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Hemolytic-uremic syndrome (HUS) is a

thrombotic microangiopathy that is char-

acterized by microangiopathic hemolytic

anemia, thrombocytopenia, and renal

failure. Excess complement activation

underlies atypical HUS and is evident

in Shiga toxin–induced HUS (STEC-HUS).

This Spotlight focuses on new knowl-

edgeof the roleofEscherichiacoli–derived

toxins and polyphosphate in modulating

complementandcoagulation,andhowthey

affect diseaseprogression and response to

treatment.Suchnewinsightsmayimpacton

current and future choices of therapies for

STEC-HUS. (Blood. 2015;126(18):2085-2090)

Introduction

Hemolytic-uremic syndrome (HUS) is a thrombotic microangi-
opathy (TMA) with microvascular and arteriolar wall thickening,
swollen endothelial cells, and fibrin- and platelet-rich thrombi
which compromise blood supply to end organs, particularly the
kidney.1,2 Fragmentation of erythrocytes occurs from shear
stress across partially obstructed vessels. Thrombocytopenia is
caused by platelet consumption in clots and the reticuloendo-
thelial system.

HUS is classified as either typical or atypical. Typical HUS is
most often acquired from food contaminated with enterohemor-
rhagicEscherichia coli that produce Shiga-like toxins (Stx)3 and is
thus referred to as Shiga toxin–induced HUS (STEC-HUS). Other
microorganisms have also been implicated (,5%-10%).4 After
exposure to STEC-HUS, an incubation period of;3 days ensues,
followed by 2 to 5 days of watery diarrhea, nausea, and fever
(;30%). Gastroenteritis, with bloody diarrhea proceeds in;50%
to 70%, and is usually self-limited, but rarely is complicated with
massive hemorrhage and/or bowel perforation.5 A minority of STEC-
exposed patients subsequently developHUS (5%-25%), and this often
has serious long-term sequelae.6 Approximately 25% of STEC-HUS
patients develop chronic renal insufficiency. Neurologic involvement
(eg,, strokes, seizures) is evident in 10% to 20% of cases and these
account formuch of the 1% to 5%mortality. Other organsmay also
be involved.

The remaining noninfective cases of HUS are referred to
as atypical (aHUS). aHUS is chronic and recurring with .50%
developing end-stage renal failure, and has an early mortality of
10% to 25%. There is overwhelming evidence that aHUS is caused
by excess complement activation.7 Thus, most patients respond
well to the complement inhibitor, eculizumab. In contrast, specific
therapies for STEC-HUS are lacking.4

Recent advances in our understanding of complement and
coagulation and the role of E coli–derived toxins (Stx and serine
protease autotransporters of Enterobacteriaceae [SPATEs]) and
polyphosphate in modulating these pathways, as discussed in this
Spotlight, may help explain why STEC-HUS is less responsive to
eculizumab, and hopefully aid in the rational design of STEC-HUS
therapies.

The complement system

Complement comprises over 30 soluble and membrane-bound
proteins, coordinated to eliminate pathogens and damaged cells.8

Complement activation proceeds via 3 pathways: classical (CP),
lectin (LP), and alternative (AP). The CP is triggered by antigen-
antibody complexes recognized by C1q, and the LP by sugars rec-
ognized primarily bymannose-binding lectin. This causes activation
of proteases that cleave C4 and C2 to form the C4b2a LP/CP C3
convertase which proteolyses C3 into C3b and C3a. The AP con-
stitutively generates fluid-phase C3b-like C3H2O. This binds to fac-
tor B (FB) that is cleaved by factor D (FD), yielding C3(H2O)Bb.
C3(H2O)Bb cleaves C3, yielding C3b that is necessary to form
surface-bound C3 convertase, C3bBb. With more C3b, substrate
specificity of the convertase shifts to C5, generating C5a and C5b.
C5b triggers assembly of the C5b-9 membrane attack complex
(MAC) that lyses target pathogens/cells.

Complement is tightly regulated.Themajorfluid-phaseAP-negative
regulator, factor H (FH), competes with FB binding to C3b, acts
as a cofactor for factor I (FI) cleavage/inactivation of C3b, and
accelerates convertase decay. FH also interacts with thrombo-
modulin and von Willebrand factor (VWF), augmenting FI in-
activation of C3b.9-11Membrane glycoproteins, CD55 and CD46,
also promote convertase decay.12 Anaphylatoxins C3a and C5a
are modulated by their receptors13 and/or degraded by plasmin,14

matrix metalloproteinases,15 and activated thrombin-activatable
fibrinolysis inhibitor (TAFIa).16 MAC formation is suppressed
by CD59, mortalin/GRP75,17 clusterin, and vitronectin. Recently, we
showed that polyphosphate also interferes with MAC assembly.18

aHUS: molecular defects causing excess
complement activation

Mutations of genes that encode complement components, or anti-
bodies that alter their function, account for ;60% to 70% of pa-
tients with inherited or sporadic aHUS. Affected genes and associated
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frequencies include FH (20%-30%), FI (5%-10%), CD46 (10%-15%),
thrombomodulin (3%-4%), C3 (2%-10%), and FB (1%-4%).19-21

Hybrid forms of FH and FH-related proteins (3%-5%) have reduced
activity,22 and autoantibodies against FH (5%-10%) reduce its
binding to endothelium or C3b.23 A mutation in diacylglycerol
kinase-e is a rare cause of aHUS, but its link to complement is not
well established.24,25

Spiraling activation of complement
and coagulation

Complement overactivation, as occurs in aHUS, undermines vasculo-
protective properties via several mechanisms26 (Figure 1). C3a/C5a
stimulate secretion of cytokines, promote leukocyte adhesion27 and

tissue factor (TF) expression, suppress thrombomodulin, and induce
P-selectin andVWF release. C3a/C5a also activate platelets,28 causing
granule secretion, exposure of P-selectin, and release of procoagulant
microparticles. P-selectin recruits leukocytes and platelets and is a
C3b receptor29 for AP convertase assembly, amplifying comple-
ment activation. C5b-7 activates TF on monocytes,30 and sC5b-9
activates platelets and endothelial cells, induces VWF and cytokine
release, and promotes prothrombinase assembly and release of TF-
expressing microparticles.31 Thrombin loops back to liberate C5a
and generate a more damaging MAC.32,33

Defects in processing VWF are linked to another TMA, throm-
botic thrombocytopenia purpura.34 But VWF also contributes to
complement activation, and likely participates in HUS-associated
thrombosis. When secreted, VWF is anchored to endothelium
as ultra-large (ULVWF) multimeric strings.35 These are normally
cleaved by a disintegrin andmetalloproteinasewith a thrombospondin

Figure 1. Complement activation and TMA. The scheme highlights some of the mechanisms by which unregulated complement activation provokes the development of

microvascular thrombi via unrelenting activation/damage to the endothelium and platelet. With excess complement activation, the abundant anaphylatoxins C3a and C5a bind

to their widely expressed cognate receptors. Endothelial cells and platelets can thus be activated, whereupon intracellular proinflammatory and procoagulant signaling

cascades are recruited (eg, nuclear factor kB [NFkB], phospho-ERK 1/2 [pERK1/2]). In endothelial cells, these upregulate expression of adhesion molecules (intercellular

adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule [VCAM-1], E-selectin), the release of proinflammatory cytokines (eg, monocyte chemotactic protein 1 [MCP-1],

interleukin-6 [IL-6]), exposure of TF, suppressed expression of the anticoagulant/anticomplement thrombomodulin (TM), and reduced release of nitric oxide (NO). P-selectin,

FH, and ULVWF multimers are secreted from endothelial cell Weibel-Palade bodies, and they are released from a-granules and/or the cytoplasm (for FH) of platelets.

P-selectin and ULVWF facilitate platelet adhesion/aggregation, but also are receptors for C3b binding, allowing assembly of the AP C3 and C5 convertases (C3bBb and

C3bBbC3b, respectively). These further amplify complement activation, with release of more C3a and C5a. Downstream, complement activation yields terminal pathway

complexes (C5b-7, sC5b-9) which induce TF exposure, endothelial membrane “flipping” to support prothrombinase assembly, and the transformation of prothrombin (II) to the

procoagulant, platelet activating and proinflammatory protease, thrombin (IIa). Thrombin and other procoagulant enzymes (eg, factor Xa) also feed back to cleave C5, fueling

further activation of complement. C3a, C5a, and cell-released chemokines also recruit inflammatory cells, which in turn exacerbate endothelial damage via the release of

reactive oxygen species and cytokines (eg, tumor necrosis factor a [TNFa], high-mobility group box 1 [HMGB1]). Activated platelets also release their granule contents which

are primarily procoagulant and proinflammatory. Platelet and endothelial microparticles, released in response to exposure to C3a and C5a, carry complement factors and

express TF to further promote coagulation and complement. ULVWF multimers support platelet adhesion/aggregation and the formation of thrombi, as well as further

activation of complement. In aHUS, eculizumab interferes with cleavage of C5 to C5b and C5a, and effectively reverses the unrelenting, self-propelling activation of the

cascades that otherwise result in the TMA.
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type 1 motif, member 13 (ADAMTS13) into smaller, less procoagu-
lant forms. FH binds toVWFand also reducesmultimers,36,37 limiting
complement and platelet activation/aggregation. Loss-of-function
FH mutations that cause aHUS would facilitate formation of platelet-
rich thrombi, and allow unregulated complement activation with
generation of procoagulant products.

Overall, it is not surprising that a drug that restrains complement is
effective for aHUS. Eculizumab interfereswithC5 cleavage toC5a and
C5b-938; its efficacy in aHUS is.80%.39

STEC-HUS and complement activation

Does complement activation occur in STEC-HUS? If so, does
it explain the TMA? Most patients infected with STEC exhibit
heightened complement activation,40 with increased generation of
C3a, Bb, and sC5b-9, and C3 and C9 deposits on platelet-leukocyte
aggregates and microvesicles.41-43 Complement activation there-
fore likely contributes to endothelial damage and thrombosis in
STEC-HUS. Clinical validation is, however, lacking, as there have
not been controlled studies of eculizumab for STEC-HUS. In 2
small reports of affected children with neurologic impairment,
benefit for some appeared to be derived from eculizumab.44,45 A
similar result was reported for a small number of French adults.46

However, review of its use in the large European outbreak did not
reveal any benefit.47 Controlled, prospective studies are needed.
Nonetheless, the stunning success of eculizumab in aHUS has not
been seen with STEC-HUS, suggesting that modulating comple-
ment, by itself, is inadequate.

Shiga toxin: direct effects on
multiple pathways

The most frequent cause of STEC-HUS is E coli strain 0157:H7,
but many others have been identified.48,49 Stx is the key virulence
factor.50-52 Upon ingestion, STEC colonize the gut, adhere to epi-
thelial cells, destroy the brush border villi, and cause diarrhea.52 Stx
is secreted through the epithelium where it can contact blood, but
only trace amounts of circulating free toxin are found. Rather, Stx
preferentially binds to platelets, neutrophils, monocytes, and possibly
erythrocytes.53,54 Transfer of toxin to cells in target tissues is achieved
via binding to globotriaosylceramide (Gb3) and globotetraosylcer-
amide (Gb4), expressed by endothelial cells of the intestine, brain
and kidney, podocytes, mesangial cells, and renal tubular epithelial
cells.55 An intriguing alternative virulence mechanism has been
described in which Stx is internalized by circulating blood cells,
and then released in microvesicles, which in turn are transferred
into glomerular and peritubular capillary endothelial cells via Gb3-
independent pathways for uptake by renal cells.56 Whatever the
mechanism, intracellular Stx interferes with ribosomal apparatus
and blocks protein synthesis.57 Stx also induces release of P-selectin
and VWF from platelets and endothelial cells, which further acti-
vates platelets and neutrophils, induces neutrophil extracellular
trap formation,58 and amplifies the AP29,59 (Table 1). It interferes
withFH, rendering the endotheliummore vulnerable tocomplement.60

Stx also stimulates release of C3- and C9-bearing microparticles
from platelets and monocytes41,42 and in animal models, causes
AP-dependent microvascular thrombosis, apoptosis of renal tubular
cells, and podocyte loss and dysfunction.61,62

Thus, at some stage(s) of the syndrome, Stx directly or indirectly
activates complement and, in turn, coagulation. However, Stx has
many complement-independent effects (Table 1). Upon internal-
ization, Stx triggers proinflammatory signals,55 promotes chemo-
kine release, upregulates leukocyte adhesion molecules and TF,
suppresses endothelial TF pathway inhibitor and thrombomodulin,
induces platelet-neutrophil interactions,41 promotes release of TF-
bearing microparticles,63 and induces neutrophil production of reac-
tive oxygen species.64 Stx also interferes with ULVWF cleavage by
ADAMTS1365 and FH,66 enhancing platelet adhesion/aggregation.
Overall, Stx uses multiple means to promote thrombosis, not all of
which are sensitive to anticomplement interventions.

SPATES: aiding Stx in crime

In addition to Stx,.25 SPATEs are produced by pathogenic strains
of E coli67 and their activities may further explain the variable
response of STEC-HUS to eculizumab. SPATE proteases cleave/
inactivate chemokines and adhesion molecules, disrupt leukocyte
chemotaxis, transmigration, and activation, and dampen inflam-
matory and prothrombotic responses.68 Several SPATEs have re-
cently been shown to modulate complement (Table 1). For example,
the serine protease Pic is secreted by strains of HUS-inducing
STEC, including 0104:H4. Pic suppresses complement activation by
proteolysing C2, C3/C3b, and C4/C4b.68,69 Pic also synergizes with
FI/FH to inactivateC3b, anddes-arginatesC3a, rendering it less active.
EspP is a serine protease strongly associated with E coli 0157:H7.70

EspP dampens complement activation by proteolysing C3/C3b and
C5.71 Interestingly, EspP also inactivates coagulation factor V and
a2-antiplasmin, contributing to mucosal bleeding and facilitating
bacterial invasion. StcE is a metalloprotease that is also secreted by
E coli 0157:H7.72,73 Correlated with high virulence,74 StcE cleaves
C1-esterase inhibitor (C1-INH), but enhances its capacity to neu-
tralize C1s and MASPs. StcE also binds to host cell surfaces (eg,
platelets, endothelial cells) and tethers C1-INH so that it can protect
the pathogen and host cell by subverting complement activation.

By circumventing immune destruction, several SPATE pro-
teases confer a survival advantage to the STEC, favoring persistence,
invasion, andmigration. Therapeutic interventions that suppress com-
plement might therefore not be of benefit.

Polyphosphate

Beyond SPATEs, E coli and other bacteria rely on multiple mech-
anisms to evade complement.75,76 Polyphosphate (polyP) is an
anionic, linear polymer of phosphate that is found in all cells.77-79

Identified first in cytoplasmic granules, it is localized in several cell
compartments, and, in E coli, is prominent in the membrane.80 In
prokaryotes, polyP exhibits prosurvival properties as anenergy source,
a metal ion chelator, and a molecular chaperone, and is essential for
microorganism pathogenicity.81,82 In mammals, polyP promotes
coagulation at several steps in the cascade.83,84 We recently deter-
mined that polyP also dampens complement activation (Table 1),
a finding in line with reports that a mutant form of Neisseria
meningitidis with excess polyP, is protected against complement-
mediated killing.85

PolyP destabilizes C5b,6, and reduces binding of the resultant
C5b-7 and C5b-8 to the target membrane.18 Thus, polyP in the
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membrane of STEC likelyprovides a barrier againstMACassembly.80

PolyP binds toC1-INH18 and enhances its activity, suppressing theCP
and LP.86 PolyP also binds to FH,18 although the functional conse-
quences are unknown. Interestingly, like polyP, C1-INH and FH are
released from activated platelets, where theymay coat and protect host
cells87 from complement activation, convertase assembly, and MAC
binding/integration. Similar to C1-INH, FH may also be recruited to
pathogen surfaces for immune evasion.76 We speculate that released
polyP binds to FH, C1-INH, and/or other cationic proteins on the
surface of host cells and pathogenic E coli, providing an additional
barrier against complement-mediated damage. Once again, this may
help explainwhy a complement inhibitor alonemaynot be sufficient to
resolve the manifestations of STEC-HUS.

Conclusions

For aHUS, where disturbances in complement regulation define a
“starting point” for amplification of cascades that lead to TMA,
intervening with eculizumab is effective and currently the favored
first-line treatment. The situation is more complex for STEC-HUS.
The virulence factor Stx(s), which is requisite for development of
STEC-HUS, has complement-activating properties, but also triggers
endothelial injury, podocyte and renal tubular damage, platelet activa-
tion and thrombosis, via pathways that likely vary during the course of
the syndrome. It follows that preventing C5 cleavage with eculizumab
may not be uniformly effective in abrogating the associated TMA.
Furthermore, pathogenic E coli that cause HUS also use multiple
means to prolong survival and enhance virulence, partly by encapsu-
lating its toxin in microvesicles, synthesizing polyP, and secreting
SPATEs along with Stx(s). These either evade or dampen complement-
dependent immune-mediated killing, and again may help explain

the suboptimal response to eculizumab. They also point to potential
shortcomings of usingHUSmodels that rely solely onStx induction,50,51

and underline the importance of seeking alternative therapeutic
approaches. In that respect, efforts are under way to delineate the
pathways by which the toxins traffick to target organs, and to char-
acterize factors synthesized and/or secreted by enterohemorrhagic
E coli. These are uncovering potential strain-specific targets to
reduce pathogen persistence, replication and adhesion, biofilm
formation, and Stx invasion.88 Closer to the clinic, vaccines and
neutralizing anti-Stx antibodies are in development,89-91 and these
will hopefully reduce the incidence and severity of STEC-HUS.
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Table 1. Summary of diverse biological effects of Stx, SPATEs, and polyphosphate that modulate activation of complement and
coagulation during STEC-HUS

Summary of diverse biological effects of Stx, SPATEs, and polyphosphate

Stx

Direct effects that promote complement

activation

• Induces release and cell surface expression of P-selectin (receptor for C3b)

• Induces release of VWF (site for AP convertase assembly)

• Interferes with functions of FH

• Induces release of C3- and C9-bearing microparticles from platelets and monocytes

Direct effects that induce endothelial damage

and activation of coagulation

• Activates endothelial cells, platelets, monocytes, and neutrophils

• Induces release of reactive oxygen species from neutrophils

• Induces expression of TF

• Suppresses expression of TM and TF pathway inhibitor

• Induces endothelial expression of leukocyte adhesion molecules (e.g., ICAM-1, VCAM-1)

• Induces platelet-neutrophil interactions

• Interferes with cleavage of ULVWF by ADAMTS13 and FH

• Promotes release of TF-bearing microparticles

• Induces proinflammatory cytokine (e.g., TNF, IL-8) release by endothelial cells and monocytes

SPATEs

Pic • Proteolyses and inactivates C2, C3/C3b, C4/C4b

• Des-arginates C3a

EspP • Proteolyses and inactivates C3/C3b, C5

• Inactivates coagulation factor V and a2-antiplasmin

StcE • Cleaves C1-INH and increases its neutralization of C1s and MASP

• Binds to host/pathogen surfaces and tethers C1-INH

PolyP • Promotes coagulation activation at several steps in cascade

• Destabilizes C5b,6 and interferes with MAC assembly on host and pathogen

• Binds to C1-INH and increases its neutralization of C1s and MASP

• Binds to FH (function unknown)

ICAM, intercellular adhesion molecule; IL, interleukin; TM, thrombomodulin; TNF, tumor necrosis factor; VCAM, vascular cell adhesion molecule.
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López-Trascasa M, de Córdoba SR, Sánchez-
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24. Lemaire M, Frémeaux-Bacchi V, Schaefer F, et al.
Recessive mutations in DGKE cause atypical
hemolytic-uremic syndrome. Nat Genet. 2013;
45(5):531-536.
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