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To the editor:

Haploinsufficient loss of multiple 5q genes may fine-tune Wnt signaling in del(5q)
therapy-related myeloid neoplasms

Wnt signaling in hematopoietic cells and the bone marrow microen-
vironment plays a critical role in maintaining the pool of hematopoietic
stem cells (HSCs) and in regulating differentiation.1,2 Wnt signaling is
tightly regulated by the interplay of multiple cytoplasmic components,
with Wnt activity being highest in HSCs and lower in more mature
myeloid cells.1 Moreover, gradedWnt signaling has differential effects,
with high activation leading to bone marrow failure and less profound
activation leading to HSC expansion.1,3-5 Wnt activation has also been
implicated in self-renewal of leukemia stem cells and is associated with
a poorer outcome in acute myeloid leukemia (AML).6

However, our understanding of Wnt signaling in hematopoietic
cells is incomplete; a holistic view is needed to understand how
alterations to Wnt pathway components affect disease processes.
This wasmost recently illustrated in a paper inBlood byKühnl et al,7

who examined the role of the putative tumor suppressor CXXC5,
a CXXC-type Zn-finger protein that interacts with disheveled (DVL)

and impairs Wnt signaling in leukemia cell lines. Contrary to
expectations, in AMLs, downregulation of CXXC5 expression
via epigenetic silencing was associated with upregulation of cell
cycling genes, coordinated with downregulation of genes implicated
in leukemogenesis (eg,WT1, GATA2, KMT2A/MLL, DNMT3B, and
RUNX1), and a better prognosis. The latter observation likely reflects
the prevalence of Core Binding Factor AMLs in this series, which
have low expression of CXXC5.

In previous studies, we and others have drawn attention to the role
of loss of several genes on 5q, APC (5q22),8 and CSNK1A1 (5q32),4

encoding negative regulators of theWnt pathway, in the pathogenesis
of therapy-related myeloid neoplasms (t-MN) or high-risk myelodys-
plastic syndromes (MDS)/AML with a del(5q), as well as MDS with
an isolated del(5q).9 The interstitial deletions of 5q are typically large,
as virtually all patients have loss of 5q14-33, and confer haplo-
insufficient expression of many genes in the deleted interval.
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CXXC5, which maps within the deleted interval (5q31.2) and is
downregulated in myeloid disorders with a del(5q),10 can be added
to this growing list.

We posited that deregulation of the Wnt pathway extends beyond
haploinsufficiency for these 3 genes on 5q. We used the Molecular
Signature Database to investigate protein-coding genes that mapped to
chromosome 5, and found that 17 genes (APC, CAMK2A, CAMK4,
CD14, CDX1, CSNK1A1, FBXW11,MAPK9, NEUROG1, NKD2,
PIK3R1, PPP2CA, SKP1, TCF7, TERT, VCAN, and WNT8A) are
statistically enriched in the Pathway Interaction Database b-catenin
nuclear pathway, Kyoto Encyclopedia of Genes and Genomes Wnt
signaling pathway, and/or BIOCARTA GSK3 pathway (false
discovery rate , 0.002). Moreover, CTNNA1, HDAC3, SMAD5,
and the PCDHG@ cluster genes on 5q have also been implicated
as regulators of the Wnt signaling pathway. All of these genes are
expressed in AMLs (SRA061655), and mostmapwithin the deleted
segment of 5q (Figure 1A) and either encode proteins involved in
regulating the CTNNB1 destruction complex or are CTNNB1
transcriptional targets (Figure 1B).

Database for Annotation, Visualization and Integrated Discovery
pathway analysis of significantly deregulated probe sets (limma with
false discovery rate, 0.2) between del(5q) and non-del(5q) t-MN cases
(GSE39991) revealed that there is a significant downregulation of
several genes encoding negative regulators (APC,CSNK1A1, SKP1,
SMAD4, NFAT, PPP2CA, and TP53), and upregulation of genes
encoding positive regulators (CCND1,CSNK2A1,CREBBP,EP300,
FRAT2, FZD2, PRKACA, RAC1) of Wnt signaling, consistent with
activation of this pathway (Figure 1C). Downregulation of several of
the Wnt signaling genes (APC, CSNK1A1, PPP2CA, and SKP1) is
likely a result of hemizygous deletion of 5q. In addition, DVL2 and
TP53, 2 additional pathway components, were downregulated, likely
because of their location on 17p13.1, commonly deleted in del(5q)
patients.

The mechanism by which haploinsufficiency of 5q genes leads to
clonal dominance is poorly understood. Homozygous loss of mul-
tiple negative regulators of Wnt signaling would likely lead to
profound activation and apoptosis of HSCs.1 In contrast, we propose
that haploinsufficient loss of multiple Wnt regulators as a result of

Figure 1. The long (q) arm of chromosome 5 is highly enriched in Wnt signaling genes. (A) The location of genes on chromosome 5 encoding proteins within the Wnt

signaling pathway. Dashed horizontal lines indicate the segment typically deleted in myeloid neoplasms with a del(5q). Green and red text identifies genes encoding known

negative and positive regulators of Wnt/CTNNB1 activity, respectively. Blue text identifies CTNNB1 target genes. (B) Wnt signaling pathway illustrating that del(5q) genes

encode multiple negative (green) or positive (red) key regulators of Wnt signaling. CTNNB1 target genes on 5q are identified in blue text. DVL (orange) maps to 17p13.1,

a region commonly lost in del(5q) t-MN. (C) Color-coded heat maps of significantly (FDR , 0.2) downregulated (green) or upregulated (red) WNT signaling pathway genes

(Kyoto Encyclopedia of Genes and Genomes) in t-MN patients with a del(5q) (n 5 10) vs non-del(5q) (n 5 28) (GSE39991). In both groups, one-third of patients had t-MDS,

and two-thirds had t-AML. TP53 deletion and/or mutations were detected in 9/10 (90%) del(5q) and 3/25 (12%) non-del(5q) patients. Abnormalities of chromosome 7 were

detected in 5/10 (50%) del(5q) and 9/28 (32%) non-del(5q) patients. The non-del(5q) group included patients with 18 (2/28; 7%), KMT2A/MLL (4/28; 14%), or RUNX1 (2/28,

7%) translocations, and other complex karyotypes (8/29; 28%). Three patients had a normal karyotype. The downregulation of genes encoding negative (green) and

upregulation of positive (red) Wnt pathway regulators in del(5q) patients is consistent with an active Wnt signature. Genes on chromosome 5 are underlined.
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a del(5q) maywork in concert to finely tuneWnt activity, promoting
expansion of HSCs, ultimately giving rise to myeloid neoplasms
and contributing to clonal expansion. Adding further complexity to
Wnt signaling regulation, the positive and negative regulators of
Wnt signaling may have epistatic effects. Wnt signaling is also
deregulated in MDS with an isolated del(5q), suggesting that addi-
tional genetic abnormalities influence the disease phenotype.11

It will be important for future studies to quantitate the level of
Wnt/CTNNB1 activation in all myeloid neoplasms with a del(5q)
and to validate the Wnt pathway as a candidate therapeutic target.
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