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To the editor:

Is there more than one way to unpack a Weibel-Palade body?

Endothelial cells respond to vascular damage by secreting concatemers
of the adhesive glycoprotein von Willebrand factor (VWF) to capture
blood platelets and promote hemostasis. VWF is contained in large
rod-shaped secretory granules called Weibel-Palade bodies (WPBs),
and how VWF is stored in and released from these organelles is of
considerable interest.1 Recently, a novel mechanism was described for
VWF release in which an actomyosin ring forms around the WPB
several seconds after its fusion with the plasma membrane to squeeze
VWF from the WPB.2 This new mechanism was described in exper-
iments using the potent secretagogue phorbol 12-myristate 13-acetate
(PMA), andhas received considerable attention.3-5However, themech-
anism of action of PMA differs in several key respects from that of
physiological secretagogues, such as histamine, that elevate intra-
cellular free calcium ion concentrations ([Ca21]i). PMA action
is characterized by a slow onset (tens of seconds to minutes) but
a protracted (hours) period of WPB fusion that occurs without an
increase in [Ca21]i. VWF is released slowly from theWPB after fusion
with the plasmamembrane (tens of seconds), and secretion is prevented
by inhibition of protein kinase C,6 myosin IIB (MyoIIB),2 or actin
disruption or stabilization.7 In contrast, histamine (or ionomycin)
triggers a rapid (,1 second) but transient (10-30 seconds) burst in
WPB exocytosis.8 Ca21-mediated VWF secretion is not blocked by
protein kinase C inhibition6 or actin disruption,9 and early optical
studies indicated that the initial expulsionofVWFoccursonasubsecond
time scale (see Erent et al8 and references therein). On the basis of these
observations we asked whether the actomyosin process represents
a general mechanism for VWF release from WPBs. Our new data
suggest not.

First, live-cell imaging offluorescent VWF–enhanced greenfluo-
rescent protein (VWF-EGFP) or VWF-propeptide-EGFP (VWFpp-
EGFP) expulsion from individual WPBs shows this process to be
fast (Figure 1Ai-ii). Second, dual-color imaging of endothelial cells
coexpressing VWFpp-EGFP or VWFpp-mCherry and either TagRFP-
actin (Figure 1Bi-ii) or MyoIIB-GFP (Figure 1Ci-ii) revealed no
evidence of redistribution or accumulation of actin or MyoIIB to
WPBsundergoingexocytosis.Third,MyoIIB inhibitionbyblebbistatin
did not prevent histamine-evoked VWF secretion (Figure 1D), and we
have reconfirmed that actin disruption or stabilization fails to prevent
Ca21-mediatedVWF secretion. Becausemyosin IImay subtly regulate

the opening of secretory granule fusion pores (reviewed in Porat-
Shliom et al3), we also performed amperometry studies but found no
major effects of MyoIIB inhibition on WPB fusion pore formation
or expansion (Figure 1E). Together, the data suggest that expulsion
of VWF from WPBs during Ca21-driven WPB exocytosis does not
involve actomyosin.

What other mechanism might account for fast actomyosin-
independent VWF expulsion during Ca21-mediated exocytosis?
Studies of mucins, large multimeric glycoproteins closely related
to VWF, suggest that the subsecond expulsion of these charged
polymers from mucin granules is driven by ionic fluxes and water
entry (discussed in Erent et al8). VWF, like mucins, is stored at
high concentration, and the condensation and aggregation of these
proteins are facilitated by charge shielding by cationic species
including hydrogen ion (H1) and Ca21. The acidic lumen of the
WPB is particularly important for VWF expulsion. Loss of H1 fol-
lowing fusion pore formation precedes postfusion changes inWPB
morphology and rapid VWF expulsion, and both processes can
be blocked simply by lowering the external pH close to that of the
prefusion mature WPB.10 Thus, VWF expulsion from WPBs during
histamine- or Ca21-mediated exocytosis utilizes a beautifully simple
mechanism that depends, in essence, on the chemistry of VWF and the
intracellular processes that ensure its condensation and aggregation for
storage at high concentration.

Is this mechanism likely to be of physiological relevance? Fol-
lowing injury, endothelial cells must function rapidly to minimize
blood loss. The earliest event within these endothelial cells will be an
increase in [Ca21]i produced either by cell damage, physicomechan-
ical stimulation, or acute activation by physiological mediators gen-
erated locally at the injury site (eg, thrombin, histamine, fibrin, adenine
nucleotides, and peptidoleukotrienes). Together, these mediators
ensure rapidVWF expulsion to the endothelial cell surface to capture
platelets and facilitate hemostasis.

Clearly, there is more than one way to unpack a WPB. Further
studies will be needed to clarify the specific physiological conditions
subserved by actomyosin-dependent and -independent VWF delivery
to the endothelial cell surface.
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Figure 1. Fast actomyosin-independent VWF expulsion from WPBs during Ca21-mediated exocytosis. In the absence of flow, secreted VWF concatemers form irregular-

shaped patches on the cell surface and disperse slowly into solution. Importantly, the initial expulsion of VWF fromWPBs and the subsequent dispersal from the cell surface constitute

separate processes. (Ai) Montages of individual WPB exocytotic events taken from live-cell videos of histamine-stimulated human umbilical vein endothelial cells (HUVECs)

expressing VWF-EGFP (top) or VWFpp-EGFP (bottom). Images were acquired at 10 frames per second. The first frame in which an increase in EGFP fluorescence due to fusion was

detected is set to t5 0 seconds. Bars represent 2 mm. (Aii) Histograms of the pooled times, from t5 0 seconds to expulsion, indicated by formation of irregular patches of cell surface

VWF-EGFP (gray bars) or VWFpp-EGFP (black bars) from individual WPBs after stimulation with histamine or ionomycin. For VWF-EGFP, n5 543 fusion events (100 mM histamine,

n 5 183, 10 cells; 1 mM ionomycin, n 5 310, 11 cells); for VWFpp-EGFP, n 5 402 fusion events (100 mM histamine, n 5 92, 7 cells; 1 mM ionomycin, n 5 310, 13 cells). (Bi) Dual-

color imaging of a single HUVEC coexpressing VWFpp-EGFP and TagRFP-actin. Bar represents 10 mm. (Bii) Upper: Image montage of a single WPB undergoing exocytosis during

ionomycin stimulation; EGFP fluorescence (top), RFP fluorescence (middle), merge image (bottom). Images were acquired at 30 frames per second, and selected frames (times

indicated) are shown. Bar represents 2 mm. Lower: Mean fluorescence intensity (FI) within the color-coded regions of interest indicated on the first frame of the upper panel top row,

plotted against time. WPB fusion is associated with a sharp increase in EGFP fluorescence due to EGFP-dequenching.8 Note that there was no evidence of RFP-actin accumulation

prior to or during WPB exocytosis (n5 136 fusion events, 12 cells). (Ci-ii) Same as for panel Bi-ii, but in HUVECs coexpressing MyoIIB-GFP and VWFpp-mRFP. Note that there was

no evidence of MyoIIB-EGFP accumulation prior to or during WPB exocytosis (n 5 24 fusion events, 5 cells). Also note that RFP fluorescence is not pH sensitive, and

exocytosis, therefore, is marked only by a fall in WPB associated RFP fluorescence. (D) Blebbistatin (Blebb) treatment (25 mM for 20 minutes; red bars) does not alter

basal (2), histamine-evoked (100 mM; 1), or ionomycin-evoked (1 mM; 1) VWF secretion. Plots show data pooled from 3 independent experiments each carried out in

triplicate (mean 6 standard error of the mean). (E) Examples of individual WPB current spikes recorded by amperometry in control (black) and Blebb-pretreated (red)

HUVECs. The kinetics of current spike foot signals and main spike rise times provide information about fusion pore formation and expansion. Mean (6 standard error of

the mean) pre–foot spike parameters, including foot signal duration (tfoot; control: 13.72 6 3.31 ms, n 5 216, 44 cells; Blebb: 9.85 6 1.09 ms, n 5 256, 50 cells) and total

foot signal charge (Qfoot; control: 0.057 6 0.013 pC; Blebb: 0.0636 6 0.0147 pC), were no different (Student t test). Mean main spike parameters, including spike rise time (trise;

control: 3.22 6 0.17 ms, n 5 317 spikes, 44 cells; Blebb: 3.26 6 0.15 ms, n 5 384 spikes, 50 cells), peak amplitude (Imax; control: 29.14 6 1.31 pA; Blebb: 27.96 6 1.11 pA),

and spike decay time (tfall; control: 15.08 6 1.09 ms; Blebb: 13.64 6 0.84 ms), were not different (Student t test). a.u., arbitrary unit; GFP, green fluorescent protein; RFP, red

fluorescent protein.
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