls probably because
these cells were not stimulated with anti-IgM antibodies. We
choose not to stimulate these cells with anti-IgM because BCR
stimulation through anti-IgMwould have further induced SPRY2
levels. Thus, our results demonstrate that low levels of SPRY2
in poor-prognosis patients contribute to a survival advantage for
CLL cells.

B-cell–specific elevation of SPRY2 levels attenuates and

suppresses the B1-cell population

To study the effect of SPRY2 on the development and function of B cells
in vivo, we generated a B-cell–specific SPRY2 transgenic mouse model.
For this purpose, we crossed the mice harboring a spry2 transgene
preceded by a STOP cassette (Spry2[tg]) with mice carrying a CD19-cre
transgene to obtain a mouse line (CD19-cre;Spry2[tg]), in which the
expression of cre-recombinase and SPRY2 are specifically induced in
B cells (Figure 5A). We observed that the generation of B cells in these
mice was normal (supplemental Figure 2A). However, we observed a
decrease in the number of a specializedB-cell subset known asB1 cells in
the CD19-cre;Spry2(tg) mice. This was particularly interesting because
B1 cells are presumed to serve as precursors of CLL cells in mice. We
found a decrease in the percentage of B1a cells (B2201CD51) in the
peritoneal cavity of these mice (Figure 5A). Furthermore, we examined
the effect of SPRY2 overexpression on BCR signaling in B cells of
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CD19-cre;Spry2(tg) mice compared with CD19-cre control mice, by
measuring their calcium influxover time in response toBCRcrosslinking.
Indeed, the B cells from CD19-cre;Spry2(tg) mice showed a slight but
statistically significant reduction in calcium influx compared with
B cells from CD19-cre controlmice (Figure 5B). To study the effect of
SPRY2 overexpression on proliferation, we isolated splenic B cells
from CD19-cre;Spry2(tg) mice, labeled them with carboxyfluorescein
diacetate succinimidyl ester (CFSE) dye, and cultured the cellswith and
without anti-IgM antibodies and lipopolysaccharide. Strikingly, we
detectedvery fewornocellsundergoingdivision inCD19-cre;Spry2(tg)
compared with CD19-cre control cells with or without BCR stimulation
(Figure 5C). Taken together, these results show that Spry2 functions to
limit the numbers of B1 cells (CLL precursors) in mice and negatively
regulates BCR signaling and associated proliferation in mouse B cells.

SPRY2 depletion in CLL cells results in more rapid

lymphomagenesis in NSG mice

In viewof the effect of SPRY2on the survival and proliferation in vitro,
as well as its impact in regulating the B1-cell pool inmice, wemodeled
the low SPRY2 expression seen in human CLL in a mouse lym-
phomagenesis model. For this purpose, we used a xenograft model with
Mec-1 CLL cells transplanted into NSG mice. We derived SPRY2
knockdown version of Mec-1 cells by transducing them with pLenti-
siRNA(A) or pLenti-siRNA(B), with the pLenti-scramble (pLenti-scr)
siRNAMec-1 cell line as a control. We observed a significant increase
in proliferation and decrease in the percentage of cells exhibiting
apoptosis in pLenti-siRNA(A) and pLenti-siRNA(B) cell lines,

compared with scrambled control (supplemental Figure 2B-C).
Next, we injected 1.5 3 106 pLenti-siRNA(B) (higher degree of
SPRY2 downregulation) or pLenti-scr cells subcutaneously into the
left flank of sublethally irradiated NSG mice (5 mice per group).
Tumors were palpable 21 days post-injection. Notably, pLenti-
siRNA(B) cells gave rise to significantly larger tumors at the
primary site of injection (Figure 5D). Dissemination of human CLL
cells was significantly increased in the spleens of pLenti-siRNA(B)
cell-injected mice as measured by anti-human CD19 staining
(Figure 5E). Hematoxylin and eosin staining of the spleen, liver,
and kidney also revealedmore organ infiltration by pLenti-siRNA(B)-
expressing CLL cells (Figure 5F). Western blot analysis of tumors
isolated from NSG recipient mice confirmed downregulation of
SPRY2 in pLenti-siRNA(B) cell-derived tumors compared with
control cell-derived tumors (Figure 5G). Furthermore, we also
observed an increase in phosphorylated-ERK (p-ERK) levels in
tumors arising fromSPRY2-depletedMec-1 cells (Figure 5G). These
results show that lower SPRY2 expression leads to the formation of
more rapid and aggressive lymphomagenesis in mice, indicating a
role for SPRY2 downregulation in CLL disease progression.

SPRY2 interacts with RAF-1, BRAF, and Syk to downregulate

MAPK-Erk signaling in CLL cells

To elucidate the mechanism by which SPRY2 mediates a decrease in
proliferation and survival of human CLL cells, we used a Tet-On
Inducible System inMec-1 cells. Upon doxycycline (DOX) treatment,
we observed a dose-dependent increase in SPRY2 expression, which
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was accompanied by a decrease in p-ERK levels (Figure 6A). Other
groups have shown that SPRY2 interactswithRAF-1/BRAF to inhibit
MAPK-Erk signaling in malignancies such as multiple myeloma.26,27

Interestingly,mutations inRAF-1 andBRAFhave also been identified
in CLL patients.6We first tested the conservation of these networks in
humans using immunoprecipitation of SPRY2 in BCR-stimulated
nB cells from healthy donors, which showed co-immunoprecipitation
of RAF-1 and BRAF, suggesting that SPRY2 may attenuate MAPK-
Erk signaling by inhibiting RAF-1 and BRAF activities.

It has been demonstrated that BRAF-V600E mutant harboring
a valine to glutamic acid substitution does not physically interact with
SPRY2 and is resistant to SPRY2-mediated attenuation ofMAPK-Erk
signaling.28Additionally,RASmutants function upstream toRAFand
can bypass SPRY2-mediated inhibition.29 Therefore, we tested the
effect of SPRY2 on these mutants in human CLL cells. Intriguingly,
SPRY2 expression led to a decrease in the p-Erk expression level even
in the presence of the BRAF-V600 mutant; although however, there
was no impact of inducing SPRY2 expression in KRAS-V12 mutant
transfected cells (Figure 6B). These results indicate an additional
and possibly parallel mechanism by which SPRY2 may attenuate
MAPK-Erk signaling in both B cells and CLL cells.

Interestingly, a recent study showed that in the presence of BRAF
inhibitors, Sykundergoes upregulation to activateErk signaling inCLL
cells, an event mediated via RAS.30 Furthermore, inhibition of Syk
reversed theErk hyperactivation and led to a decrease in proliferation of
CLL cells.30 Therefore, we speculated that SPRY2, in the presence of
RAF inhibitionmay also inhibit Syk activity in B cells andCLL cells to
attenuate MAPK-Erk signaling. To test this hypothesis, we performed
immunoprecipitation assays as described in supplemental Methods.
Intriguingly, SPRY2 was found to physically interact with Syk but not
with Bruton tyrosine kinase (BTK) and PI3K in B cells as determined
by reciprocal immunoprecipitation experiments (Figure 6C). Also,
using immunofluorescence analysis, we observed a co-localization of
SPRY2 with p-Syk in nB cells and Mec-1 CLL cells (Figure 6D). We
next tested the effect of SPRY2 overexpression on the activated
form of Syk by measuring the levels of p-Syk in splenic B cells from
CD19-cre;Spry2(tg) mice and SPRY2 overexpressing Mec-1 cells
by immunofluorescence. Notably, we observed a decrease in p-Syk
expression in B cells of CD19-cre;Spry2(tg) mice and Mec-1 cells
overexpressing SPRY2 compared with B cells from CD19-cre
mice and empty vector Mec-1 cells, respectively (Figure 6E-F). We
also observed a synergistic effect of SPRY2 with BRAF and
Syk inhibitors in the presence of the BRAF-V600 mutant, again
highlighting the dual mechanism through with SPRY2 down-
regulatesMAPK-Erk signaling inCLLcells (supplemental Figure 3).
Thus, our results demonstrate that SPRY2 attenuates BCR-mediated
MAPK-Erk signaling by simultaneous inhibition of RAF and Syk
activity in both B cells and CLL cells.

Mir-21 targets SPRY2 in CLL cells to activate Syk and

MAPK-Erk signaling

Given the SPRY2 downregulation in patients with poor-prognosis
CLL, and a cyclic pattern of SPRY2 expression in BCR-crosslinked
CLL cells (Figure 2), we reasoned that an epigenetic mechanism may
deregulate SPRY2 expression in CLL. Although, the spry2 gene is
hypermethylated in diffuse large B-cell lymphoma, Chen et al did not
observe any hypermethylation of spry2 locus in patients with
CLL.31 Therefore, we sought to identify alternate mechanisms for
spry2 downregulation in poor-prognosis CLL patients. Interest-
ingly, SPRY2 has been shown to be a direct target of miR-21 in
other cellular systems.32-34 Furthermore, mir-21 is an oncomir that is

highly overexpressed in CLL patients with poorer outcomes.35,36

Therefore, we overexpressed miR-21 in Mec-1 cells to study
whether it can regulate Spry2 in CLL cells. Notably, we observed a
decrease in SPRY2 expression in Mec-1 cells expressing high
levels ofmiR-21 comparedwith thosewith an empty-vector control
(Figure 7A). Intriguingly, concurrent with SPRY2 downregulation
in miR-21 overexpressing Mec-1 cells, we also observed an
increase in the levels of p-Syk and p-Erk (Figure 7B-D). In
summary, our results demonstrate that Spry2 is deregulated by
miR-21 in CLL cells. The results here also provide a mechanism by
which miR-21 promotes CLL progression via downregulation of
SPRY2.

Discussion

Clinical heterogeneity is a major problem in the management of CLL.
The heterogeneous clinical outcome in patients appears to be the results
of interactions between several molecules and cellular pathways.
Consequently, in order to treat CLL effectively, a better understanding
of the molecules and cellular pathways that contribute to such a
heterogeneous clinical outcome is needed. In the present study,wehave
elucidated the molecular basis for aberrant BCR and MAPK-Erk
signaling, where SPRY2 acts as a negative regulator for survival and
proliferation ofCLLcells.Moreover, SPRY2may represent amolecule
responsible for maintaining the clinical heterogeneity in CLL.

Notably, our findings identify SPRY2 as a negative-feedback
regulator downstream to BCR stimulation that is critical for attenuation
of MAPK-Erk signaling. Moreover, SPRY2 may function as an
attenuator of tonic BCR signaling in CLL cells and B cells because
basal levels of signaling are elevated upon SPRY2 knockdown.
Although SPRY2 overexpression in CD19-cre;Spry2(tg) mice
led to impaired BCR signaling in B cells, we did not observe an
apparent defect in the overall generation of B cells. Notably though,
and directly relevant to the role of SPRY2 downregulation in CLL,
we observed a decrease in B1 cells. These results indicate a potential
role for SPRY2 in the development of B1 cells and hence, possibly in
the initiation of CLL.37 It will be of considerable interest to breed
the CD19-cre;Spry2(tg) mice to established models of CLL, such
as Em-Tcl1 or IRF42/2Vh11 mice, to directly study the role of
SPRY2 in the development of CLL.37 Interestingly, SPRY2 levels
are downregulated in CLL cells isolated from the IRF42/2Vh11
mouse model (data not shown). Even though no other defects in
B-cell development are apparent in CD19-cre;Spry2(tg) mice, it will
be interesting to further study the induction of functional humoral
responses in these mice, given our findings that aberration of SPRY2
expression deregulate BCR signaling.

Functionally, our studies have shown that SPRY2-mediated
regulation of BCR signaling is important for the survival and
proliferation of CLL cells. Moreover, SPRY2 plays a role in control-
ling the disease aggressiveness as knockdown of SPRY2 in Mec-1
CLL cells resulted in more aggressive disease in NSG mice. We
show that SPRY2 expression in nB cells and CLL cells leads to
decreased p-Syk levels. Mechanistically, BCR signaling in CLL cells
constitutes a signaling axis whereby Syk can also function to regulate
the activation of MAPK-Erk signaling (Figure 7D). Of significant
interest in this regard, we observed that SPRY2 not only interacts with
and antagonizes RAF/BRAF activities but that it also interacts and co-
localizes with Syk near the plasma membrane to disrupt the MAPK-
Erk signaling axis. Therefore, we propose a model in which SPRY2
functions to regulate two different nodes of an overlapping signaling
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axis by attenuating Syk, as well as RAF/BRAF activity (Figure 7D).
Importantly, our studies indicate that SPRY2 functions as a broad
attenuator of BCR signaling as evidenced by a decrease in calcium
influx uponBCR stimulation, a processmediated by PLCg2 signaling
downstream of Syk activation.

SPRY2 has been shown to interact with RTKs and the associated
adaptor molecules through its SH2-domain–binding motifs generated
upon its phosphorylation.10 Syk is a non-RTK harboring multiple SH2
domain. Hence, it is tempting to speculate that SPRY2 might interact
with Syk using one or more of its SH2-domain–binding motifs. How-
ever, the precise domain(s) required for the interaction of SPRY2 with
Syk is currently unknown. Additionally, how the functional inhibition
of Syk is brought about by its interaction with Spry2 is an open
question. Furthermore, SPRY2 overexpression in CLL cells induces
an anti-survival effect that functions synergistically with Syk and
BRAF inhibitors. Collectively, these studies highlight the presence
of dual mechanisms through which SPRY2 regulates BCR-induced
MAPK-Erk signaling in CLL and B cells (Figure 7D). Thus, our
findings provide a strong rationale for targeting of these pathways
in the treatment of CLL patients, in particular those with MAPK-
pathway–associatedmutations. A recently study has identified a small
subset of CLL patients who do not respond to the Btk inhibitor
ibrutinib.38 Itwill be of interest to evaluate the therapeutic potential of a
combinatorial Syk and MAPK-Erk inhibition in such patients.

Spry2 is either epigenetically silenced or repressed by miR-21
in several cancers, including breast, prostrate, lungs, liver, and
lymphoma.15,34,39-43 Chen et al have demonstrated that the promoter
region of spry2 was only hypermethylated in a small fraction of the
55 CLL patients that were profiled, signifying alternate mechanisms
that lead to Spry2 downregulation in CLL.31 Interestingly, we identify
SPRY2 as a direct target of miR-21 in human CLL cells. Several
studies have correlated high miR-21 expression in CLL patients with
poorer outcomes.35,36 High miR-21 expression has been shown to
activate MAPK-Erk signaling in several malignancies by suppressing
SPRY2 levels.33,41 However, in this report, we have shown the
molecular mechanism through which miR-21 leads to disease
advancement. We observed elevated p-Syk and p-Erk levels and
low levels of SPRY2 in highmiR-21–expressing CLL cells. Together,
these findings suggest that miR-21 targets SPRY2 to activate Syk-
mediated BCR and MAPK-Erk signaling in poor-prognosis CLL.
Also, miR-21 overexpression may be responsible for the biphasic
expression of SPRY2 observed in CLL cells. Further studies are
required to establish the robustness of the biphasic cyclical expression
pattern of SPRY2 at later time points in CLL cells. To elucidate this
further, the kinetics ofmiR-21 induction should be carefullymonitored
along with SPRY2 expression in CLL cells. Nevertheless, the biphasic
expression of SPRY2 may contribute to the sustained BCR signaling
in CLL cells leading to their enhanced survival and proliferation.
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Moreover, the molecular mechanisms leading to the upregulation of
miR-21 in poor-prognosis CLL is still unknown.

Our studies show that SPRY2 functions as a molecular rheostat
important forfine-tuning the signaling cascades critical for survival and
proliferation of CLL. By investigating the relevance andmechanism of
SPRY2 downregulation in human CLL cells and mouse models, our
studies here identify and validate key molecular networks that can be
therapeutically targeted in the treatment of CLL.
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