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Recent large-scale sequencing studies report recurrent somatic muta-
tions in the blood of elderly individuals in genes previously linked
to clonal expansion of hematopoietic stem cells.1-4 Particularly for
DNMT3A andTET2, a steep age-associated increase in the prevalence of
somatic mutations is observed from middle age onward.2-4 In addition,
prospective analyses performed in predominantly middle-aged individ-
uals show an increased risk for all-cause mortality for carriers of such
mutations as compared with noncarriers.3,4 Jointly, these data suggest
a rapidly increasing vulnerability among the elderly for adverse health
effects associated with clonal expansion of hematopoietic stem cells.
However, prospective data on elderly somatic mutations carriers are
scarce. We therefore investigated the association between all-cause
mortality and carriership of somaticmutations in genes linked to clonal
expansion of hematopoietic stem cells in a large elderly subsample
(N5 864, 80 years and older) derived from 2 large-scale community-
dwelling Dutch cohort studies.5,6

For the present study, we investigated whole-blood–derived ge-
nomes of 646 individuals of 80 years and older from the Rotterdam
Study5 (RS; mean age at inclusion, 84.6 years; range, 80.0-105.8 years;
supplemental Appendix 2, available on the Blood Web site) and 218
individuals of 89 years and older from the Leiden Longevity Study6

(LLS; mean age at inclusion, 94.0 years; range, 88.9-103.4 years;

supplemental Appendix 2). Jointly, this elderly subsample consists of
597 participants aged 80 to 89 years and 267 participants aged over 90
years, which is twice the number of participants for the respective age
categories as compared with any other study previously conducted
on this topic.2-4 Selected elderly participants of the RS and LLSwere
followed for all-cause mortality for a median 8.7 and 9.2 years,
respectively, which was sufficiently long to identify the age at death
of 81.3% and 93.6% of the respective study subsamples. Methods of
DNAsequencing andanalysis are described in supplementalAppendix3.
The ethical committees of the involved institutes approved both studies,
and written informed consent was obtained from all study participants.

Using this unique cohort of sequenced oldest old, we first set out
to confirm the recurrent acquisition of somaticmutations in genes linked
to clonal hematopoiesis in the blood of highly aged individuals. For this,
we curated a list of 15 genes (supplemental Appendix 4) reported to
harbor recurrent somaticmutations in the blood of normal individuals in
any of the large-scale sequencing studies conducted to date.2-4 Thus,
identifiedgeneswere analyzed for putative somaticmutations according
to the gene-specific inclusion criteria set by Jaiswal et al (supplemental
Appendix 4).4

The mutational analysis identified 39 (6.0%) and 40 (18.3%)
unique carriers of, respectively, 42 and 46 mutations for the RS and
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LLS elderly subsamples, respectively, predominantly in DNMT3A
and TET2 (Figure 1A; supplemental Tables 1-2). The observed
prevalence of somatic mutations in genes linked to clonal hemato-
poiesis in the RS and LLS elderly subsamples is consistent with the
age-associated increase observed by Xie et al (Figure 1B).2 Our
observation thus confirms the age-associated increase of detectable
somatic mutations in genes previously linked to hematopoietic
malignancies reported by Xie et al and extends this observation up
to the highest ages.2

The fraction of reads annotated to the alternative alleles (variant
allele fractions [VAFs]) is generally much lower for the identified
mutations than the 50% expected for germline heterozygous variants
(RS:median, 21.6%; interquartile range, 14.1%-29.6%) (LLS:median,
23.2%; interquartile range, 16.5%-31.7%) (Figure 1C). This finding
indicates that the identified mutations were only present in a part of the
sequenced blood cells, and thus corroborates the hypothesized clonal
outgrowth of hematopoietic stem cells.

Compared with the 3 previous studies predominantly including
middle-aged participants, a high prevalence of mutation carriers with
2 mutations was observed in the RS and LLS elderly subsample

(Figure 1D; 9 in 864 [1.04%] vs 6 in 2636 [0.28%],2 18 in 12 380
[0.15%],3 and 49 in 17 182 [0.28%]4).

The spatial correlation between the identified variants within
DNMT3A and TET2 with respect to the primary protein sequence
and previous reports in Catalogue Of Somatic Mutations In Cancer
(COSMIC)7 further corroborates our findings (Figure 1E; supplemental
Figure 1).Additional Sanger sequencing experiments in theLLS elderly
subsample (supplemental Appendix 5) confirmed the presence for 18 of
19 testedmutations inDNMT3A (Figure 1E diamonds and squares) and
TET2 (supplemental Figure 1).Moreover, Sanger sequencing in siblings
of 6mutant carriers, who inherited the identical genetic alleles from their
parents at these loci as the mutant carriers (supplemental Appendix 6),
did not show the identified somatic mutations (6 of 6; Figure 1E
diamonds), thus confirming that these variants in DNMT3A and TET2
were indeed acquired during life.

Having identified carriers of somatic mutations in genes linked to
clonal hematopoiesis in the RS and LLS elderly subsample, we next
assessed the impact on survival of carrying such mutations. When
analyzing the impact of carriership of the identified somatic mutations
in the 15 genes previously linked to clonal expansion of hematopoietic

Figure 1. Characterization of identified variants in blood of the RS and LLS elderly subsample. (A) Mutations in genes previously linked to hematopoietic malignancies.

Barplot of the number of individuals carrying a mutation, split by genes and study. Note that only 11 of the 15 investigated genes had a mutation (see supplemental Appendix 4

for a complete list). (B) Prevalence of carriers of somatic mutations stratified by age category using data of Xie et al2 and the observations in the RS and LLS elderly

subsample. (C) Distribution of VAFs of the identified mutations. (D) Comutation plot of carriers with 2 independent mutations. (E) Overview of mutations in DNMT3A identified

in the RS and LLS elderly subsample. Variants are annotated at the top with color coding to indicate the impact and a shape to indicate the types of follow-up experiments.

Circles indicate mutations detected in our sequencing data; squares indicate mutations also validated by Sanger sequencing; diamonds indicate mutations also validated by

Sanger sequencing and absent in an IBD2 matched sib, that is, confirming somatic variations. Mutations identified in multiple carriers are indicated with stacked annotations

and those having bold borders were identified in the LLS. Missense variants are only included whenever they are present on a curated list of recurrently reported variants in

the Catalogue Of Somatic Mutations In Cancer (COSMIC)7 assembled by Jaiswal et al4. Domains: ADD, histone-binding domains; DNMT, DNA methyltransferase interaction

domain; MTase, methyltransferase domain; PWWP, conserved DNA binding domain; ZC-FING, zinc finger domains. COSMIC, densities of somatic variants identified in

hematopoietic or lymphoid tissue collected by the Catalogue Of Somatic Mutations In Cancer (COSMIC)7 database: all small variants (red), missense single nucelotide

variants (SNVs) (gray), small variants confirmed to be of somatic origin (blue).
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stem cells, no difference in survival was observed between carriers
and noncarriers for the RS (hazard ratio [HR] 5 0.83 [0.58-1.17],
P5 .29; Figure 2A) nor the LLS (HR5 0.94 [0.65-1.35], P5 .61;
Figure 2B; supplemental Appendix 6) elderly subsample. Also, a
fixed-effect meta-analysis showed no indications of compromised
survival (HR5 0.88 [0.68-1.13],P5 .32; Figure 2C; supplemental
Appendix 6).

Using DNA sequencing data in an elderly subsample derived from
2 large-scale community-dwelling Dutch cohort studies,5,6 we confirm
that somatic mutations in genes previously linked to hematopoietic
malignancies are common in the oldest old, especially inDNMT3A and
TET2. Yet, in 2 independent studies, jointly comprising the largest
sample in this age range to date, we found no indications that the
potentially premalignant mutations compromise the 8- to 10-year
survival of highly aged carriers.

In contrast to our findings, 2 recent large-scale sequencing studies
in peripheral blood performed in 12 3003 and 17 1824 normal mostly
middle-aged individuals found a significant increased risk for all-cause
mortality among carriers of premalignant somatic mutations,
predominantly inDNMT3A and TET2. The difference in mortality
risk between middle-aged and highly aged people may lie in the fact
that the oldest old suffer frommany other comorbidities affecting their
mortality rate. Causes of death or coincident morbidities at the time of
death may support this hypothesis, however, such data were not
available for our studies. Last, there is intrinsic selection bias when
investigating the oldest old: the success of these highly aged individuals
in coping with at least some of the adverse effects during aging could
limit the ability to detect adverse health effects associated with
age-related clonal expansion.

Apossible limitationofour studymight relate to the lower sequencing
depth, allowing for a less sensitive detection of variants characterized by
a lowallele fraction.However,when Jaiswal et al stratified theirmortality
analyses on the median VAF, they observed that the observed increased
risk onmortality could largely be attributed to carriers of variantswith the
largest VAF.4 Also, the relatively modest size could limit our study.
However, a power analysis (supplemental Appendix 6) indicated that we
should be able to detect a significant increased risk of all-cause mortality
among mutation carriers compared with noncarriers.

We conclude that, unlike previous reports in predominantlymiddle-
aged individuals,3,4 somatic mutations in genes linked to clonal expan-
sion of hematopoietic stem cells do not compromise the 8- to 10-year
survival in the oldest old.

The online version of this article contains a data supplement.
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Figure 2. Kaplan-Meier survival curves of the RS and LLS elderly subsample.

(A) Kaplan-Meier curves for the 39 mutation carriers and 596 noncarriers in the RS

elderly subsample. (B) Kaplan-Meier curves for the 40 mutation carriers and 168

noncarriers in the LLS elderly subsample. Because Jaiswal et al4 and Genovese

et al3 do not agree on the status of DNMT3A missense mutations, we excluded

DNMT3A missense mutation carriers from noncarriers in both the RS and LLS

elderly subsample (supplemental Tables 6-7). (C) Forest plot combining the Cox

proportional hazards analyses in the RS and LLS elderly subsample.
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