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Key Points

• New genome-wide maps
for 17 TFs, 3 histone
modifications, DNase I sites,
Hi-C, and Promoter Capture
Hi-C in a stem/progenitor
model.

• Integrated analysis shows
that chromatin loops in a
stem/progenitor model are
characterized by specific TF
occupancy patterns.

Comprehensive study of transcriptional control processes will be required to enhance

our understanding of both normal and malignant hematopoiesis. Modern sequencing

technologies have revolutionized our ability to generate genome-scale expression and

histone modification profiles, transcription factor (TF)-binding maps, and also compre-

hensive chromatin-looping information. Many of these technologies, however, require

large numbers of cells, and therefore cannot be applied to rare hematopoietic stem/

progenitor cell (HSPC) populations. The stem cell factor–dependent multipotent progen-

itor cell lineHPC-7 represents awell-recognized cell linemodel for HSPCs.Herewe report

genome-widemaps for 17 TFs, 3 histonemodifications, DNase I hypersensitive sites, and

high-resolution promoter-enhancer interactomes in HPC-7 cells. Integrated analysis of

these complementary data sets revealed TF occupancy patterns of genomic regions in-

volved in promoter-anchored loops. Moreover, preferential associations between pairs

of TFs bound at either ends of chromatin loops led to the identification of 4 previously

unrecognized protein-protein interactions between key blood stem cell regulators. All

HPC-7 data sets are freely available both through standard repositories and a user-

friendly Web interface. Together with previously generated genome-wide data sets, this study integrates HPC-7 data into a genomic

resource on par with ENCODE tier 1 cell lines and, importantly, is the only currentmodel with comprehensive genome-scale data that

is relevant to HSPC biology. (Blood. 2016;127(13):e12-e23)

Introduction

ModernDNA-sequencing technologies have revolutionized our ability
to generate genome-wide data sets that capture a wide range of pro-
cesses involved in the transcriptional control of gene expression. In
addition to gene expression profiling, these range from genome-wide
maps of histone modification status and open chromatin to compre-
hensive information on transcription factor (TF) binding, and, more
recently, the genome-wide analysis of the 3-dimensional architecture of
chromosomes that mediate the interactions between gene promoters
anddistal regulatoryelements.When interrogated in isolation,however,
it has become increasingly recognized that only limited new biological
insights can be extracted from individual genome-scale data sets. Large
consortia efforts have therefore been assembled to generate integrated
multiomics data sets that cover multiple levels of the transcriptional
control process.1-7

Hematopoietic stem/progenitor cells (HSPCs) ensure the lifelong
supply ofmature blood cells, and their dysregulation forms the basis for

a wide range of hematopoietic diseases. HSPC function critically
depends on finely tuned transcriptional control processes, a fact high-
lighted by the commonoccurrence of leukemogenic drivermutations in
transcriptional and epigenetic regulators.8-10 HSPCs represent exceed-
ingly rare cell populations in both human and mouse, with,1:20 000
bone marrow cells estimated to possess stem cell activity. Although
gene expression profiles have been reported for highly purified sin-
gle HSPCs11,12 and histone modifications have been mapped in
purified bone marrow HSPC populations,13 no protocols exist for
the application of other genome-wide mapping techniques for
highly purified stem and/or progenitor cells. Researchers have
therefore relied on the use of either heterogeneous primary cell
sources such as human CD341 cells,14,15 or the use of cytokine-
dependent model cell lines such as the multipotent stem cell factor
(SCF)-dependent HPC-7 cell line.16 Importantly, however, none of
these studies, nor any of the large consortia efforts have so far
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reported the whole range of complementary genome-scale data sets
for a single HSPC model.

We previously reported genome-wide TF-binding maps as well as
RNA-Seq expression and histone H3 lysine 27 acetylation (H3K27ac)
profiles in HPC-7 cells.17,18 Here we report binding maps for an ad-
ditional 17 TFs, 3 histonemarks, genome-wideDNase I hypersensitive
sites, genome-wide chromosomal contacts maps generated by Hi-C,19

andhigh-resolution genome-wide promoter–distal element interactions
mapped by the recently reported Promoter Capture Hi-C method,20,21

all generatedwithinuniformlyculturedHPC-7cells. Integratedanalysis
of these complementary data sets demonstrated that (1) active looping
of distal TF-bound regions provides a powerful way to identify new
enhancers that are active in vivo in transgenic mice in blood-
forming tissues, (2) TF colocalization analysis identifies distinct
transcriptional programs operating within a single-cell type with a
program driven by 13 TFs being specifically associated with HSPC
identity, (3) individual TFs differ in their preference for promoter
or enhancer binding within genomic regions that are involved in
promoter-distal interactions, and (4) computational analysis of
preferential pairwise interactions of TFs involved in promoter-
distal looping can correlate with their ability for direct protein-
protein interactions. All data sets are freely accessible through an
intuitive Web browser interface (CODEX),22 thus providing the
hematopoietic research community, for the first time, with com-
prehensive genome-scale data that cover the whole range of the
transcriptional control processes within a single model for HSPCs.

Materials and methods

For more detailed protocols, see supplemental Materials and methods (available
on the BloodWeb site).

Hi-C with sequence capture enrichment

Hi-C was performed as previously described23 with some modifications
which are detailed in Schoenfelder et al.21 Promoter Capture Hi-C (CHi-C)
was performed as described previously.21

Hi-C raw data processing

Four replicates of CHi-C paired-end sequencing data (2 technical replicates per
each biological replicate) were quality controlled, aligned to mm9, and filtered
with HiCUP (http://www.bioinformatics.babraham.ac.uk/projects/hicup/).
Technical replicates were then merged and de-duplicated. Signal detection on
the resulting 2 aligned, pooled biological replicates was then jointly performed
using CHiCAGO24 and the associated chicagoTools suite; a score threshold of
5 was used to define significant interactions. Promoter-promoter interactions
and known promoter elements (taken from MPromDB promoters) which had
not been included in the custom-designed capture bait librarywere also removed
using in-house scripts. Further analysis was performed using SeqMonk (http://
www.bioinformatics.babraham.ac.uk/projects/seqmonk/) and the data were
visualized using the WashU Epigenome browser.25

ChIP-Seq similarity analysis

Chromatin immunoprecipitation sequencing (ChIP-Seq) data were processed as
previously described22; peaks were called using MACS226 and lifted over to
mm9. The peaks were remapped to restriction fragment regions and used to
generate a binary binding matrix. Similarity analysis was performed using
normalized pointwise mutual information (NPMI).27,28 After normalization,
NPMI ranged from 1 for complete co-occurrence (correlation limit), 0 for
independent peaks profiles, and 21 when peaks did not occur together
(anticorrelation limit). NPMI values were clustered using Euclidean dis-
tance and Ward linkage in R.

Binding site and looping region overlap densities

R was used to generate a histogram showing the number of ChIP-Seq peaks
whichwere overlappingwith eithermate in an interacting regionwhen compared
with an equal number of arbitrary regions randomly chosen from the University
of California, Santa Cruz (UCSC) repeat masker table file (this represents the
mouse genome with all annotated repeats removed, to ensure that no repeat
regions are consideredwithin the background calculations due to the problems of
mapping ChIP-Seq peaks reliably to repeats).

Enhancer and promoter ChIP-Seq overlaps

The R statistical environment was used to generate a bar chart counting
TF-binding sites overlaps with baits/promoters vs distal regions (promoter-
interacting regions).

Enhancer and promoter loops

Using in-house scripts, a matrix was generated by counting the number of either
promoter or distal element regions from the CHi-C data that overlap with the
ChIP-Seq peaks. Simulatedmatriceswere generated using arbitrary peak regions
(as described previously), and used to normalize the observed matrix. A P value
was assigned to each element of the matrix, calculated using the number of times
that the valuewas greater in the simulatedmatrices than in the observedmatrix (B)
plus1,dividedby thenumberof simulations (M)plus1;pval5 (B11)/(M11).29

A heatmap was generated in R using the ggplots library. The resulting heatmap
reveals significant TF-binding patterns at interacting regions.

In vivo validation of potential regulatory elements

Identified genomic regions were polymerase chain reaction amplified from
mouse genomic DNA and inserted in lacZ reporter plasmids. F0 transgenic
mouse embryos were generated by Cyagen Biosciences. Expression of the
transgene in the fetal liver and thedorsal aortawas confirmed in selected embryos
by performing histologic sections, as described previously.30 All animal studies
were performed according to United Kingdom Home Office guidelines with
Home Office approval.

Chromatin immunoprecipitation

HPC-7 cells16 were grown in SCF, ChIP assays were performed as previously
described,18 and all samples were crosslinked using 1% formaldehyde unless
otherwise stated. For a list of antibodies used, see supplemental Materials and
methods. Each sample was amplified and sequenced using the Illumina HiSeq
2500 following the manufacturer’s instructions. Sequencing reads were mapped
to the mouse reference genome (GRCm38/mm10) using bowtie2, lifted over to
mm9, converted to a density plot, and displayed as UCSC genome browser
custom tracks.

DNase I hypersensitive site mapping

DNase I treatment was performed on permeabilized cells as described
previously.31,32 HPC-7 cells were harvested and enriched for live cells, and
63 106 cells were incubated with 20 U of DNase I for 3 minutes. DNA was
purified by phenol/chloroform extraction. DNase I treated DNA was size-
selected and sequencing libraries were prepared using the Illumina Truseq
ChIP kit according to the manufacturer’s instructions. Peaks were called with
F-Seq33 using a standard deviation threshold of 14.

Coimmunoprecipitation

293T cells were transiently transfected with expression plasmids using the
ProtransfectionMammalian Transfection System (Promega) and incubated
48 hours before analysis. Cells were lysed and supernatants were precleared.
Relevant antibodieswere added. The immune complexeswerewashed, boiled in
sample buffer, and analyzed by western blot.
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Results

Genome-wide capture Hi-C data for HPC-7 reveals promoter

contacts for known distal regulators

Comprehensive knowledge of distal interactions is vital to understand-
ing gene-regulatory programs at genome scale, yet traditional Hi-C
methods suffer from lack of coverage due to the highly complex nature
of genomic interactions. Several laboratories have developed adapta-
tions of genome-wide capture protocols, where interactions involving
promoters are enriched by sequence homology-based capture and
thus gain sufficient sequencing depth for this subset of all possible
interactions.34,35 To generate such a genome-wide data set for the
HPC-7 cells, we followed the PromoterCaptureHi-C protocol (CHi-C)
from Schoenfelder et al,21 enriching the Hi-C material for 22 225
annotated promoters using sequence capture with a library of custom-
synthesized biotinylated RNAs.

Two Hi-C libraries were generated per biological replicate (4 in
total) and of these, 2 were analyzed by Illumina sequencing to ensure
high complexity of the generated libraries at this initial stage in the
protocol (1 per biological replicate). Promoter capture was then
performed on each of the Hi-C libraries, resulting in 4 CHi-C libraries
(Figure 1A). High-throughput sequencing generated a total of over
400 million paired-end reads, which were aligned (see “Materials and
methods”) to generate a contact map showing both intra- and inter-
chromosomal ligation products (Figure 1B). To identify significant
interactions, we took advantage of a newly developed statistical
method, CHiCAGO,24 whose background model accounts for both
technical noise and the distance-dependent random collisions between
DNA fragments (Figure 1C). This analysis identified over 133 000
significant interactions, of which.100 000 were specific interactions
between promoters and nonpromoter distal elements. Of note, the
promoter regions/baits are contained within a restriction fragment
which commonly encompasses a larger fragment of the genome than
the specific promoter region. On average, the promoter fragments/baits
are 6880 bp. Visualization of the interaction files together with our
previously published 10 TF ChIP-Seq demonstrated specific interac-
tions of the Scl (also known as Tal1) and Lmo2 promoters with the
previously characterized enhancer regions at Scl215 kb,119 kb, and
140 kb, as well as Lmo2275 kb,270 kb,264 kb, and the proximal
promoter (pPex) (Figure 1D-E). Of interest, the characterized Scl
enhancer elements also interact with the promoter of the neighboring
Pdzk1ip1 gene, consistentwith previous reports suggesting that Scl and
Pdzk1ip1 form a single transcriptional domain.36 Analysis of well-
characterized gene loci encoding key HSPC regulators therefore
suggests that the newly generated CHi-C data set represents a
valuable resource to advance our understanding of transcriptional
control mechanisms in HSPCs.

Colocalized TF binding coupled with genome-wide Promoter

Capture Hi-C identifies previously unknown

hematopoietic enhancers

We had shown previously that HSPC enhancer elements can be
identified successfully from SCL ChIP-Seq data in HPC-7 cells.37 To
extend this approach, we searched for regions in the genome which
were bound by at least 7 of the 10 TFs previously mapped,18 and also
showed elevated levels of the histone-modification H3K27ac which is
known to be associatedwith active enhancer regions.38 Identification of
putative enhancers based on ChIP-Seq data alone cannot assign distal
regions to specific geneswith confidence because enhancers are known

to have the ability to act over large distances, and may loop over
intervening genes.39 To overcome this limitation, we made use of our
CHi-C interaction list, and filtered our list of putative enhancers to only
retain those that looped to the promoter regions of known regulators of
HSPC function.

Of the specific regions that were identified, we focused onHhex
159 kb and the Cebpa 137 kb40,41 distal elements (Figure 2A-B).
Whereaspreviously enhancer elementshavebeen linked togenesbased
on proximity or because the element could recapitulate the endogenous
expression pattern of the gene, the CHi-C data allowed us to convinc-
ingly associate distal regionswith specific gene promoters. Because the
classic method to test the in vivo activity of a potential element is to
perform F0 transgenic assays,42 we next generated lacZ reporter
constructs containing a basal promoter element with theHhex159 kb
and Cebpa 137 kb elements, respectively. Consistent tissue-specific
lacZ expression inmultiple independent embryos can confirm the true
in vivo activity of potential regulatory elements. Importantly, analysis
of midgestation mouse embryos can capture activity of key anatomic
sites of HSPC location including the fetal liver (FL) and aorta-gonad-
mesonephros region. The Hhex 159 kb element showed consistent
staining of the vessels (3 of 3), FL (3 of 3), heart (2 of 3), and yolk sac
(3 of 3), whereas the Cebpa 137 kb element showed staining of the
central nervous system (5 of 8), somites (4 of 8), FL (4 of 8), and yolk
sac (5 of 8) (Figure 2Ci-ii), thus validating both regions as novel
transcriptional enhancers active in relevant expression domains for
these 2 key regulatory genes. Further in-depth investigation into the
staining pattern by histologic sectioning of the embryos showed
specific localized lacZ staining of the FL, heart, and dorsal aorta (DA)
(Figure 2Ci-ii and data not shown). Taken together, our approaches
demonstrate that integrated analyses of ChIP-Seq data sets with
genome-wide Promoter Capture Hi-C information streamlines the
identification of regulatory elements, and thus integrates key regulatory
genes into wider transcriptional networks.

Seventeen new genome-wide TF-binding profiles and DNase I

hypersensitive site mapping enrich the combinatorial binding

information of the HSPC cell model, HPC-7

Large consortia efforts have highlighted the benefits of generating large
numbers of genome scale data for individual cell types, such as the tier 1
ENCODE cell lines.6,7,43 Given that HPC-7 represents one of the best
in vitro models for HSPCs, we wanted to bring genomic information
for these cells up to a similar level of completeness, and therefore
performed ChIP-Seq experiments for a further 17 TFs (CEBPa,
CEBPb, cFOS, cMYC, E2F4, EGR1, ELF1, ETO2, c-JUN, LDB1,
MAX, MYB, NFE2, p53, RAD21, pSTAT1, and STAT3) as well as
genome-wide DNase I hypersensitive mapping and 3 additional his-
tone marks (H2AK5ac, H3K4me3, and H3K36me3) (Figure 3). The
additional histone marks included in this study all mark regions of
active chromatin.H2AK5ac specificallymarks expressed gene loci and
is complementary to the repressive H3K27me3.44,45 Visual inspection
of the genome-wide binding profiles for the new total of 29TFs showed
a wide variety of binding patterns with hematopoietic TFs commonly
colocalized whereas additional factors such as cFOS, cMYC, E2F4,
and STAT3 exhibit independent binding profiles. Of interest, while the
binding patterns of RAD21 and CTCF appear to be very similar, many
of these genomic locations do not exhibit particularly prominent
DNase I hypersensitive sites (Figure 3; supplemental Figure 1).We
investigated this phenomenon across our entire data sets, which
demonstrated that CTCF/RAD21 peaks which were not called as
DNase I peaks (15 038 peak regions) had a much lower signal for
DNase I than thoseCTCF/RAD21peaks thatwere also called asDNase
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I peaks (11 521 peak regions). Strikingly, a subset of CTCF/RAD21
peaks displayed a complete absence of DNase I signal (supplemental
Figure 1).

Having 29TF-binding profiles from the sameHSPCmodel allowed
us to perform correlation analysis of global binding profiles (Figure 4).

Using NPMI,27,28 we observed association between the so-called
HSPC TFs (ERG, FLI1, MEIS1, GFI1B, pSTAT1, MYB, GATA2,
LYL1, LMO2, RUNX1, E2A, LDB1, and SCL) and, furthermore,
within this cluster there was even stronger correlation between a subset
of these TFs (GATA2, LYL1, LMO2, RUNX1, E2A, LDB1, and

Figure 1. Genome-wide Promoter Capture Hi-C data reiterate previously known promoter-distal element interactions. (A) Brief schematic of CHi-C experimental

pipeline. (B) Contact map generated in Seqmonk using the 2 biological replicates of Hi-C data. (C) Schematic of the CHi-C processing pipeline. Significant interactions as

identified by the CHiCAGO pipeline24 were loaded into the WashU browser as a custom track (interactions) along with the bigwig tracks of the previously published HPC-7

ChIP-Seq data.17,18 Only interactions where both interacting fragments are within the genomic window are shown. For visualization purposes, the promoters used as “bait” in

the CHi-C protocol are also shown (promoter fragments), the individual restriction enzyme fragments (HindIII restriction fragments) and a track showing RefSeq genes. All

tracks shown are in mouse genome build mm9. (D) Scl locus; shown for verification are the previously identified regulatory elements of the Scl locus. (E) Lmo2 locus; shown

for verification are the previously identified regulatory elements of the Lmo2 locus. PE, paired end.
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SCL). A separate cluster was formed which was composed largely of
more widely expressed TFs such as cMYC and E2F4, but also
contained some myeloid TFs including SPI1/PU.1. A third completely

independent cluster is made up of CTCF and RAD21, which, due to
their known involvement in chromatin structure, can be considered as
“structural” factors.46 Of interest, these “structural” factors appear to

Figure 2. A combination of colocalization of TF binding and genome-wide interaction data identifies previously unknown hematopoietic enhancer elements.

Significant interactions as identified by the CHiCAGO pipeline were loaded into the WashU browser as a custom track (interactions) along with the bigwig tracks of the previously

published HPC-7 ChIP-Seq data.17,18 Only interactions where both interacting fragments are within the genomic window are shown. For visualization purposes, the promoters used as

“bait” in the CHi-C protocol are also shown (promoter fragments), the individual restriction enzyme fragments (HindIII restriction fragments) and a track showing RefSeq genes. All tracks

shown are in mouse genome build mm9. (A) Hhex locus; shown for verification are the previously identified regulatory elements and the newly identified Hhex 159 kb enhancer. (B)

Cebpa locus; shown for verification is the Cebpa 137 kb enhancer. (C) Transgenic analysis of E11.5 X-Gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside)-stained whole-mount

embryos and paraffin sections of dorsal aorta (DA) and fetal liver (FL). (i) Hhex 159 kb. (ii) Cebpa 137 kb.
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negatively correlate with the HSPC TFs, which could also be seen by
visual inspection of bindingprofiles (Figure 3). Taken together, the new
data sets generated here provide deep genomic characterization of

a valuable HSPC cell model. To facilitate access for the wider
community, we have made all data available on the CODEX Web
browser and a stable Web link (http://tinyurl.com/E-MTAB-3954), in

Figure 3. Additional genome-wide TF-binding profiles and DNase I hypersensitive site mapping enrich the combination binding information of the HSPC cell

model, HPC-7. Raw ChIP-Seq read data were transformed into a density plot for each TF and loaded into the UCSC genome browser as custom tracks above the UCSC

tracks for gene structure; all tracks are shown in mouse genome build mm10. (A) Gfi1 locus. (B) Atp6v1c1 locus. (C) Ralgps2t and Tex35 loci.
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addition to the standard submission to DNA sequence archives. As a
comparison, we also analyzed published data for a tier 1 cell line from
ENCODE, and therefore performed NPMI on TF ChIP-Seq data sets
for the K562 cell line (supplemental Figure 2). K562 ChIP-Seq data
sets separated into 3 clusters, with 1 cluster including TFs which play
roles in cell cycle andproliferation (MAX, cMYC,E2F4,E2F6, ETS1,
ELF1, and EGR1) whereas the second cluster contained many of the
myeloid TFs such as SCL, GATA2, and GATA1. The final cluster
containedonlyCTCFandRAD21 as seen in theHPC-7 data.A similar
number of TFs were covered for HPC-7 and K562, but because sev-
eral of the “HSPC” TFs were not studied within K562, the HSPC TF
cluster could not be observed in this cell line.

Combinatorial TF binding characterizes genomic regions

interacting with promoters

Havingmulti-TFbinding andCHi-Cdata for the samecell type allowed
us to investigate patterns ofTFbinding associatedwithpromoter-distal
element interactions. We first assessed the enrichment of individual
TFs and histone modifications at promoter-interacting fragments. To
do this, we calculated the number of promoter-interacting fragments
that overlap with a given TF/histone mark, and compared this to
distance-matched samples of “background noninteracting” regions
(fragments for which no promoter interactions were detected as
significant by the CHiCAGO pipeline) (Figure 5A). For this analysis,
we used 29 TF and 6 histonemodifications,17,18,37,47 all of whichwere
found to be significantly enriched at promoter-interacting regions, in
linewith previous suggestions that TFs and their cofactors play critical

roles in genomic looping.48,49 Having established significant binding
to looping regions for all TFs when considered individually, we next
investigated combinatorial binding of multiple TFs. To this end, we
calculated the number ofTFsbound to all promoter-interacting regions
and compared this to random genomic locations (selected by taking an
equal number of genomic coordinates randomly selected) (Figure 5B).
This analysis clearly showed that for the control set of regions, most
were bound by just 1 TF, and very few by .5. In contrast, regions
involved in looping were commonly bound by multiple TFs.

We next asked whether within a looping interaction, individual TFs
showapreference tobeeitherbound to thepromoteror to thedistal region
(only analyzing TF peaks which overlap with the looping interaction)
(Figure 5C). Distinct patterns were observed for each TF, with clear
trends emerging. Several TFs bind preferentially to promoter regions
(E2F4, c-JUN,cMYC,STAT3,EGR1,ELF1,ETO2,andMAX),a small
number bind more evenly to both promoters and promoter-interacting
regions (SPI1/PU.1, ERG, pSTAT1, cFOS, SCL, GFI1B, CEBPa,
CEBPb, CTCF, and RAD21) whereas the remainder of the TFs bind
preferentially to promoter-interacting regions (MYB, FLI1, MEIS1,
E2A,NFE2, p53,GATA2,RUNX1,LMO2, LYL1, andLDB1).Within
the last group, 3 TFs (LDB1, LMO2, andLYL1) had nearly 80%of their
binding events associated with promoter-interacting elements.

Promoter-distal element loops are characterized by known

and previously unknown TF associations

Transcriptional control of gene expression requires the complex
interplay of promoter and enhancer elements, which are thought to be

Figure 4. TF correlation analysis highlights combinatorial binding patterns in an HSPC cell model. Correlation analysis was performed using NPMI. The heatmap

separates the 29 factors into “structural,” myeloid/generic TFs, and HSPC TFs.
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brought into close proximity through looping that appears to be at least
in part driven by specific TF-binding events (Figure 6A). Although
some factors have been associated with generic roles in the
establishment of such loops,50 little is known about the specific
contributions made by most TFs including the key HSPC regulators
assayed in this study. So far, we have shown that looping regions are

characterized by multi-TF binding and that specific TFs are associated
with either promoter or promoter-interacting regions. We next asked
whether binding of a given TF to either the promoters or distal
component of the interaction was associated with the presence of
specific partner TFs on the corresponding end of themapped chromatin
loops (Figure 6B). To interpret the results of this analysis, we curated

Figure 5. Combinatorial TF binding

is associated with promoter-distal in-

teracting genomic regions. (A) Bar chart

showing the enrichment of the individual

histone modification or TF-binding peaks

overlapping with the significant interaction

fragments (yellow) or background inter-

actions (blue). (B) Bar chart showing the

overlapping number of bound TFs with

the genomic coordinates of the CHi-C

interaction data (blue) and random geno-

mic coordinates (red). Specific enrich-

ment for the CHi-C interaction data can

be seen when 3 or more TFs are bound.

(C) Individual binding peaks for each TF

were separated into promoter (“baits” for

CHi-C experiment) or distal (promoter-

interacting regions, not considered “bait”).

Distinct distributions of the 29 factors can

be seen throughout the genome.
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known protein-protein interactions from the STRING database,51

which produced a list of 32 known protein-protein interactions in-
volving the TFs analyzed here. Analysis of computationally predicted
TF associations across promoter-distal loops revealed that some of the
most significant pairings corresponded to known protein-protein
partners, such as FLI1/GATA2 and FOS/c-JUN. Overall, this analy-
sis showed that 24 of the 32 known protein-protein interactions
corresponded to significant promoter-distal element occupancy pair-
ings.Of note, 28%of these corresponded tomodest occupancypairings
(represented by a lighter orange color,P value5 .1-.2), which included
known interactions between key HSPC TFs such as SCL/LDB1,
LMO2/GATA2, and LMO2/LDB1. This reaffirmed that protein-
protein interactions between TF pairs may play a role in the estab-
lishment of specific loops, and also thatmodestly significant pairings in
our heatmap are potentially of importance within hematopoiesis. Of
note, around38%ofTFswere significantly enriched at both ends of the
interacting regions (CEBPb, cFOS, cMYC, CTCF, E2A, ERG,
ETO2, FLI1, PU.1, RAD21, and STAT3).

The above analysis revealed significant TF occupancy for protein
pairs not known to engage in direct protein-protein interactions. To
investigate this further, we focused on pairings involving the core
HSPCTFs, and performed coimmunoprecipitation assays in which the
relevant pairs of TFswere expressed in 293T cells (Figure 6C). Specific
interactions canbe seenbetweenPU.1/GFI1B,MEIS1/GFI1B,GFI1B/
RUNX1, and RUNX1/MEIS1, thus validating 4 previously unknown
protein-protein interactions between key HSPC TFs. This discovery
serves as an example of how the data sets presented here can be used to
gainnew insights into the transcriptional processesoperating inHSPCs.

Discussion

Genome-widemapping techniques based on high-throughput sequenc-
ing have revolutionized our understanding of transcriptional control
processes. However, despite some progress in miniaturizing assay

Figure 6. Previously unknown TF combinations are at

play in promoter-distal looping interactions. (A) Sche-

matic of promoter-distal looping interaction. TF complex

(es) can be seen to be bound to both the promoter (P) and

enhancer (E) elements; upon transcriptional activation,

these regulatory elements are brought within close

proximity allowing the interaction of these TF com-

plexes. (B) Heatmap showing hierarchical clustering

of the TFs bound at promoter and distal elements. To

control for numbers of binding peaks per experiment, the

data were normalized to the average of 32 iterations of a

randomized selection of total ChIP-Seq peaks, weighted

according to the number of peaks per TF. (C) Co-

immunoprecipitation data (Co-IP) showing protein-protein

interactions between PU.1/GFI1B, MEIS1/GFI1B, GFI1B/

RUNX1, and RUNX1/MEIS1. Expression constructs

were transfected into 293T cells and putative protein

interactions assayed by Co-IP/western blot (WB) analysis.

(i) Following transfection of GFI1B and SPI1/PU.1, lysates

were immunoprecipitated (IP) with an anti-PU.1 antibody

and immune complexes were then analyzed to detect the

presence of GFI1B. (ii) After transfection of GFI1B and

flag-tagged MEIS1, lysates were immunoprecipitated

with an anti-FLAG antibody (MEIS1), followed by

western blot using anti-GFI1B antibody. (iii) MYC-

tagged RUNX1 and GFI1B were transfected, and the

lysates were immunoprecipitated with an anti-GFI1B

antibody, followed by western blot using anti-RUNX1

antibody. (iv) MYC-tagged RUNX1 and MEIS1 were

transfected, and the lysates were immunoprecipitated

with anti-MYC antibody (RUNX1) and immune complexes

were analyzed by western blots using an anti-MEIS1

antibody. IgG, immunoglobulin G.
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conditions, many of these genome-scale techniques still require the use
of hundreds of thousands of cells, and are therefore not applicable to
rare adult stem cell populations such as hematopoietic stem cells.
International consortium efforts such as ENCODE have therefore
focused on leukemic cell lines such as K562 for producing com-
prehensive data sets.52 Heterogeneous populations of progenitor
cells such as human CD341 cells have also been used to produce
limited data sets, commonly restricted to gene expression and histone
marks4 and similar histonemark data have been produced for a range of
mouse stem and progenitor populations.13

Wepreviously reportedgeneexpression, histoneacetylation, and12
TF-binding profiles in the SCF-dependent multipotential HPC-7 cell
line.17,18,37 Although these data have been validated by several groups,
emphasizing the HPC-7 cell line as an authentic model for early
multipotent hematopoietic cells,53-58 the HPC-7 data were limited
comparedwith tier 1ENCODEcell lines such asGM12878,K562, and
H1 human embryonic stem cells. We have therefore now generated
genome-wide maps for an additional 17 TFs, 3 histone modifications,
and DNase I accessible chromatin. Because one of the most challeng-
ing processes in genome-wide experiments has been the reliable
association of a TF-binding peak to a specific gene, we also generated
genome-wideHi-C andCaptureHi-C (CHi-C) data sets to complement
our TF-binding data sets with information on the 3-dimensional orga-
nization of the HPC-7 genome. This means that for the first time in a
HSPC cell line model, specific genes can be associated to specific TF-
binding peaks and therefore transcriptional regulatory modules can be
investigated on a gene-by-gene basis as well as genome-wide. For
comparison, we found that there were 241 719 unique peak regions in
theK562experiments comparedwith84 266uniquepeak regions in the
HPC-7 data set. The range of peaks per TF varies for both the HPC-7
and K562 cell lines (98-43 786 peaks can be seen in the HPC-7
experiments, whereas 1176-80 334 peaks can be seen in the K562 cell
line; see supplemental Figure 2). All data are publically available both
via ArrayExpress and CODEX, to ensure accessibility to the widest
possible audience.

Promoter CHi-C has the advantage over other next-generation
sequencing–based chromosome conformation capture-derived proto-
cols that comprehensive coverage of all promoter-anchored genomic
loops can be obtained with a realistically achievable sequencing depth,
and, unlike chromatin interaction analysis by paired end tag sequencing
(ChIA-PET), without the reliance on immunoprecipitation steps. Here
we provide the first integrated analysis of promoter-anchored loops
with genome-wide bindingmaps for 29 TFswhich allowed us to reveal
several previously unrecognized features of the transcriptional
landscape inHPC-7 cells. The first observation is that there is a direct
correlation between the level of TF occupancy of a distal region and the
likelihood of engagement in a promoter-anchored loop. Although
this might not be surprising, this observation supports mechanistic
models where DNA-bound TFs directly contribute to chromatin
loop formation, possibly through protein-protein interactions. Second,
being able to focus analysis only on those TF-binding events that occur
on actively looping regions, we were able to reexamine several aspects
of TF occupancy. We show that there is a wide range of relative
preference for promoter binding, from .90% for E2F4 to ,20% for
LDB1. This suggests that individual TFs may differ in the way they
influence transcription. Of note, themost promoter-preferential TFs did
not include lineage-specific factors, consistent with the notion that cell-
type specific expression is largely mediated by distal elements.42,59,60

Integrated genome-wide analysis also showed that TF occupancy
of promoter-distal interacting pairs is not random because we now
demonstrate the presence of specific TFs at the promoter influences the
likely presence of other TFs at distal regions and vice versa. This

observation highlights that the data sets generated here provide much
more than a catalog of genomic coordinates boundbyTFs and involved
in chromatin loops. Instead, our analysis demonstrates that compre-
hensive analysis of complementary data sets has the power to reveal
potential “regulatory rules” that operate within a given cell type. To
develop this argument furtherwe investigated the potential relevance of
protein-protein interactions for the observed preferential TF pairings on
promoter-distal region loops. Of note, known protein-protein interac-
tions corresponded predominantly to TF pairings that were enriched
across promoter-distal region loops. These includedknown interactions
between core HSPC TFs, which mostly occurred among moderately
enriched TF pairings. This observation prompted us to investigate
whether other HSPCTF pairings at a similar level of enrichment might
correspond to previously unrecognized direct protein-protein interac-
tions, which led us to experimentally validate 4 novel protein-protein
interactions.

Given the dynamic nature of the hematopoietic system, transcrip-
tional programs within multipotent progenitors must mediate both
maintenance of the progenitor expression state as well as have the
ability to alter expression inorder todifferentiate into thevariousmature
lineages. Differentiation is known to be accompanied by widespread
relocation of TFs and reorganization of promoter-enhancer chromatin
loops.61 A mechanistic understanding of the underlying processes will
advance our ability to design cellular programming strategies for
cellular therapy and regenerative medicine, and also enhance our
understanding of the perturbations of transcriptional programs
associated with neoplastic disease. The data presented here may
stand for many years as an important baseline comparison for such
future studies.
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