To the editor:

Variability in the efficacy of the IL1 receptor antagonist anakinra for treating Erdheim-Chester disease

Fleur Cohen-Aubart,^{1,2} Philippe Maksud,^{2,3} David Saadoun,^{2,4} Aurélie Drier,⁵ Frédéric Charlotte,^{2,6} Philippe Cluzel,⁷ Zahir Amoura,^{1,2,*} and Julien Haroche^{1,2,*}

¹Service de Médecine Interne 2, Centre National de Référence Maladies Auto-immunes Systémiques Rares, Institut E3M, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; ²Université Pierre et Marie Curie, Université Paris VI, Paris, France; and ³Service de Médecine Nucléaire, ⁴Service de Médecine Interne 1, ⁵Service de Neuroradiologie Diagnostique et Fonctionnelle, ⁶Service d'Anatomo-Pathologie, and ⁷Service de Radiologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France

Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis characterized by foamy histiocytes, sometimes associated with central nervous system (CNS) and cardiac infiltration.¹ Several reports have suggested that an interleukin (IL)1 receptor antagonist, anakinra, is effective in treating ECD.²⁻⁸

Twelve patients (7 men and 5 women; median age, 70 years; range, 22-80 years) with biopsy-proven ECD⁹ and previous failure (cases 2, 3, 4, 9, and 11), poor tolerance, or contraindication (cases 1, 2, 5, 6, 7, 8, 10, and 12) to interferon- α (IFN- α) therapy received alternative treatment with daily subcutaneous injection of 100 mg anakinra. Data collection and analysis were performed retrospectively. Three patients rapidly stopped the treatment (2 for failure and 1 for pain at the injection site). Table 1 shows the characteristics of the 12 initial and the 9 remaining patients at baseline. Eight patients had long bone involvement, 8 had cardiac disease (4 with a pericardial effusion or thickening and 8 with a pseudomass in the right atrium), 3 had retroorbital infiltration, 1 had a pseudo-meningioma of the spine, and 1 had pachymeningitis. The median duration of ECD disease when anakinra was started was 5 years (range, 1-12 years). Ten of the 12 patients were treated prior to inclusion with IFN- α (pegylated or not). For 5 of them, anakinra was given just after IFN- α treatment.

The median duration of anakinra treatment (always given as a monotherapy) among the 9 patients was 22 months (range, 3-34 months). Clinical symptoms improved in 50% of the patients (3 of 7 for fatigue, among them 2 stopped IFN- α just before, 1 of 1 for fever, 2 of 6 for bone pain, 1 of 2 for sinus disturbance). The median C-reactive protein (CRP) value at baseline was 10 mg/L (range, 4-30 mg/L) and at the end of the treatment was 10 mg/L (range, 4-43 mg/L), which was not significantly different. All patients had a positron emission tomography (PET) evaluation at baseline and at the end of follow-up. Five had progression of the disease, 2 had stable disease, 1 had a partial response, and 1 had a complete metabolic response. Among the 6 patients who had cardiac involvement, 5 underwent baseline and final cardiac magnetic resonance imaging (MRI), which displayed stability in 3 and progression in 2 (among them, 1 had tamponade). Retro-orbital infiltration evaluated by cerebral MRI was stable in 1 of 1 patients and CNS infiltration appeared in 1 patient free of CNS involvement at the beginning of the treatment.

Tolerance was variable. Four of the 9 patients included in the longterm analysis had side effects, including pain at the injection site (n = 4), edema (n = 1), severe sepsis (n = 1), and headache (n = 1). Overall, anakinra was stopped in 11 of 12 patients because of poor tolerance (n = 4) or progression of disease (n = 7). Proinflammatory cytokines, such as IL-1, IL-6, and tumor necrosis factor- α , are strongly increased in ECD lesions. Whether IL-1 blood levels are increased is still controversial; this finding has been reported in isolated cases but not in a larger series of 37 patients.¹⁰ Altogether, these findings suggested that inhibition of the IL-1 pathway could be a promising therapeutic area for ECD treatment.

Here, we report a series of 12 patients with ECD exhibiting multisystem histiocyte infiltration treated with anakinra. Tolerance was variable and led to discontinuation of the treatment in 33% of patients. In contrast with 6 of 8 previous case reports, we did not observe an improvement in CRP levels. This may be due to IFN- α therapy, which may have lowered basal CRP levels in 4 patients who received this treatment just before receiving anakinra. The efficacy of anakinra assessed by fluorodeoxyglucose (FDG)-PET was variable. The extent of the disease evaluated by computed tomography or MRI imaging was not improved in our patients receiving anakinra, regardless of the site (retro-orbital, cardiac, spine, brain, pleura, or retroperitoneal). Conversely, CNS infiltration and tamponade occurred during treatment in 1 patient each.

Aouba et al² first reported the dramatic efficacy of anakinra in 2 ECD patients with a dramatic improvement in retroperitoneal infiltration and regression of hydronephrosis. Since then, the use of IL-1 blockade in ECD has been reported in 6 additional reports³⁻⁸ (Table 2), which did not mention any changes in bone lesions or retroperitoneal infiltration. Killu et al⁵ described a patient with a right atrial mass in which FDG uptake decreased under anakinra treatment, although there was no MRI evaluation of the cardiac infiltration. Some of our patients, conversely to several previous reports including the one by Aouba et al, were refractory to IFN- α therapy, which could be the hallmark of more severe disease and can explain the different responses to treatment.

Altogether, these results show that anakinra displays a variable efficacy in ECD sometimes, with progression of cardiac or CNS involvement.

In conclusion, anakinra is possibly effective for treating constitutional symptoms, has variable efficacy in organs as measured by FDG-PET scan, and did not lead to measurable regression of tumors. For ECD patients with cardiac or CNS infiltration, other treatments, such as IFN- α or B-Raf inhibitors, should be considered first. Increasing the anakinra dose should also be considered in the future, as has been proposed in other inflammatory conditions.

Table	1. Demographic and	d clinical characteristics o	of the 12 patients at baseline and of the	e 9 (1-9) patients includ	led in the analy	sis of long-term out	come	
	Sex, age at anakinra treatment (years)	Age at ECD diagnosis (years) and BRAF status	ECD localizations	Previous treatments	Biopsy site	Treatment duration	Anakinra failure, progression of disease	Anakinra efficacy
÷	M, 64	52 WT	Retroperitoneal, bones, aorta, pericardium, atrial pseudomass,	SteroidsIFN, PEG-IFN	Pericardium, perirenal	22 mo	Heart, pleura	Spine
			sinus, spine					
N	M, 68	60 ND	Retroperitoneal, bones, aorta,	Steroids, IFN,	Perirenal	31 mo	Pleura, lung, spine	
			atrial pseudomass	PEG-IFN, imatinib				
ო	M, 76	72 V600E	Retroperitoneal, Bones, aorta,	IFN, PEG-IFN	Perirenal	26 mo	Aorta, heart	Pleura
			pericardium, atrial pseudomass					
4	F, 80	72 V600E	Retroperitoneal, bones, aorta,	Steroids, IFN	Perirenal	7 mo	Stable	
			pericardium, atrial pseudomass, lung					
5	F, 58	52 ND	Bones	IFN, PEG-IFN	Bone	28 mo		Bones
9	M, 75	72 ND	Bones	None	Bone	11 mo	CNS	
7	F, 22	16 ND	DI, lung, sinus, retroperitoneal	Steroids, IFN,	Sinus	3 mo	Stable	
				PEG-IFN, vinblastine				
8	M, 71	65 V600E	Retroperitoneal, bones, lung, aorta,	IFN, PEG-IFN	Perirenal	5 mo	Bones, pleura, CNS	
			atrial pseudomass, CNS					
0	M, 70	69 V600E	Aorta, bones, retroperitoneal, atrial	Steroids, PEG-IFN	Perirenal	34 mo	Heart	
			pseudomass, retroorbital, xanthelasma					
10	M, 72	71 ND	Aorta, bones, pericardium, atrial	PEG-IFN	Perirenal	3 wk	NA	NA
			pseudomass, hydronephrosis, retroorbital					
1	F60	59 V600E	Aorta, bones, atrial pseudomass,	Steroids, PEG-IFN	Perirenal	3 WK	NA	NA
			skin, bones, retroorbital, DI					
12	F70	69 ND	Aorta, DI, bones	None	Bones	1 wk	NA	NA
D,	diabetes insipidus; NA, I	not available; ND, not determine	ed; PEG, pegylated; V600E, presence of mutation	in BRAF V600E; WT, wild ty	pe.			

term o	
long-t	
s of	
alysi	
e ané	
n the	
led i	
Icluc	
ts in	
atien	
9) pe	
÷,	
the	
đ	
anc	
eline	
bas	
ts at	
atien	
2 p	
the 1	
o	
stice	
cteri	
hara	
cal c	
clinic	
and (
hic	
grap	
òme	Í
ő	Í

N D _ 5 Ť a, pegyiš ۔ ۲ ŕ ź.

	Sex, age (years)	ECD localizations and previous treatments	ECD duration (years)	Anakinra duration (months)	CRP	Tolerance	Efficacy
Aouba 1 ¹³	F, 46	Bones, retroperitoneal,	7	25	Normalized	Pruritus	Disappearance of bone pain and fever
		nyuruneprirosis, xanurelasina Steroids					Regression of hydronephrosis and
							retroperitoneal infiltration
		Zoledronic acid					Normalization of bone scintigraphy
		Cladribine					
Aouba 2 ¹³	M, 55	Bones, coated aorta and renal artery	თ	26	Normalized	Pain at injection sites	Disappearance of bone pain and fever
		stenosis, retroperitoneal, hydronephrosis					
		Steroids					Regression of hydronephrosis
		IFN-α					No improvement of scintigraphic bone uptake
Tran ¹⁴	F, 10	Bones, retroperitoneal	ځ	10	Normalized	Pain at injection sites	Disappearance of bone pain and fever
		Vinblastine					No changes in bone lesions nor
							retroperitoneal infiltration
		Steroids					
		IFN-a					
Aubert ²⁰	F, 32	Bones, retroperitoneal, adrenal infiltration	10	12	Normalized	Slight injection sites reaction	Disappearance of bone pain and fever
		Steroids					Improvement of bone hypermetabolism
							in PET
		Vesanoid					No change in retroperitoneal infiltration
Killu ²²	M, 71	Right atrial mass, bilateral pleura infiltration,	0	9	ذ	ذ	Improvement of 18 FDG uptake
		temporal artery infiltration					in right atrial mass
		No prior treatment					Heart MRI evaluation not done
Courcoul ²³	M, 57	Bones	-	12	Normalized	No side effects	Disappearance of bone pain
		Steroids					No changes in 18 FDG uptake, bone
							scan and bone MRI
		Pamidronate					
		IFN-α					
Darstein ²⁴	M, 48	Bones, retroperitoneal, hydronephrosis, CNS	ю	5	Rapid decrease	Gram-negative urosepsis	Improvement of neurological symptoms
		No prior treatment				controlled under antibiotics	(not assessed by MRI)
Cohen ²⁵	F, 43	Bones, pituitary involvement,	4	ო	NA	Injection site reaction	Cutaneous lesions, desmopressin need and
		sinuses, lichen planus					bone pain improvement

Table 2. Previous reported cases of anakinra treatment of ECD

*Z.A. and J.H. contributed equally to this work.

Contribution: F.C.-A., J.H., and Z.A. designed the study and analyzed the data; F.C.-A., D.S., F.C., Z.A., and J.H. wrote the manuscript; P.M. reviewed and analyzed the PET imaging; A.D. and P.C. reviewed the cerebral and cardiac imaging; and all authors approved the final manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Fleur Cohen-Aubart, Service de Médecine Interne 2, Institut E3M, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; e-mail: fleur.cohen@psl.aphp.fr.

References

- Haroche J, Arnaud L, Cohen-Aubart F, et al. Erdheim-Chester disease. Curr Rheumatol Rep. 2014;16(4):412.
- Aouba A, Georgin-Lavialle S, Pagnoux C, et al. Rationale and efficacy of interleukin-1 targeting in Erdheim-Chester disease. *Blood.* 2010;116(20): 4070-4076.
- Tran TA, Pariente D, Lecron JC, Delwail A, Taoufik Y, Meinzer U. Treatment of pediatric Erdheim-Chester disease with interleukin-1-targeting drugs. *Arthritis Rheum.* 2011;63(12):4031-4032.

- Aubert O, Aouba A, Deshayes S, Georgin-Lavialle S, Rieu P, Hermine O. Favorable radiological outcome of skeletal Erdheim-Chester disease involvement with anakinra. *Joint Bone Spine.* 2013;80(2):206-207.
- Killu AM, Liang JJ, Jaffe AS. Erdheim-Chester disease with cardiac involvement successfully treated with anakinra. Int J Cardiol. 2013;167(5):e115-e117.
- Courcoul A, Vignot E, Chapurlat R. Successful treatment of Erdheim-Chester disease by interleukin-1 receptor antagonist protein. *Joint Bone Spine*. 2014; 81(2):175-177.
- Darstein F, Kirschey S, Heckl S, et al. Successful treatment of Erdheim-Chester disease with combination of interleukin-1-targeting drugs and high-dose glucocorticoids. *Intern Med J.* 2014;44(1):90-92.
- Cohen PR, Kurzrock R. Anakinra-responsive lichen planus in a woman with Erdheim-Chester disease: a therapeutic enigma. *Dermatol Online J.* 2014; 20(1):21241.
- Diamond EL, Dagna L, Hyman DM, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. *Blood.* 2014; 124(4):483-492.
- Arnaud L, Gorochov G, Charlotte F, et al. Systemic perturbation of cytokine and chemokine networks in Erdheim-Chester disease: a single-center series of 37 patients. *Blood.* 2011;117(10):2783-2790.

DOI 10.1182/blood-2015-09-672667

© 2016 by The American Society of Hematology

To the editor:

Uncompromised 10-year survival of oldest old carrying somatic mutations in *DNMT3A* and *TET2*

Erik B. van den Akker,^{1,2} Steven J. Pitts,³ Joris Deelen,^{1,4} Matthijs H. Moed,¹ Shobha Potluri,³ Jeroen van Rooij,⁵ H. Eka D. Suchiman,¹ Nico Lakenberg,¹ Wesley J. de Dijcker,¹ André G. Uitterlinden,^{5,6} Robert Kraaij,^{5,6} Albert Hofman,⁶ Anton J. M. de Craen,⁷ Jeanine J. Houwing-Duistermaat,⁸ Gert-Jan B. van Ommen⁹ on behalf of the Genome of The Netherlands Consortium, David R. Cox,³ Joyce B. J. van Meurs,⁵ Marian Beekman,^{1,4} Marcel J. T. Reinders,² and P. Eline Slagboom^{1,4}

¹Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; ²The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands; ³Rinat-Pfizer Inc, South San Francisco, CA; ⁴Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands; ⁵Internal Medicine and ⁶Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; and ⁷Gerontology and Geriatrics, ⁸Medical Statistics, and ⁹Human Genetics, Leiden University Medical Center, Leiden, The Netherlands

Recent large-scale sequencing studies report recurrent somatic mutations in the blood of elderly individuals in genes previously linked to clonal expansion of hematopoietic stem cells.¹⁻⁴ Particularly for DNMT3A and TET2, a steep age-associated increase in the prevalence of somatic mutations is observed from middle age onward.²⁻⁴ In addition, prospective analyses performed in predominantly middle-aged individuals show an increased risk for all-cause mortality for carriers of such mutations as compared with noncarriers.^{3,4} Jointly, these data suggest a rapidly increasing vulnerability among the elderly for adverse health effects associated with clonal expansion of hematopoietic stem cells. However, prospective data on elderly somatic mutations carriers are scarce. We therefore investigated the association between all-cause mortality and carriership of somatic mutations in genes linked to clonal expansion of hematopoietic stem cells in a large elderly subsample (N = 864, 80 years and older) derived from 2 large-scale communitydwelling Dutch cohort studies.5,6

For the present study, we investigated whole-blood-derived genomes of 646 individuals of 80 years and older from the Rotterdam Study⁵ (RS; mean age at inclusion, 84.6 years; range, 80.0-105.8 years; supplemental Appendix 2, available on the *Blood* Web site) and 218 individuals of 89 years and older from the Leiden Longevity Study⁶ (LLS; mean age at inclusion, 94.0 years; range, 88.9-103.4 years; supplemental Appendix 2). Jointly, this elderly subsample consists of 597 participants aged 80 to 89 years and 267 participants aged over 90 years, which is twice the number of participants for the respective age categories as compared with any other study previously conducted on this topic.²⁻⁴ Selected elderly participants of the RS and LLS were followed for all-cause mortality for a median 8.7 and 9.2 years, respectively, which was sufficiently long to identify the age at death of 81.3% and 93.6% of the respective study subsamples. Methods of DNA sequencing and analysis are described in supplemental Appendix 3. The ethical committees of the involved institutes approved both studies, and written informed consent was obtained from all study participants.

Using this unique cohort of sequenced oldest old, we first set out to confirm the recurrent acquisition of somatic mutations in genes linked to clonal hematopoiesis in the blood of highly aged individuals. For this, we curated a list of 15 genes (supplemental Appendix 4) reported to harbor recurrent somatic mutations in the blood of normal individuals in any of the large-scale sequencing studies conducted to date.²⁻⁴ Thus, identified genes were analyzed for putative somatic mutations according to the gene-specific inclusion criteria set by Jaiswal et al (supplemental Appendix 4).⁴

The mutational analysis identified 39 (6.0%) and 40 (18.3%) unique carriers of, respectively, 42 and 46 mutations for the RS and