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However, these reports preceded the definition of NK cells and our
understanding of the molecular basis of PNH, prompting reassess-
ment. Mosaicism in PNH' allows side-by-side functional compar-
isons of GPI" and GPI™® NK cells within individual patients,
enabling the assessment of NK cell activity on a per cell basis
(Figure 1; supplemental Figure 1, available on the Blood Web site).
Despite reports of impaired activity,** the GPI-deficient NK cells were
proficient at target cell-induced granule exocytosis (Figure 1A-B;
supplemental Figure 1). Thus, early findings associating reduced NK
cell activity with reduced LGL numbers rather than intrinsic cellular
activity are correct.* The absolute number of NK cells (and more
variably, other lymphocytes) is indeed reduced in PNH’; in our
cohort of 39 patients, two thirds had NK cell counts below the reference
range (Figure 1C), and NK cell numbers were not significantly corre-
lated with neutrophil, monocyte, or platelet counts (supplemental
Figure 2). The basis for reduced NK cell numbers in PNH is unclear,
although this might be related to impaired chemotactic or homeostatic
mechanisms, as we recently reported.® Although the activity of
GPI-deficient NK cells is unimpaired, a reduction in absolute
numbers of NK cells will reduce NK cell activity in the blood as
a whole.

Clearly, PNH should not be classified as a functional NK cell defi-
ciency (NKD). Classical NKD is characterized by ~1/10 the normal
number of NK cells, and counts in most of our PNH patients exceeded
this (Figure 1C). Furthermore, the term NKD is reserved for where
“the impact upon NK cells need represent the major immunological
abnormality in the patient.”® In PNH, all hematopoietic lineages are
affected because of the presence of PIGA mutations in hematopoietic
stem cells." More compelling is the clinical phenotype; the defining
feature of NKD is the heightened susceptibility to viruses,® which has
not been observed in PNH.”*"'® Instead, infection in PNH is bacterial in
origin'® and likely to be associated with neutropenia secondary to un-
derlying bone marrow failure or associated with use of eculizumab,
which increases the risk of infection with encapsulated bacteria
normally eliminated by terminal complement components.' In sum-
mary, the low numbers of NK cells in PNH affect overall cytotox-
icity, but this defect is not severe enough to manifest as heightened
susceptibility to viral infection as seen in NKD.
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To the editor:

Comparison of transplantation with reduced and myeloablative conditioning for children with

acute lymphoblastic leukemia

Allogeneic stem cell transplantation (SCT) for patients with acute
lymphoblastic leukemia (ALL) is mostly undergone with myelo-
ablative conditioning (MAC) and it could be the major cause of short- or

long-term complications such as endocrinologic disorders includ-
ing hypogonadism or growth hormone-deficient short stature.'~
In recent years, SCT with reduced-intensity conditioning (RIC)
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Figure 1. Probability of OS and cumulative incidence of relapse of children who underwent transplantation at CR1, CR2, and advanced stages with RIC and MAC

regimen. (A) Probability of OS. (B) Cumulative incidence of relapse.

regimens was introduced for children who have pretransplant mor-
bidity or are unable to tolerate a MAC regimen.* Although it has the
possibility of reducing posttransplant late toxicities,® the exact
clinical implications of a RIC regimen are still unclear. Therefore,
in this study, we retrospectively compared the transplant outcomes
with RIC and MAC regimens for children with ALL to determine
the feasibility of SCT with a RIC regimen using the Transplant
Registry Unified Management Program (TRUMP), a nationwide
database established by the Japan Society for Hematopoietic Cell
Transplantation (JSHCT).

We analyzed 1334 children with ALL who underwent allogeneic
SCT as the first transplant from January 2000 to December 2010 in
Japan; they consisted of 1201 patients with a MAC regimen and 133
patients with a RIC regimen according to the intensity of the
conditioning regimen. The definition of RIC or MAC was based on
the internationally recognized criteria, in which MAC is defined as
fractionated total body irradiation (TBI) of =8 Gy, a single TBI of
=5 Gy, or busulfan of =8 mg/kg or =280 mg/m>, and other regimens
are categorized as RIC.” Patients were transplanted at first complete
remission (CR1, n = 568), second complete remission (CR2, n = 374),
or advanced stages (third or further remission and relapse, n = 371),
and there was no significant difference between RIC and MAC in this
regard (P = .125). The type of SCT according to the stem cell source
was related bone marrow transplantation (n = 413), related periph-
eral blood stem cell transplantation (n = 89), unrelated bone marrow
transplantation (n = 446), or unrelated cord blood transplantation
(n = 386); the serological HLA disparity between donor and patient
was none (n = 816) or mismatched (n = 486) for the graft-versus-host
direction, and the number of mismatched transplants was significantly
higher in RIC patients (P = .007).

At a median follow-up of 765 days, 5-year overall survival (OS)
rates of patients with RIC and MAC were 52.4% and 56.1% (P = .525)
and they were 75.2% and 73.4% at CR1 (P = .991), 50.5% and
56.7% at CR2 (P = .747), and 26.7% and 30.3% at more advanced
stages (P = .683), respectively (Figure 1A). Five-year relapse-free
survival rates were 43.0% and 52.4% in RIC and MAC (P = .070)
and were 62.3% and 68.2% at CR1 (P = .249), 46.6% and 54.0%
at CR2 (P = .520), and 14.9% and 27.0% at more advanced stages
(P = .295), respectively. Relapse was observed in 434 patients
(54 with RIC and 380 with MAC), which included 125 in CR1, 110
in CR2, and 194 in advanced stages at SCT. The cumulative in-
cidence of relapse rates at 5 years were 43.1% in RIC and 33.6% in
MAC (P = .020). The 5-year relapse rates of RIC and MAC at each
disease status of SCT were 30.9% and 23.3% at CR1 (P = .129),
36.7% and 30.4% at CR2 (P = .548), and 63.5% and 52.8% at more
advanced stages (P = .211), respectively (Figure 1B). Treatment-
related mortality (TRM) among all patients was observed in 196
patients (18 with RIC and 178 with MAC) and the cumulative in-
cidences of TRM at 5 years were 15.7% and 15.3% with RIC and
MAC, respectively (P = .953). Neutrophil engraftment with absolute
neutrophil count of =500/mm?> was obtained in 944 patients (95 with
RIC and 849 with MAC) and the cumulative incidence rates of neu-
trophil engraftment at day 100 were 91.7% with RIC and 96.2% with
MAC (P = .498). After multivariate analysis adjusted by age at diag-
nosis, gender of patient, disease status at SCT, stem cell source, RIC/
MAC, HLA compatibility, TBI, and cytogenetics, transplant out-
comes with RIC and MAC regimens were not significantly different in
OS (hazard ratio [HR] = 1.10, 95% confidence interval [CI] = 0.84-1.46,
P = 488), relapse-free survival (HR = 1.25, 95% CI = 0.96-1.61,
P = .093), relapse rates (HR = 1.11, 95% CI = 0.80-1.54, P = .530),
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TRM (HR = 0.89, 95% CI = 0.55-1.44, P = .621), and neutrophil
engraftment (HR = 0.99, 95% CI = 0.79-1.26, P = .983).

In conclusion, the transplant outcomes of children with ALL who
were given an RIC regimen in allogeneic SCT were not significantly
different from those with an MAC regimen. Because this is a registry-
based retrospective study and the number of patients with an RIC
regimen is small, the results should be interpreted with caution.
We need to proceed to a prospective study to prove the feasibility
of SCT with an RIC regimen in children with ALL in order to
reduce the transplant-related toxicities, especially in terms of the
late effects after SCT.
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