
preparation of blood smears or bone marrow aspirates and could be
used not only in specialized treatment centers but also in community
hospitals faced with caring for Ebola virus-infected patients, an event
that we must anticipate will recur in the future. Treatment centers in
West Africa without reliable electricity to power ovens for heat inac-
tivation of slides could disinfect slides with methanol fixation and/or
bleach treatment of stained slides with coverslips prior to shipment else-
where for clinical diagnosis or research. Heat inactivation could then be
applied to the slides at a central laboratorywithmore advanced facilities.
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To the editor:

Natural killer (NK) cell function in paroxysmal nocturnal hemoglobinuria: a deficiency of
NK cells, but not an NK cell deficiency

Treatment of the glycosylphosphatidylinositol (GPI) anchor defi-
ciency paroxysmal nocturnal hemoglobinuria (PNH) has been
revolutionized by the use of the anti-C5 antibody eculizumab,
which blocks complement-mediated hemolysis and the associated
pathology.1,2 In addition to complement susceptibility, GPI anchor
deficiency alters cellular function with the potential to further con-
tribute to disease. For example, defective natural killer (NK) cell

activity in PNH was first described .3 decades ago.3,4 NK cell defi-
ciencies are associated with susceptibility to infection,5,6 sug-
gesting that NK function in PNH should be analyzed in more detail.
Here we show that functional defects in NK cell activity in PNH result
from reduced NK cell numbers rather than cell intrinsic defects.

Early PNH studies showed that impaired NK cell activity was
associated with reduced large granular lymphocyte (LGL) counts.3,4

Figure 1. NK cell activity in PNH. (A) NK cell granule exocytosis in PNH. NK cells were purified from blood samples from healthy controls (HCs) or PNH patients using indirect

selection reagents from Miltenyi. NK cell degranulation was assayed using a modification of a standard method to allow detection of GPI1 and GPI-deficient NK cells using fluorescent

aerolysin (FLAER) (supplemental Text).8 Briefly, purified NK cells were cocultured with K562 target cells (for 4 hours). Cocultures were then stained with anti-CD56 antibody to identify

NK cells, FLAER to distinguish GPI-deficient and GPI1 cells, and anti-CD107 to identify degranulated NK cells. This analysis is from 1 PNH patient and 1 HC (gating on the purified

CD561NK cells) with the data from the cohort shown in panel B. We also compared the mean fluorescence intensity of CD107 staining in paired GPI-deficient and GPI1 cells within each

patient. This demonstrated a significant increase in CD107 display on the GPI-deficient NK cells (supplemental Figure 1). (B) Summary of NK cell degranulation activity from 15 PNH

patients and 8 HCs. The box plot shows the percentage of GPI-deficient (GPIneg) and GPI1 NK cells that have degranulated in response to target cells. The range (whiskers), median

(horizontal line), and interquartile range (box) are shown. The percentage of CD1071NK cells was not statistically significant (NS) between any 2 groups according to the Mann-Whitney

test. Comparison of the percentage of CD1071NK cells within individual patients showed no significant differences between matched GPI1 and GPIneg NK cells (supplemental Figure 1).

(C) Number of total NK cells in 39 PNH patients (cells per microliter). Patient values ranged from 3 to 725 cells per microliter (mean, 100 cells/mL). A European reference range (77-427

cells/mL) is shown by the dotted lines. The patients with NK cell counts within the normal range were unremarkable in terms of gender, age, or treatment (cyclosporin or eculizumab).

Furthermore, there was no correlation between the NK cell counts and the absolute numbers of other cell types (supplemental Figure 2). Peripheral blood samples used in this work were

collected after informed consent in accordance with the Declaration of Helsinki.
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However, these reports preceded the definition of NK cells and our
understanding of the molecular basis of PNH, prompting reassess-
ment. Mosaicism in PNH1 allows side-by-side functional compar-
isons of GPI1 and GPIneg NK cells within individual patients,
enabling the assessment of NK cell activity on a per cell basis
(Figure 1; supplemental Figure 1, available on the BloodWeb site).
Despite reports of impaired activity,3,4 theGPI-deficientNKcellswere
proficient at target cell-induced granule exocytosis (Figure 1A-B;
supplemental Figure 1). Thus, early findings associating reducedNK
cell activity with reduced LGL numbers rather than intrinsic cellular
activity are correct.4 The absolute number of NK cells (and more
variably, other lymphocytes) is indeed reduced in PNH7; in our
cohort of 39 patients, two thirds hadNK cell counts below the reference
range (Figure 1C), and NK cell numbers were not significantly corre-
lated with neutrophil, monocyte, or platelet counts (supplemental
Figure 2). The basis for reduced NK cell numbers in PNH is unclear,
although this might be related to impaired chemotactic or homeostatic
mechanisms, as we recently reported.8 Although the activity of
GPI-deficient NK cells is unimpaired, a reduction in absolute
numbers of NK cells will reduce NK cell activity in the blood as
a whole.

Clearly, PNH should not be classified as a functional NK cell defi-
ciency (NKD). Classical NKD is characterized by ;1/10 the normal
number of NK cells, and counts in most of our PNH patients exceeded
this (Figure 1C). Furthermore, the term NKD is reserved for where
“the impact upon NK cells need represent the major immunological
abnormality in the patient.”6 In PNH, all hematopoietic lineages are
affected because of the presence of PIGA mutations in hematopoietic
stem cells.1 More compelling is the clinical phenotype; the defining
feature of NKD is the heightened susceptibility to viruses,5,6 which has
not been observed in PNH.7,9,10 Instead, infection in PNH is bacterial in
origin10 and likely to be associated with neutropenia secondary to un-
derlying bone marrow failure or associated with use of eculizumab,
which increases the risk of infection with encapsulated bacteria
normally eliminated by terminal complement components.1 In sum-
mary, the low numbers of NK cells in PNH affect overall cytotox-
icity, but this defect is not severe enough to manifest as heightened
susceptibility to viral infection as seen in NKD.
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To the editor:

Comparison of transplantation with reduced and myeloablative conditioning for children with
acute lymphoblastic leukemia

Allogeneic stem cell transplantation (SCT) for patients with acute
lymphoblastic leukemia (ALL) is mostly undergone with myelo-
ablative conditioning (MAC) and it could be themajor cause of short- or

long-term complications such as endocrinologic disorders includ-
ing hypogonadism or growth hormone-deficient short stature.1,2

In recent years, SCT with reduced-intensity conditioning (RIC)
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