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To the editor:

GM-CSF stimulates granulopoiesis in a congenital neutropenia patient with loss-of-function
biallelic heterozygous CSF3R mutations

Severe congenital neutropenia (CN) is a heterogeneous disease char-
acterized by an absolute neutrophil count (ANC) below 500 cells
per microliter and recurrent, life-threatening bacterial infections.
Treatment with recombinant human granulocyte colony-stimulating
factor (rhG-CSF) was shown to increase ANCs in the majority of
patients and dramatically improves the quality of life.1 In a previous
study, we demonstrated major differences in responses to G-CSF and
granulocyte macrophage CSF (GM-CSF) in patients with CN.2 In the
majority of these patients, GM-CSF failed to induce neutrophil
granulocyte counts but did induce monocytosis and eosinophilia.2

Manyunderlying genetic defectshave been identified.Among themare
mutations in the ELANE, HAX1, and G6PC3 genes and many others.3

A recent study identified patients with biallelic loss-of-functionCSF3R
mutations whowere considered to have a novel subtype of CN.4 These
patients did not respond to G-CSF therapy, and no treatment options
were available for them. Heterozygous acquired mutations in the
CSF3R gene were also reported in CN patients.5

In this study, we identified a CN patient who did not respond
to G-CSF treatment. Three days after birth, the female patient was
diagnosed with CN with blood ANC below 250 cells per microliter.
White blood cell differential counts were as follows: 6% neutrophils,
7% monocytes, 4% eosinophils, and 83% lymphocytes. A bone
marrow (BM) evaluation at 3 weeks of age revealed granulopoietic
hypoplasia with reduction of all stages but no maturation arrest or in-
crease in blasts. Erythropoiesis, lymphopoiesis, andmegakaryopoiesis
were normal. No antineutrophil antibodies were detected. Mutational
screening revealed no mutations in ELANE, HAX1, or G6PC3. Cyto-
genetic evaluation revealed a normal karyotype.

Sequencing of the CSF3R gene showed 2 heterozygous mu-
tations in this patient that revealed a compound heterozygous
mode of inheritance of CSF3R mutations. In one allele intronic
mutation, c.998-2A.T leads to the skipping of exon 9 and intro-
duces an aberrant sequence downstream of exon 8 and a shift in
the reading frame. In the second allele, we detected a stop-codon
(p.W547*)mutation in the extracellular part of theG-CSF receptor

(G-CSFR) (Figure 1A). The p.W547*mutation was inherited from
the father and the c.998-2A.T mutation was inherited from the
mother.

No expression of G-CSFR was detected on the patient’s neutro-
phils or monocytes in contrast to blood cells from the healthy donors
(Figure 1B). Granulocyte macrophage CSFR (GM-CSFR) expres-
sion on CD331 cells from the patient’s BM was similar to that ob-
served for BM cells from healthy donors. In addition, we plated the
patient’s BM mononuclear cells in a semisolid medium supple-
mented with 10 ng/mL G-CSF, 10 ng/mL GM-CSF, or a cytokine
cocktail containingG-CSF, GM-CSF, interleukin-3, stem cell factor,
and erythropoietin, and cultured them for 14 days. No granulocyte
colony-forming unit (CFU-G), granulocyte macrophage CFU, or
macrophage CFU colonies were found in plates supplemented with
10 ng/mL rhG-CSF. In sharp contrast, all types of colonies grew on
plates containing either rhGM-CSF or the cytokine cocktail.

G-CSF treatment of this patient was initiated at the age of
3 weeks, but ANCs failed to increase with doses up to 110mg/kg per
day. At the age of 7 months, treatment with GM-CSF (6 mg/kg per
day) was initiated. In the first year of GM-CSF treatment, peripheral
blood ANCs ranged from 860 to 3744 cells per microliter, enabling
the GM-CSF dose to be reduced to 3 mg/kg per day twice a week
(Figure 1C). To evaluate whether GM-CSF was still required to main-
tain sufficient ANCs, GM-CSF administration was stopped with pro-
phylacticadministrationof oral antibiotics.Becauseof thedevelopment
of otitis media, GM-CSF treatment was restarted at a dose of 3 mg/kg
twice a week. This dose was sufficient to maintain the patient’s ANC
above 1000 cells per microliter and kept her free from infections. The
patient has remainedonGM-CSF treatment for the last 12yearswithout
any adverse events.

In summary, we provide the first demonstration of the success-
ful treatment of a CN patient harboring biallelic loss-of-function
CSF3Rmutations who did not respond to G-CSF by administering
GM-CSF. These findings suggest that all CN patients who do
not respond to G-CSF should be screened for germ-line CSF3R
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mutations, and treatment with GM-CSF should be considered. We
propose that our patient is a member of a novel genetic subtype of
CN, termed CN-CSF3R, which has also been suggested by Triot
et al.4
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Figure 1. Biallelic CSF3Rmutations detected in the

CN patient leading to the absence of G-CSFR sur-

face expression and G-CSF unresponsiveness.

(A) Schematic representation of the wild-type G-CSFR

and the mutant G-CSFR in the CN patient. The wild-

type G-CSFR is composed of an extracellular part, a

transmembrane region, and an intracellular domain.

The extracellular part of the receptor includes an im-

munoglobulin (Ig)-like module, the cytokine receptor

homology domain, and 3 fibronectin type III modules.

Upon G-CSF binding to its receptor, a 2:2 tetrameric

complex is formed. The intracellular domain is essen-

tial for the transduction of proliferation and differenti-

ation signals. Both mutations identified in the CN patient

alter the G-CSFR molecular composition either by

creating a premature stop-codon or by shifting the codon

frame and introducing spurious amino acids. (B) Ab-

sence of G-CSFR expression on the surface of the

patient’s granulocytes and monocytes. The patient and

healthy donor blood samples were stained with an

allophycocyanin (APC)-conjugated anti-G-CSFR anti-

body, and surface G-CSFR expression on the patient’s

granulocytes and monocytes was measured by flow

cytometry. No surface expression of G-CSFR protein

was detected. Cells from healthy donors were used as a

positive control (ctrl). Representative histograms show-

ing G-CSFR staining in the CN patient and healthy

donor are depicted. (C) ANC and response to GM-

CSF/G-CSF in the CN patient during the course of

treatment. After 7 months of G-CSF administration, the

patient still failed to produce neutrophils in an amount

sufficient to protect against recurrent bacterial infection.

After GM-CSF administration, the patient’s neutrophil

count rose significantly to more than 1000 cells per

microliter (range, 860-3744 cells per microliter), allowing

the GM-CSF dose to be reduced to 3 mg/kg twice a

week. After 6 months of successful treatment with GM-

CSF, the patient was again prescribed G-CSF. Because

G-CSF therapy produced no effect on neutrophil count,

it was replaced with GM-CSF therapy (data not shown).
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