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Acute megakaryoblastic leukemia (AMKL)

comprises between 4% and 15% of newly

diagnosed pediatric acute myeloid leuke-

mia patients. AMKL in children with Down

syndrome (DS) is characterized by a

founding GATA1 mutation that cooperates

with trisomy 21, followed by the acquisition

of additional somaticmutations. Incontrast,

non–DS-AMKL is characterized by chimeric

oncogenes consisting of genes known to

play a role in normal hematopoiesis.

CBFA2T3-GLIS2 is the most frequent chi-

meric oncogene identified to date in this

subset of patients and confers a poor

prognosis. (Blood. 2015;126(8):943-949)

Introduction

Acute megakaryoblastic leukemia (AMKL) is a subtype of acute
myeloid leukemia (AML) characterized by abnormal megakaryoblasts
that expressplatelet-specific surfaceglycoprotein.Bonemarrowbiopsy
frequently demonstrates extensive myelofibrosis, often making aspi-
ration in these patients difficult. AMKL is extremely rare in adults,
occurring in only 1% of AML patients.1 This is in contrast to children,
where it comprises between 4% and 15% of AML patients.2,3 In
pediatrics, the disease is divided into 2 major subgroups: AMKL in
patients with Down syndrome (DS-AMKL) and AMKL in patients
without DS (non–DS-AMKL). AMKL is the most frequent type of
AML in children with DS, and the incidence in these patients is
500-fold higher than in the general population.4 In contrast to
non–DS-AMKL, leukemic cells carry not only megakaryocytic
cell-surface markers but also erythroid markers, resulting in the
distinct World Health Organization classification “myeloid leuke-
mia in Down syndrome”5. Somatic mutations inGATA1 are found in
almost all cases of DS-AMKL and precede the development of
leukemia, as indicated by their presence in patients with transient
myeloproliferative disease (TMD) in the neonatal period.6-11

DS-AMKL is both biologically and clinically distinct, with superior
outcomes compared with non–DS-AMKL.12-15 Pediatric non–DS-
AMKL is a heterogenous group of patients, a significant proportion
of whom carry chimeric oncogenes including RBM15-MKL1,
CBFA2T3-GLIS2, NUP98-KDM5A, and MLL gene rearrangements.16,17

Unfortunately, the outcome of non–DS-AMKL is generally poor, with
lower event-free survival thanDS-AMKL and pediatric AML, even in the
face of intensified treatment.2,18

DS-AMKL

TMD

DS-AMKL is associatedwith TMD, a hematologic disorder in infancy.
In this disorder, a clonal population of megakaryoblasts accumulates
in the peripheral blood. These blasts are phenotypically indistinguish-
able from AMKL leukemic blasts, and in the majority of cases,
remission is spontaneous within 3 months in the absence of treatment.
In;20%ofTMDcases, patientswill go on todevelopmyelodysplastic
syndrome and/or AMKL.19 TMD is thought to originate in utero, as an

identical mutation inGATA1, the genetic lesion associated with TMD,
was found to be present at birth in twins with TMD.20 Further evidence
camewith the analysis of archived autopsy specimens fromDSpatients
that identified GATA1mutations in 2 fetal liver specimens.21 A subse-
quent study screening Guthrie cards from 585 DS infants identified
GATA1 mutations in 3.8% of their cohort, confirming the presence of
this lesion in a subset of patients at birth.22 The frequency of this lesion
in newborn DS patients was significantly higher in a study that used
next-generation sequencing, which has a greater sensitivity, to screen
200 neonates with DS.23 In this analysis, GATA1 mutations were
detected in 29% of patients. The spontaneous resolution of TMD
suggests that despite the presence of blasts in the peripheral blood
that appear phenotypically indistinguishable from full-blown leukemia,
they are in fact functionally different as they fail to persist.When TMD
and AMKL blasts from patients with DS are injected into immuno-
deficient mice, this difference becomes apparent. Approximately 50%
of DS-AMKL engraft into NOD/SCID mice, leading to widespread
dissemination and the ability to propagate in secondary and tertiary
recipients.24 In contrast, blasts from TMD patients very rarely engraft,
fail todisseminateoutside thebonemarrow, andareunable topropagate
disease in secondary and tertiary recipients.24 Exome sequencing
of TMD has revealed that non–silent mutations in these blasts
are primarily limited to theGATA1 gene.25 In contrast, AMKL blasts
carry a higher burden of mutations, with additional lesions in epi-
genetic and kinase-signaling genes leading to progression of the
disease. Collectively, these findings support a model whereby TMD
blasts arise secondary toGATA1mutations in the setting of trisomy21,
acquiring this so-called first hit, and persist in the bone marrow.
Additional lesions can then occur providing the cooperating events
that are necessary for full-blown leukemia to develop (Figure 1).
Although sequencing studies have demonstrated the genetic lesions
that are required for progression of TMD to AMKL, they do not
provide any information on how to predict the 20%of patients thatwill
go on to develop AMKL. An extensive analysis of germline DNA,
including pathologic mutations in cancer-predisposition genes as well
as genome-wide association studies to identify polymorphisms that
may predispose an individual to developing AMKL, may provide
clues. If predisposing factor(s) are identified, they have the potential to
significantly impact clinical care, as the identification of those patients
at high risk of developing AMKL would allow for early treatment of
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the premalignant cells with decreased intensity chemotherapy while
maintaining the high cure rates.

GATA1

The GATA family of proteins consists of transcription factors, 3 of
which are expressed principally in hematopoietic cells (GATA1,
GATA2, and GATA3). The GATA1 protein is typically present in
cells of erythroid, megakaryocytic, mast, and eosinophilic lineages,
whereas GATA2 is expressed in early hematopoietic progenitors.26

GATA1 is required for the development of erythrocytes, mega-
karyocytes, eosinophils, and mast cells. Mutations in GATA1 have
been associated with thrombocytopenia, familial dyserythropoietic
anemia, thalassemia, porphyria, Diamond-Blackfan anemia, TMD,
and DS-AMKL.26-31 The mutations found in nonmalignant diseases
either weaken or eliminate the interaction of GATA1 with its cofactor
FOG1 or interfere with DNA binding.28-32 In contrast, the mutations
detected in DS patients consist of short deletions, insertions, and point
mutations within exon 2 that introduce a premature stop codon.7 This
shortermutant protein retains the ability to bindDNAand interact with
its cofactor, but it lacks the transcriptional activationdomain andhence
has reduced transactivation potential.7 Tomodel TMD, a knockin line
of mice expressing a truncated form of GATA1 was generated and
found to result in hyperproliferativemegakaryocytic progenitors in the
yolk sac and fetal liver that disappeared by the end of gestation.33 A
separate group crossedmice transgenic for a truncated form ofGATA1
to theGATA1 knockout strain.34 During the neonatal period, mice ac-
cumulate immature megakaryocytic progenitors in the liver that
disappear during weaning of the pups. Regardless of the difference
in timing, these models serve to validate that a truncated GATA1
protein is able to confer a proliferative advantage, generating a pool
of precursors that have the potential to develop into a leukemic
population. The mechanism whereby truncated GATA1 is able to
induce a preleukemic state is not fully elucidated, although genome-
wide chromatin immunoprecipitation sequencing of genes bound by
GATA1 merged with expression profiling revealed a large number
of activated and repressed genes, respectively, that were occupied
by the GATA1 protein.35 Further studies have shown that GATA1 is
able to activate lineage specific genes and repress progenitor mainte-
nancegenes dependingon the cofactors present.36 It is therefore plausible
that deregulation of these targets contributes to the differentiation arrest
seen with the truncated GATA1 that is no longer able to transactivate
transcription of lineage specific genes. A secondmechanism proposed is
the upregulation of genes by mutant GATA1 that promote self-renewal,
as has been demonstrated for the microRNA miR-486-5p.37 Addi-
tionally, it is possible that the extra gene dosage of chromosome 21
contributes to this process; in fact, trisomy 21 has an impact on fetal
hematopoiesis in and of itself.38-40 Fetal livers fromDSpatients have

a two- to threefold increase in megakaryocyte erythroid progenitors,
and trisomic stem cells exhibit alterations of hematopoiesis in vitro
with an increase in multilineage colony-forming potential, an indi-
cator of increased self-renewal.39-41 Supporting this cooperativity
betweenGATA1mutations and trisomy 21 is the specificity ofGATA1
mutations: almost without exception, GATA1 mutations are not
found outside the context of trisomy 21.26 Even in rare cases of non-
DS-AMKL that carryGATA1mutations, somatic copy number ampli-
fications in the DS critical region of chromosome 21 are found to be
present.16

Patients with trisomy 21 have, in essence, an extra copy of many
genes on chromosome 21 (chr21), and overexpression of one or
more has been hypothesized to provide the cellular setting that is
permissible for persistence and eventual transformation of GATA1
mutant cells.Candidategenesonchr21 that contribute toapreleukemic
phenotype include but are not limited to ERG, RUNX1, DYRK1A,
and MIR125B2.42-45 ERG is a member of the ETS transcription gene
family. Increased expression ofERG is seen in somecases ofAMLand
it is also a translocation partner in t(16;21) myeloid leukemia.46,47

ERG has been recently shown to play a role in hematopoietic stem
cells as well as the development of the megakaryocytic lineage, and
furthermore, transgenic expression of ERG and a mutant GATA1
protein in murine fetal liver cells results in a TMD like disease.48-50

Additionally, overexpression of ERG in hematopoietic progenitor
cells by retroviral transduction and subsequent transplantation into
mice results in megakaryoblastic leukemia.44 Another candidate is
the RUNX1 gene, also found on chr21. Perhaps counterintuitively,
RUNX1 expression was found to be lower in DS-AMKL cases in
comparison with non–DS-AMKL in 2 separate cohorts despite the
increase number of genomic copies.51,52 Although themechanism of
this downregulation is not clear, in core binding factor leukemias,
a decrease in RUNX1 activity either by mutation or the transdominant
effect of a translocation involving RUNX1 is associated with increased
leukemic potential. Thus, a downregulation of RUNX1 in DS-AMKL
would be consistent with previous data that a loss of RUNX1 wild-type
function enhances self-renewal andblocks differentiation. In linewith this
hypothesis,RUNX1upregulationwas found toprecedemegakaryocytedif-
ferentiation in human hematopoietic cells and downregulation was seen
whencellsunderwenterythroiddifferentiation, suggesting that it functions
in megakaryocytic lineage commitment.45 A decrease in RUNX1 could
therefore impair differentiation allowing persistence of GATA1 mutant
cells in a more immature state.

Cooperating mutations

Given that only 20% of TMD progresses to leukemia, what then are
the subsequent events or alterations that promote the preleukemic
state to that of a fully transformed malignancy? Exome and targeted

Figure 1. DS-AMKL pathogenesis. In utero truncating

mutations inGATA1 lead to a TMD in the neonatal period

that resolves in the absence of treatment. Residual cells

either undergo apoptosis or acquire additional cooperat-

ing mutations leading to overt AMKL with an average

latency of 3 years. Recurrently targeted genes include but

are not limited to cohesin complex components, CTCF,

the PRC2 complex, and kinase-signaling genes. Of the

26 sequenced DS-AMKL cases that carry mutations in

cohesin, 6 contained mutations in a PRC2 complex gene

as well as a kinase as shown in this example.25 Cohesin

mutation, d; GATA1 mutation, +; kinase mutation, :;

PRC2 mutation, n; Trisomy 21, 333.
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sequencing of 46 genes has provided insight to this question, identifying
recurrently mutated genes in three major categories: cohesin, epigenetic
regulators, and signaling molecules.25 Core cohesin complex compo-
nents including STAG2, RAD21, SMC3, SMC1A, and the cohesin
complex loading protein NIPBL were mutated in 53% of the 49
DS-AMKL cases and none of the 41 TMD cases interrogated. This is
significantly higher than the reported frequency of 6% to 12% in AML,
suggesting these mutations may play a specific role in promoting
megakaryocytic disease.53-55 Additionally, 6 cases carried mutations
in CTCF, a transcriptional repressor and insulator protein. Cohesin
maintains sister chromatid cohesion, allowing for faithful chromosome
segregation and DNA repair.56 In addition, the complex also functions
in transcriptional regulation through DNA looping. CTCF and cohesin
have been found to co-localize extensively throughout mammalian
genomes.57 It has been suggested that together, they play a role in the
establishmentandmaintenanceof topologicaldomains.58Theirdisruption
thus has the potential to significantly disrupt chromatin architecture and,
in doing so, gene expression. Interestingly, GATA1 has been found to
co-occupy genes with the RAD21 cohesin component as well as CTCF
in adult proerythrocytes (796 and 656 target genes, respectively), pro-
viding direct evidence for cooperative effects between these genes.59

EZH2, the catalytic subunit of the Polycomb repressive complex 2
(PRC2) was the most frequently targeted epigenetic regulator in
DS-AMKL. Combinedwith SUZ12, PRC2mutations weremutually
exclusive and collectively occurred in 17 of 49 cases (35%), the
majority of which also contained alterations in CTCF or cohesin. In
erythroid cells, PRC2 is involved in epigenetic silencing of a subset
of GATA1-repressed genes, some of which are associated with progen-
itor cells such as KIT andGATA2.60 Disruption of the repression may
therefore enhance the self-renewal of cells, contributing to the differ-
entiation block provided by the truncated GATA1 protein.

Close to 50%ofDS-AMKLcases carry activating kinasemutations
in JAK1, JAK2, JAK3, MPL, KRAS, or NRAS or loss-of-function mu-
tations in SH2B3. These kinase genes fall broadly into 2 categories:
JAK/signal transducer and activator of transcription (STAT) and RAS
signaling, bothofwhichplaya role inmegakaryopoiesis (Figure2).61,62

Mutations between these 2 signaling cascades are, for the most part,
mutually exclusive, although occasional cases carry a lesion in both.
They result in constituitively activated signaling, leading to a gain of
function as demonstrated by cytokine-independent growth in labora-
tory assays.63-65 Overexpression of one of the DS-AMKL–associated
JAK3-activating mutations has been shown to result in a lethal mega-
karyocyte progenitor expansion in a subset of mice, further supporting
this signaling pathway in AMKL.64

Non–DS-AMKL

RBM15-MKL1

The t(1;22) translocation and its associationwithAMKL in infants was
initially identified in a cohort of 252 children with AML accrued over
a 24-month period.66 In this report, no cases of t(1;22)were identified in
a concurrent pediatric ALL cohort of 2382 cases, and the translocation
was exclusively found in patients with AMKL, all of whom were
,1 year of age. This fusion was very specific for infant AMKL, as the
22 other infants withAMLwho lacked the translocation had a different
phenotypic subtype. Further, the remaining 12 non–DS-AMKL cases
carried no recurring chromosomal abnormalities and were all older.
Others have since confirmed this association, but it was not until
10 years after the initial report that the genes involved in the

translocation were characterized.67-70 Two groups simultaneously
identified the genes on chromosomes 1 and 22 involved in the
translocation: RBM15 (also known as OTT) and MKL1 (also known as
MAL), respectively.67,70Since their initial cloning,muchhasbeen learned
about the function of the genes, and a role of the translocation in inducing
leukemia has been demonstrated in a knockin mouse model.71

MKL1 is a transcriptional coactivator for serum response factor
(SRF), a transcription factor that regulates the expression of genes
involved in cell growth, proliferation, and differentiation, as well
as genes that control the actin cytoskeleton.72 In serum-starved
cells, MKL1 associates with G actin monomers and is retained in
the cytoplasm. Following serum stimulation and Rho-mediated
actin polymerization, G actin pools are depleted and MKL1
translocates to the nucleus, associating with SRF to activate gene
transcription.73,74Duringmurinemegakaryocyte differentiation,Mkl1
is upregulated. Consistent with this, Mkl1-knockout mice have an
increased percentage of megakaryocytic progenitors and a decrease in
mature megakaryocytes as well as dysplastic megakaryocytes.75,76

RBM15 belongs to the Spen family of proteins and encodes a protein
containing 3 amino-terminal RNA recognition motifs that bind to
nucleic acids and aC-terminal SPOCdomain that is thought to interact
with the SMRT and NCoR corepressor complexes, as well as RBPJ,
a transcription factor downstream of Notch signaling.77,78 Rbm15-
knockout mice are embryonic lethal; thus, to evaluate the effect of
this protein on hematopoiesis, conditional-knockout mice have been
generated.79,80 These mice have a block in B lymphopoiesis and
expansion of the myeloid, megakaryocytic, and progenitor
compartments.75,79 The fusion of MKL1 to RBM15 deregulates
the normal intracellular localization ofMKL1 such that it is becomes
constitutively localized to the nucleus, resulting in SRF activation
even in the absence of stimuli.81 In addition to the SRF transcriptional

Figure 2. JAK signaling in megakaryopoiesis. Cytokine binding to its cellular

receptor leads to dimerization and phosphorylation that in turn binds and activates JAK,

leading to downstream activation of RAS signaling and phosphorylation of STAT tran-

scription factors. Receptors and kinases with activating mutations identified in AMKL in-

cludeMPL, PDGFRB, JAK1, JAK2, JAK3, NRAS, and KRAS. Mutations in SH2B3 have

been identified in DS-AMKL. SHC1, adapter molecule; SH2B3, inhibitor of JAK2.
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program, the fusion also aberrantly activates RBPJ transcriptional
targets. Although both transcription programs have been shown to be
deregulated by the fusion gene, the degree towhich they contribute to
transformation is still unclear.

In studies done to address the role of the RBM15-MKL1 chimeric
gene in AMKL, knockinmice were engineered to express the chimeric
oncogene under control of the endogenous Rbm15 promoter.71 These
mice display abnormal fetal and adult hematopoiesis, with a small
fraction developing AMKL between 18 and 24 months of age.71

Using this mousemodel, the authors present data to support RBM15-
MKL1–activatedRBPJmediated transcriptional activity that leads to
upregulation of the Notch pathway.71 Consistent with this, Rbm15
has been shown to modulate Notch-induced transcription in a cell-
type–specificmanner.82Given that only a fraction ofmice developed
overt AMKL at a late age, the authors reasoned that cooperating
oncogenic events were required to induce AMKL. The identification
of such cooperating mutations has proved elusive due to a paucity
of clinical samples with high tumor content for next-generation
sequencing analysis. Nonetheless, careful analysis of one patient
specimen along with a matched germline specimen revealed 12 high
confidence mutations, one of which occurred in MMP8, a matrix
metalloproteinase gene that is expressed in megakaryocyte-erythroid
progenitors.83 Further studies are necessary to determine if this mu-
tation is able to cooperate with the RBM15-MKL1 oncogene.

CBFA2T3-GLIS2

Until recently, with the exception of the RBM15-MKL1 fusion, the
genetic etiology of non–DS-AMKL had remained elusive. A high-
resolution study of DNA copy-number abnormalities and loss of
heterozygosity on pediatric de novo AML samples demonstrated
a very low burden of genomic alterations in all pediatric AML sub-
types with the exception of AMKL.84 AMKL cases were charac-
terized by complex chromosomal rearrangements and a high number
of copy-number abnormalities. We predicted that these lesions
would have functional consequences and therefore performed trans-
criptome and exome sequencing on diagnostic leukemia samples
from 14 pediatric non–DS-AMKL cases as part of the St. Jude
Children’s Research Hospital–Washington University Pediatric
Cancer Genome Project.16 Indeed, we detected structural variations
that resulted in the expression of chimeric transcripts in 12 of 14
samples. Remarkably, in 7 of 14 cases, a cryptic inversion on
chromosome 16 [inv(16)(p13.3q24.3)] was detected that resulted
in the joining of CBFA2T3, a member of the ETO family of nuclear
corepressors, toGLIS2, a member of the GLI family of transcription
factors.16 The gene expression profile of CBFA2T3-GLIS2 AMKL
was distinct from that of AMKL cells lacking this chimeric transcript
and from other genetic subtypes of pediatric AML.16 Furthermore,
the CBFA2T3-GLIS2 fusion gene conferred a poor prognosis,
a finding that has since been confirmed.16,17,85 This fusion was
subsequently reported to also occur at a low frequency in pediatric
cytogenetically normal AML.85 Expression of CBFA2T3-GLIS2 in
Drosophila and murine hematopoietic cells induced bone morphogenic
protein (BMP) signaling, a pathway not previously implicated
in AML, and resulted in a marked increase in the self-renewal
capacity of hematopoietic progenitors.16 The contribution of BMP
signaling to self-renewal in CBFA2T3-GLIS2modified murine he-
matopoietic cells has since been confirmed in colony-formation
assays utilizing Bmp2 and Bmp4 conditional-knockout marrow
(unpublished data).

CBFA2T3-GLIS2–expressing cells remained growth factor de-
pendent in vitro, suggesting that cooperating mutations in growth

factor signaling pathways are likely required for full leukemic
transformation. Moreover, transplantation of CBFA2T3-GLIS2–
transduced bone marrow cells into syngeneic recipients failed to in-
duce overt leukemia, consistent with a requirement for cooperative
mutations.Failure to induce leukemia inmice as a single lesionhas been
previously reported for other chimeric genes that confer the ability to
serially replate in colony-forming assays, including AML1-ETO.86

Overall, the total burden of somatic mutations in our cohort was
significantly lower in theCBFA2T3-GLIS2–expressing cases forwhich
germline DNA was available than in non–DS-AMKL that lacked this
fusion gene (7.263.6 vs 16.665.1,P5 .009).16Of the 15CBFA2T3-
GLIS2–positive cases analyzed to date, 5 carried lesions in either a Janus
kinase (JAK) gene and/or a somatic amplification of the DS critical
region on chromosome 21. However, the majority of cases do not
contain an identifiable cooperating lesion (unpublisheddata).16As these
cases have been interrogated by single-nucleotide polymorphism
arrays, exome, and/or transcriptome sequencing, a more thorough
whole-genome approach may help to further delineate the additional
events required by this fusion oncogene.Whole-genome sequencing
would allow the identification of somatic mutations in noncoding
intergenic regions that are oncogenic. Examples of these types of
lesions includeTERTpromotermutations and superenhancer formation
upstream of the TAL1 oncogene, as identified in melanoma and T-cell
acute lymphoblastic leukemia, respectively.87,88

Lower-frequency fusion events

In addition toCBFA2T3-GLIS2,;8% of our pediatric cohort carried
the previously described NUP98-KDM5A fusion gene (Figure 3).16

In parallel with our efforts, de Rooij and colleagues evaluated a
separate non–DS-AMKL cohort for NUP98 fusion events by split-
signalfluorescence insituhybridizationand foundasimilar frequency

Figure 3. Key genomic events in non–DS-AMKL. A total of 142 pediatric

non–DS-AMKL cases were analyzed for the presence of fusion gene events by

transcriptome sequencing, reverse-transcription polymerase chain reaction (RT-PCR),

or split-signal fluorescence in situ hybridization. A total of 96 samples were

evaluated for the presence of the MLL-PTD by RT-PCR and 46 samples were

evaluated for the presence of somatic GATA1 single-nucleotide variations and

insertion/deletion by exome and/or Sanger sequencing. The proportion of MLL-PTD

and GATA1 mutant cases was calculated based on the total number of samples

evaluated for each of the lesions. Patients carrying GATA1 mutations did not have

stigmata of DS or evidence of mutant reads in germline DNA, suggesting they are

not mosaics. Cases that did not undergo transcriptome sequencing and were

negative by RT-PCR for CBFA2T3-GLIS2, NUP98-KDM5A, RBM15-MKL1, andMLL

rearrangements (MLLr) are designated as unknown. “Other fusion” includes single

cases of each of the following: GATA2-HOXA9, NIPBL-HOXB9, MN1-FLI1, HLXB9-

ETV6, FUS-ERG, and RUNX1-CBFA2T3. Data compiled from Gruber et al16 and de

Rooij et al.17
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of 11%.17 NUP98, a nucleoporin family member with transactivation
activity, fused to KDM5A, an H3K4me3-binding PHD finger, was
initially described in adult AML.89,90 When introduced into murine
bone marrow, this fusion oncogene induces a myeloid differentiation
arrest and mice develop AML with an average latency of 69 days.91

Wang and colleagues demonstrated this fusion to be bound to
H3K4me3 mononucleosomes, showing the PHD finger plays a
role in targeting the fusion to the genome.91 Interestingly,microarray
analysis identified several polycomb proteins carrying H3K4me3
marks to be transcriptionally upregulated in response to the fusion,
whereas housekeeping genes with constitutive H3K4me3 marks
remained unchanged. Affected polycomb targets confirmed by
chromatin immunoprecipitation include genes upregulated in MLL
rearranged leukemia such as HOXA5, HOXA7, HOXA9, HOXA10,
MEIS1, andPBX1.91 Furthermore, the authors demonstrate a block in
PRC2 binding, the complex that antagonizes polycomb proteins
through transcriptional repression of target genes. Therefore, the
NUP98-KDM5A fusion is able to prevent silencing of critical
transcription factors that play a role in maintaining hematopoietic
progenitor status, similar toMLL gene rearrangements. It is perhaps
not surprising then thatMLL-AF9 andMLL-AF10 fusion events have
also been detected in non–DS-AMKL.17 As these lesions are also
found in other subtypes of AML, there are likely additional factors
contributing to the development of megakaryoblastic disease. Co-
operating mutations, the target cell, and the microenvironment
all have the potential to direct lineage during the process of
transformation.

In addition to the previously described NUP98-KDM5A fusion,
we identified 3 novel fusion genes expressed in a single case each:
GATA2-HOXA9, MN1-FLI1, and NIPBL-HOXB9 (Figure 3). Each
of these chimeric transcripts are predicted to encode a fusion protein
that would alter signaling pathways known to play a role in normal
hematopoiesis, suggesting that these lesions are “driver” mutations
that directly contribute to the development of leukemia. Several of
the genes involved in these translocations play a direct role in normal
megakaryocytic differentiation (GATA2 and FLI1), have been pre-
viously shown to be involved in leukemogenesis (HOXA9,MN1, and
HOXB9), or are highly expressed in hematopoietic stem cells or
myeloid/megakaryocytic progenitors.91-96 Genome-wide approaches
in a larger AMKL cohort are necessary to determine if these fusion
genes are recurrent. Current efforts in our laboratories include ex-
periments to determine the ability of these fusion genes to enhance
self-renewal, block differentiation, and induce leukemia in murine
model(s) with a focus on the mechanism whereby these processes
take place.

Conclusion

Pediatric AMKL is a heterogeneous disease comprising chimeric
oncogenes or truncating GATA1 mutations that enhance self-renewal
and block myeloid differentiation. Cooperating mutations that
contribute to transformation include amplifications of chromosome
21 (either somatic or constitutional) as well as single-nucleotide
variations and insertion/deletion in cohesin complex genes, CTCF,
epigenetic regulators, and kinase genes. In ;35% of pediatric non–
DS-AMKL cases, the genetic alterations leading to themalignancy
are unknown, warranting further comprehensive genomic studies
(Figure 3). CBFA2T3-GLIS2 is the most frequent fusion event with
a distinct biology in addition to a poor prognosis, occurring in 18% of
patients. Development of targeted agents that inhibit the fusion
directly, or critical self-renewal pathways upregulated as a result of
the fusion, such as BMP, may provide therapeutic benefit. The
diversity ofCBFA2T3-GLIS2–negative non–DS-AMKLcases suggest
that alternative less targeted approaches, such as the promotion
of megakaryoblast differentiation, should be evaluated in an attempt
to improve outcomes across patients with a wide spectrum of
mutations.97,98 The presence of JAK/STAT- and RAS-pathway–
activatingmutations provides a rationale for theuseof kinase inhibitors,
although their role as cooperating hits warrants caution, as these agents
may be additive to existing treatment but not sufficient to eliminate
disease on their own.
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