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Posttranslational modifications of histone

proteins represent a fundamental means

to define distinctive epigenetic states and

regulate gene expression during develop-

ment and differentiation. Aberrations in

various chromatin-modulation pathways

are commonly used by tumors to initiate

andmaintain oncogenesis, including lym-

phomagenesis. Recently, increasing evi-

dence has demonstrated that polycomb

group (PcG) proteins, a subset of histone-

modifying enzymesknown tobe crucial for

B-cell maturation and differentiation, play

a central role in malignant transformation

of B cells. PcG hyperactivity in B-cell lym-

phomas is caused by overexpression or

recurrent mutations of PcG genes and

deregulation of microRNAs (miRNAs) or

transcription factors suchasc-MYC,which

regulatePcGexpression. InterplaysofPcG

and miRNA deregulations often establish

a vicious signal-amplification loop in lym-

phoma associated with adverse clinical

outcomes. Importantly, aberrantenzymatic

activities associated with polycomb de-

regulation, notably those caused by EZH2

gain-of-function mutations, have provided

a rationale for developing small-molecule

inhibitorsasnovel therapies. In this review,

we summarize our current understanding

ofPcG-mediatedgenesilencing, interplays

of PcG with other epigenetic regulators

such as miRNAs during B-cell differentia-

tion and lymphomagenesis, and recent ad-

vancements in targeted strategies against

PcG as promising therapeutics for B-cell

malignancies. (Blood. 2015;125(8):1217-1225)

Introduction

Histone posttranslational modifications represent a fundamen-
tal mechanism for regulating DNA accessibility in various
DNA-templated processes such as gene transcription.1 Dysregu-
lation of chromatin-modifying mechanisms is one of the cen-
tral oncogenic pathways in human cancer,1-3 including B-cell
malignancies.4-6

Among various chromatin-modifying factors, polycomb group
(PcG) proteins are critical for controlling gene expression, main-
taining repressive chromatin states, and defining cellular identities
during development.7,8 PcG proteins act in multimeric complexes
known as polycomb repressive complexes (PRCs). Two major PcG
complexes exist in mammalian cells: PRC1 and PRC2. Biochemi-
cally, PRC1 employs an E3 ligase, RING1A or RING1B, to induce
monoubiquitination of histone H2A, lysine 119 (H2AK119ub1)
(Figure 1), a reaction that requires essential cofactors such as BMI1.8

PRC2 utilizes an enzymatic subunit, enhancer of zeste homolog
2 (EZH2) or related EZH1, to methylate histone H3, lysine 27
(H3K27; Figure 1)7; other PRC2 subunits (EED and SUZ12) and
accessory cofactors such as JARID2 and polycomb-like harbor
either DNA- or histone-binding activities to modulate PRC2 ac-
tivity and mediate its targeting or spreading on chromatin.7-9

H2AK119ub1 and H3K27 trimethylation (H3K27me3) are prom-
inent histone markers associated with gene silencing, indicating a
causal role of PcG-mediated enzymatic activity in transcriptional
regulation.7,8 H3K27me3 also coexists with the gene-activation–
associated trimethylation of histone H3, lysine 4 (H3K4me3) at
“bivalent domain genes” to maintain genes in a repressed but poised
conformation, which can be subsequently activated or stably re-
pressed according to lineage-specific differentiation programs.1

In a simplistic hierarchical model, PRC2 acts upstream of PRC1
as H3K27me3 serves as a “docking” site for CBX, a chromodomain-
containing protein (Figure 1A), which then recruits PRC1 to induce
H2AK119ub17,8 (Figure 1B). However, more recently, data have
demonstrated that PRC1 recruitment is both PRC2 dependent and
PRC2 independent.10,11 Furthermore, recent studies show that PRC1
can act upstream of PRC2. In this case, a PRC1 variant utilizes
KDM2B, a CxxC-domain protein, to bind to the nonmethylated
cytosine guanine dinucleotide sequence where PRC1-induced
H2AK119ub1 recruits PRC2 via an unknown mechanism12-14

(Figure 1C). EED, a PRC2 subunit, also physically interacts with
PRC1, thus linking PRC2 to PRC1.15 Overall, PRC2 and PRC1
cooperate and enforce gene silencing via positive-feedback loops.

Increasing evidence has revealed crucial roles of PcG proteins
in myriad biological processes, including self-renewal, differen-
tiation, cell-cycle control, senescence, and gene expression and
imprinting,7,8,16,17 all of which have been linked to oncogenesis when
deregulated. Notably, PcG genes were found mutated in B-cell
malignancies. B lymphoma Mo-MLV insertion region 1 homolog
(BMI1, also known as polycomb group ring finger 4 or PCGF4
[Figure 1])wasoriginally isolated as ageneupregulated inmurineB-cell
lymphomas18; recurrent gain-of-function mutations of EZH2 were
identified in germinal center (GC) B-cell lymphomas.4,19,20 Here, we
focus on deregulations of PcG and cofactors during the initiation and
development of B-cell malignancies. We also discuss the interplays
between PcG and other epigenetic regulators such as microRNAs
(miRNAs), histone deacetylases (HDACs), and DNAmethytransferases
(DNMTs). Finally, we summarize recent progress in development of
PcG-specific inhibitors as novel therapies of B-cell malignancies.
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Biological function of PcG proteins in B-cell
development and lymphomagenesis

The development and differentiation of B-cell lineages initially
occur with progenitor B-cell expansion and V(D)J gene rearrange-
ment, a DNA recombination process that produces clonally unique,
immunoglobulin variable regions for antigen recognition.21 Upon
antigen stimulation, B cells undergo activation through proliferation,
somatic hypermutation, and antibody class switching, which occur
in the GCs of secondary lymphoid tissues. A proliferative feature
of GC B lymphocytes, with concomitant attenuation of their DNA
damage repair function and ongoing somatic hypermutation, in-
creases the likelihood of oncogenic mutation, genomic instability,
and subsequent lymphomas. B-cell development is tightly controlled
by genetic and epigenetic mechanisms, including DNA methyl-
ation, histone modification, chromatin remodeling,22 and noncoding
RNAs.23 During normal B-lymphocyte differentiation, expression
of PRC1 and PRC2 genes shows a restricted, stage-specific pattern.
BMI1 and its PRC1 partners are primarily detected among resting
B cells in the GC mantle zone and in nondividing centrocytes of the
GC follicles; these PRC1genes are silenced in proliferating follicular
centroblasts, which then express the PRC2 genes instead.24-26 In
contrast, lymphomas generally lose such a mutually exclusive ex-
pression pattern, and altered expression of PRC1 and PRC2 genes
is a general theme in lymphomas, including diffuse large B-cell
lymphomas (DLBCL),27 follicular lymphomas (FLs), and mantle
cell lymphomas (MCLs).28 These findings suggest essential regu-
latory roles of PRC1 and PRC2 in both normal B-lymphocyte de-
velopment and lymphoma pathogenesis.

PRC1 in B-cell development
and lymphomagenesis

BMI1

Bmi1 (also known as PCGF4 [Figure 1]) was initially discovered
from a locus activated by viral integration in murine lymphomas.18

BMI1 controls a range of B-cell developmental genes, including
lineage master regulators Ebf1 and Pax5.29 Bmi1 deficiency causes
conversion of the “bivalent domain” states associated with Ebf1 and
Pax5 to a monovalent active state, resulting in their premature
expression and accelerated lymphoid differentiation.29 BMI1 also
directly represses expression of the tumor suppressors p16Ink4a/
p19Arf and p15Ink4b; therefore, BMI1 overexpression prevents
c-MYC–mediated apoptosis andwas sufficient to induce lymphoma,
a process further accelerated by c-MYC.18,30 Furthermore, BMI1
represses the proapoptotic genes Noxa and Bim, supporting its pro-
survival role in B-cell development and lymphomas.31,32 In human
B-cell lymphomas, BMI1 overexpression is common in almost
all subtypes.33 Expression of BMI1 alone or in combination with
EZH2 characterizes aggressive B-cell lymphomas with unfavorable
prognosis.27,33,34 Recently, a novel t(10;14)(p12;q32) translocation
was identified in chronic lymphocytic leukemia and MCLs leading
to IgH-BMI1 rearrangement and BMI1 overexpression35; IgH-BMI1
rearrangement was acquired during tumor high-grade transforma-
tion and correlated with chemoresistance.35 Transcriptome analyses
of multiple cancers found that BMI1-driven gene signatures define
a phenotype of cancer stem cells,36 suggesting that BMI1 confers
malignant cells with features of cancer stem cells, the rare cancerous
subpopulations that confer drug resistance and regeneration abilities.16,37

Indeed, BMI1-mediated repression of p16Ink4a/p19Arf was shown
to be essential for self-renewal of hematopoietic stem cells.38

Overall, these studies support critical roles of BMI1 in promoting
lymphoma progression and conferring therapy resistance.

Other PRC1 factors

Evidence exists showing direct involvement of other PRC1 com-
ponents in B-cell lymphomas. CBX7 (Figure 1) was found highly
expressed in GC lymphocytes and GC-derived FLs, where its ele-
vated expression was correlated with c-MYC expression and an
aggressive feature.39 Lymphoid-specific overexpression of Cbx7
in mice initiated lymphomagenesis and cooperated with c-MYC to
produce aggressive B-cell lymphomas.39 Similar to BMI1, Cbx7
overexpression was linked to repression of p16Ink4a/p19Arf.39

RING1A is associated with the risk of non-Hodgkin lymphomas40

and high expression of RING1B detected in lymphomas such
as DLBCLs and Burkitt lymphoma.41 However, in the absence of
p16Ink4a, RING1B deficiency accelerated lymphomagenesis
through upregulation of cyclin D2 and Cdc6.42 Thus, PRC1 harbors
both oncogenic and tumor-suppressive roles in different contexts,
which is reminiscent of PRC2’s dual functions described among
different hematopoietic malignancies.43-45

PRC2 in B-cell development and
lymphomagenesis

EZH2 is highly expressed in lymphoid progenitors and required
for efficient V(D)J recombination in pro–B cells.46 EZH2 is silenced

Figure 1. Cooperation of PRC2 and PRC1 in epigenetic silencing of genes.

PRC2 catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3)

(A), which is recognized and bound by CBX proteins such as CBX7, a PRC1

subunit, to subsequently recruit PRC1 for induction of monoubiquitination of

histone H2A at lysine 119 (H2AK119ub1)7,8 (B).Conversely, recent studies

show that a variant form of PRC1 can act upstream of PRC2 to initiate formation

of the polycomb domain; in this case, H2AK119ub1 serves as a PRC2 re-

cruitment mechanism (C).12-14 In addition, EED is also shown to interact to

PRC1 physically.15 CpG, cytosine guanine dinucleotide; Me, trimethylation;

Ub, ubiquitination.
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in resting GCB cells but massively upregulated when GCB cells get
activated and undergo rapid proliferation and immunoglobulin af-
finity maturation26,47; EZH2 blocks the DNA damage response
pathways, allowing cells to survive the somatic hypermutation
during antibody maturation.26 Expression of EZH2 strongly asso-
ciates with B-cell malignancies, with its high levels correlated with
the Ki67 labeling index, lymphoma aggressiveness, and unfavorable
prognosis.33,34 The highest percentage of EZH2 positivity was found
in 100% of Burkitt lymphomas, 87.5% of grade-3 FLs, and 85.7%
of DLBCLs. Multivariate survival analysis identified EZH2 as the
strongest prognostic predictor of inferior outcomes of MCLs.27

SUZ12 expression was also found to be restricted to proliferating
lymphoid cells during development and at high levels in MCLs, in
comparison with its general absence in nontumorous mantle zone
cells.48

The importance of PRC2 in lymphomagenesis is further strength-
ened by recent identification of recurrent missense mutations in
EZH2, with the most prevalent ones altering a single residue in the
catalytic domain, Y641 (the numeration of EZH2 amino acids based
on a short isoform of EZH2 [National Center for Biotechnology
Information accession Q15910.2]), among ;10% to 20% of GC-
derivedB-cell lymphomas suchasDLBCLsandFLs.4,5,49TheseEZH2
mutations are likely to be early lesions during lymphomagenesis.6,49

Biochemically, EZH2Y641 mutations alter substrate specificity of
EZH2.19,20,50 Being a catalytic subunit of PRC2, EZH2 induces
sequential mono-, di-, and trimethylation of H3K27, with the highest
methylation status most strongly associated with gene silencing.51

Wild-type EZH2 has a greater catalytic efficiency for conducting
monomethylation of H3K27 (H3K27me1) and a diminished efficiency
for subsequent reactions (mono- to di- and di- to trimethylations).19,20,50

In contrast, lymphoma-associated EZH2Y641X mutations (X means
Asn/Phe/Ser/His/Cys) show the exactly opposite substrate specific-
ity, displaying limited ability to induceH3K27monomethylation yet
extremely high efficiency catalyzing theH3K27 di- to trimethylation
reaction.19,20,50 Such enzymatic differences between wild-type and
EZH2Y641X mutant protein suggest that EZH2Y641X mutations must
occur heterozygously in lymphomas, which is indeed the case in hu-
man patients,4,5,49 allowing for EZH2Y641X to cooperate with wild-
type EZH2 to induce a global increase in H3K27me319,20,50 and
aberrant transcriptional alteration. Later on, 2 additional somatic
mutations, EZH2A677G and EZH2A687V, were identified at a lower
frequency (;1% to 3%) among GC B-cell lymphomas,5,49,52,53 and
they demonstrate enzymatic properties distinct from EZH2Y641X

mutants.50,52-54 EZH2A677G and EZH2A687V possess the almost equally
enhanced catalytic activity towards all the H3K27 substrates with dif-
ferent methylation status.50,52-54 Thus, EZH2A677G and EZH2A687V

mutants are able to induce a global increase in H3K27me3 without
the need for wild-type EZH2.50 Besides kinetics, EZH2Y641X also
affects protein stability.55 Phosphorylation of Y641, a known phos-
phorylation site of JAK2 kinases, leads to interaction of EZH2 with
b-TrCP, a SCFE3ubiquitin ligase, and promotes EZH2degradation.
Loss of this phosphorylation site due to somatic Y641 mutations
reduces EZH2 turnover, which has been postulated to contribute to
the hyper-H3K27me3 phenotype.55 Taken together, different gain-
of-function mutations induce EZH2 hyperactivity through distinct
molecular mechanisms, and despite the fact that lymphomas car-
rying different EZH2 mutations may possess different levels of the
lowlymethylated H3K27, they all have a consistently higher level of
H3K27me3.50,52-54

Recent studies have provided a better understanding of the in
vivo function of EZH2 and mutation in normal B-cell development
and lymphomagenesis.47,56-58 Using Ezh2 knockout mice, Beguelin

et al56 and Caganova et al47 have independently shown that EZH2
is crucial for the formation of GCs and GC B-cell development.
Mechanistically, EZH2 repressesmyriad downstreamgenes including
the negative cell-cycle regulators Cdkn2a (p16Ink4a/p19Arf) and
Cdkn1a/p21 and crucial transcription factor genes IRF4 and
BLIMP1/PRDM1, which are known to be essential for post GC
B-cell development47,56,57 (Figure 2). Indeed, depletion of EZH2
from lymphomas suppressed their proliferation and attenuated tumor
formation.57 These studies support the notion that EZH2 hyper-
activation promotes malignant transformation by repressing both
antiproliferative and differentiation-inducing programs. Further-
more, Ezh2-deficient GC B cells had profound impairments in
GC responses and memory B-cell formation and failed to protect
themselves from the genotoxic damages induced by activation-
induced cytidinedeaminase,47 an enzyme critical for somatic hyper-
mutation and antibody affinity maturation,21 demonstrating an
essential role of EZH2 in the GC B-cell development (Figure 2).
B-cell–specific expression of the EZH2Y641N or EZH2Y641F mutant
in transgenic mice elevated the global H3K27me3, promoted a high
proliferation of GC B cells, and resulted in follicular hyperplasia.56,58

However, additional oncogenic events are required for neoplastic
transformation, although GC-derived lymphomas remain addicted
to EZH2 mutations. It has been shown that EZH2Y641N/F mutants
cooperate with BCL2 to generate malignant GC B-cell lymphomas56;
similarly, genetic interaction of EZH2Y641F and MYC in transgenic
mice gave rise to high-grade lymphomas with a mature B-cell
phenotype.58 Collectively, these findings have shown that dynamic
expression of EZH2 allows expansion and development of GC
B cells, which undergo terminal differentiation and develop into
antibody-secreting cells and plasma cells as EZH2 expression
declines (Figure 2). EZH2 hyperactivity perturbs the fine balance of
GCB-cell proliferation and differentiation, permanently locking GC
B cells in an immature and proliferative state, a prelude to full-blown
lymphoma. Although not sufficient on its own to cause lymphoma,
EZH2 gain-of-function mutations serve as a driver of lymphoma-
genesis and collaborate with additional lesions to generate and/or
accelerate GC B-cell lymphomas (Figure 2).

In contrast to the oncogenic role of EZH2 in B-cell lineages, the
tumor-suppressive roles of PRC2 in T-cell acute lymphoblastic
leukemia44,45 and myeloid malignancies43 were identified due to
a range of missense, nonsense, and frameshift mutations in EZH2,
SUZ12, or EED (Figure 1). These lesions can be homozygous, are
found throughout the gene, and are generally predicted to disable
PRC2 activity, implying its disease-dependent functions. These
observations emulate those obtained in Em-Myc lymphoma models
showing that PRC2 can be a tumor suppressor in Em-Myc–induced
lymphomagenesis, wherein the lymphoma onset was accelerated by
knockdown of Suz12 or Ezh2.59 Such an effect is likely due to the
enhanced self-renewal of B-lymphoid progenitors upon PRC2
loss,59 which is in contrast to cooperation between EZH2Y641F and
Em-Myc reported by Berg et al in GC B-cell compartments.58 These
studies emphasize the complicated, context-dependent role of PRC2
in oncogenesis, whichmight be due to a tightly controlled expression
pattern of EZH2 throughout B-cell lineage differentiation. As a
result, PRC2 activity at various developmental stages may either
suppress or facilitate lymphomagenesis. Indeed, EZH2 expression is
high in pro–B cells and decreased in pre–B cells and becomes nearly
undetectable in immature naive cells46,57; EZH2 is then upregulated
again during affinity maturation in GC B cells.26,47 Therefore, it
could be the case that whereas PRC2 restricts the proliferative and
self-renewal potential of immature B-lymphoid progenitors, its gain-
of-function mutations stimulate proliferation specifically in maturing
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GC B cells. Further work with mouse models engineered to over-
express or delete EZH2 at each specific stage of B-cell differentia-
tion shall provide insight into the role of PRC2 in various B-cell
malignancies.

Interplay of PcG with other epigenetic
enzymes

In addition to intrinsic enzymatic functions, PcG complexes also
recruit other chromatin-modifying factors such as HDACs and
DNMTs to re-enforce transcriptional repression. PRC2 recruits
HDAC1-3, linking 2 distinctive repressive machineries together.60

Several broad-spectrum HDAC inhibitors, including sodium buty-
rate, decrease the messenger RNA and protein levels of BMI1 and
EZH2 in cancer cells.61 These findings implicate that HDACs
positively regulate cellular PcG levels and that epigenetic control of
gene expression is governed by cooperation of PRC2 andHDACs. In
addition, histone methylation influences DNA methylation and, in
turn, DNA methylation serves as an instructive template for histone
modification. In cancer, PcG-suppressed genes are likely to be as-
sociated with DNA hypermethylation, and hypermethylated pro-
moters more frequently premarked with PcG.8,62,63 Indeed, EZH2
directly associates with DNMTs.64 This mechanism also appears to
be operative in B-cell lymphoma because DNA methylation pro-
filing of lymphomas revealed a significant enrichment of PcG targets
at the de novo methylated genes,65 indicating that crosstalk between
histone and DNA methylation may form a double “locking” mech-
anism of an undifferentiated cell state during malignant transfor-
mation. Perturbation of cellular factors that antagonize PcG, such
as trithorax group (TrxG) proteins,17 may equally influence the

regulatory roles and biological outputs of PcG complexes. Indeed,
direct sequencing of patients with B-cell malignancies has recently
led to identification of recurrent damagingmutations of several TrxG
genes such as MLL2, p300, and CBP.5,6,66 Loss-of-function mu-
tations of TrxG and gain-of-function mutations of PcG genes may
equally perturb a fine equilibrium of histone methylation dynamics
during B-cell lymphomagenesis.

Interplay of PcG with miRNAs

miRNAs are 22-nucleotide, noncoding single-stranded RNAs that
can repress gene expression at a posttranscriptional level. miRNAs
are increasingly recognized as one of the major players in numerous
biological processes, and their downderegulation is often seen in
tumors, suggesting their tumor-suppressive roles. It can be antici-
pated that miRNA deregulation can contribute to PcG deregulation.
Indeed, EZH2 was the first PcG gene shown to be regulated by
miRNA.67,68 By targeting the 39 untranslated region of EZH2 mes-
senger RNA,miR-101 andmiR-26 repress cellular EZH2 levels.67,68

miRNAs that repress PRC1 genes were also identified.69-71 Down-
regulation and deletion of these miRNAs are frequent in various
tumors, including prostate cancer and lymphomas.67,68 Conversely,
PcG proteins also contribute to miRNA expression and deregulation
during malignant development, given their frequent alterations
found in tumors. Indeed, manymiRNAgenes are repressed by PRC2
and demarcated with H3K27me3.72 PRC2 repressesmiR-31 in adult
T-cell lymphoma, leading to activation of nuclear factor kB onco-
genic signaling.73 Thus, these findings have shown an intriguing
interplay between miRNAs and PcG. Below, we summarize recent
advances in understanding their interactions in cancers, especially

Figure 2. Biological functions of EZH2 in normal B-cell development and lymphomagenesis. During B-cell differentiation, naive B cells enter the GC and EZH2

is transcriptionally upregulated during GC B-cell maturation.26,47 Via induction of H3K27me3, EZH2 then transcriptionally represses a myriad of downstream effector

genes, which at least include the negative cell-cycle regulators (CDKN2A and CDKN1A) and B-cell differentiation-promoting transcription factors (IRF4 and BLIMP1/PRDM1),

hence allowing for rapid expansion of immature B cells47,56,57; in addition, EZH2 protects GC B cells from the genotoxic damages induced by activation-induced

cytidinedeaminase (AID),47 an enzyme critical for immunoglobulin affinity maturation via a mechanism of somatic hypermutation that modifies the immunoglobulin variable

region of the rearranged antibody genes in GC B cells.21 EZH2 levels decrease as B cells exit the GC, enabling derepression of EZH2-targeted genes and hence terminal

differentiation.47,56,57 However, EZH2 hyperactivity (either somatic mutation or overexpression) disrupts such fine equilibrium, continuously enhances H3K27me3, and results

in exaggerated silencing of EZH2 targeted genes, which then block GC B-cell differentiation and promote their proliferation and survival. EZH2 mutations alone lead to

follicular hyperplasia, and, with acquisition of additional oncogenic events such as upregulation of BCL2 or c-MYC, EZH2 mutations cooperatively enable or accelerate

malignant transformation of GC B cells.56,58
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B-cell malignancies, which reveal the hitherto-unappreciated regu-
latory circuits involving miRNA and epigenetic factors.

PRC2–miRNA–PRC1 circuitry

A subset of miRNAs, including miR-181a, miR-181b, miR-200b,
miR-200c, and miR-203 (Figure 3A), are transcriptionally silenced
by PRC2 in cancer.69 Interestingly, these miRNAs repress PRC1
genes such as BMI1 and RING1B69-71 (Figure 3A). It has been
shown that downregulation of these miRNAs such as miR-200c
ensures the cellular level and functionality of PRC1 in stem cells70,71

and cancers including lymphoma,69-71,74 promoting cell “stemness”
properties. These data demonstrate that expression of PRC1 and
PRC2 is integrated through a network of regulatory miRNAs where-
in epigenetic repression of PRC1-targeting miRNAs by PRC2
establishes a positive feedback loop, ensuring coexpression and
cooperation of 2 major PcG complexes.

EZH2/c-MYC–miRNA–EZH2 circuitry

Recent studies of B-cell malignancies also unveiled a second cir-
cuitry involving EZH2, miRNAs, and c-MYC, an oncogenic tran-
scription factor almost invariably translocated in Burkitt lymphoma.
c-MYC assembles a repressive complex with PRC2 and HDACs
to downregulate a broad spectrum of tumor-suppressive miRNAs,
including miR-15a/16-1, miR-26, miR-27, miR-29, let-7, miR-494,
and miR-548m67,75-79 (Figure 3B). A similar c-MYC–PRC2 com-
plex also represses miR-101 in hepatocellular carcinoma.80 Among
these repressed miRNAs, miR-101 and miR-26 were recurrently
deleted in tumors including lymphoma67,68; miR-15a/16-1 tar-
gets BCL2 and acts as tumor suppressor in chronic lympho-
cytic leukemia.81 Interestingly, several of these c-MYC–repressed
miRNAs, including miR-26a, miR-101, and let-7, actually repress
EZH2 directly67,75,78 (Figure 3B); miR-29, a family of miRNAs
known to be involved in B-cell lymphomagenesis,75,82 was shown
to downregulate DNMT3A, a PRC2-interacting factor, in chronic
lymphocytic leukemia83 (Figure 3B). Thus, via recruitment of PRC2
and HDACs, c-MYC, a prominent lymphoma-promoting factor,
represses miRNAs that negatively regulate EZH2 and its cofactors,
establishing a positive-feedback loop for enforcing polycomb genes
expression and functionality in B-cell lymphomas. As knocking
down EZH2 and HDACs led to re-expression of theMYC-repressed

miRNAs,75,78,84,85 the existing pharmacologic agents for inhibition
of these c-MYC–associated corepressors shall represent a promising
way to disrupt such a vicious amplification loop associated with
lymphomagenesis.

Epigenetic therapy and perspective

Epigenetic deregulation of chromatin structure and function leads to
aberrant gene expression and oncogenesis. Consequently, epigenetic
therapies aim to restore normal chromatin-modification patterns
through inhibition of the deregulated epigenetic machinery. HDAC
and DNMT inhibitors are among the first promising agents for
epigenetic therapies,2 and, more recently, specific inhibitors for PcG
proteins have been developed.

Targeting PRC1

A recent high-throughput screen discovered a small-molecule com-
pound PTC-209 as an inhibitor of BMI1.86 PTC-209 inhibited ex-
pression of BMI1 and induced a dose-dependent reduction of global
H2AK119ub1.86 BMI1 knockdown conferred PTC-209 insensi-
tivity, indicating its specificity.86 Similar to BMI1 knockdown,
PTC-209 treatment inhibited self-renewal of cancer-initiating stem
cells.86 This study implicates that BMI1 has the potential to be de-
veloped as a drug target for treating B-cell lymphomas with BMI1
overexpression.

Targeting PRC2

Several highly selective small-molecule inhibitors of PRC2 (with
Ki values within the low-nanomolar range) have recently been
discovered,87-93 many of which possess a common pyridone-
containing motif that confers EZH2 or EZH1 inhibition (Figure 4A).
Among them, EPZ00568788 and GSK12687 show high selectivity
for EZH2 vs other methyltransferases, with.50- to 150-fold selec-
tivity for EZH2 over EZH1 (Figure 4A). Early success was seen in
treating B-cell lymphomas bearing EZH2 gain-of-function mutation
with these inhibitors in DLBCL xenografts in mice.56,87-93 GSK126,87

EPZ005687, and EPZ-643888,94 (Figure 4A-B) show their particular
effectiveness in suppressing growth of the EZH2-mutant lymphomas

Figure 3. Vicious amplification loops involving a

myriad of PcG proteins and miRNAs. Repression of

PRC1-repressing miRNAs by PRC2 (A) establishes a

positive-feedback loop ensuring coexpression and co-

operation of 2 main PcG repressor complexes in stem

and cancer cells; c-MYC, which is frequently translo-

cated or overexpressed in Burkitt lymphoma and other

B-cell lymphoma types, assembles a gene-silencing com-

plex with PRC2 and HDACs to downregulate a list of

tumor-suppressive miRNAs that can repress EZH2 and

DNMT3A (B), hence establishing positive-feedback

loops to enforce expression and functionality of PRC2

in B-cell lymphomas. Me3, trimethylation. Ub1, mono-

ubiquitination.
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vs those with wild-type EZH2. At the transcriptome level, and in
contrast to minimal transcriptional responses in wild-type EZH2,
drug-insensitive lines, reactivation of the formerly H3K27me3-
demarcated genes was generally seen in drug-sensitive GC B-cell
(GCB) type of DLBCL lines.87,93 However, only a limited number of
upregulated genes were found common across different inhibitor-
sensitive lines, although upregulated genes in each individual line are
enriched in those related to cell-cycle and apoptotic regulation,87 thus
highlighting a challenge to define relevant targets presumably due to
variations of genetic backgrounds. The biological responses such as
growth suppression after treatment with EZH2 inhibitors show a
delayed pattern in comparison with the biochemical responses; the
diminution of H3K27me3 was apparent within 24 to 48 hours post-
treatment, and yet the cellular response is usually not fully presented
until days 4 to 7 posttreatment and beyond.87 Such a delayed effect
with the PRC2 inhibitorswas seen in acutemyeloid leukemia95 and for
inhibitors of the histone methyltransferase DOT1L,96 which is in
contrast to quick responses associated with HDAC inhibitors. It has
been speculated that additional time and/or chromatin factors may be
required to reverse the histone methylation-regulated events, and,
alternatively, catalytic inhibition induces compensatory recruitment of
more enzymatic complexes at crucial gene targets, thus delaying
demethylation. It is worth noting that PRC2 possesses noncanonical
functions such as methylation of nonhistone substrates97 or acting
as transcriptional activator,98 but it remains unclear if these mech-
anisms exist in lymphomas. Treatment of EZH2-mutant, GCB-
DLBCL xenograft models with GSK126 or GSK343 (Figure 4A)
resulted in tumor regression,56,87 and the inhibitor was well tol-
erated. 87 Currently, various PRC2 inhibitors are under clinical
evaluation and it would be exciting to see whether PRC2 inhibition
provides clinical benefits for lymphoma patients.

EZH2 mutation (EZH2Y641X, EZH2A677G, or EZH2A687V) is a
known predictor of EZH2 inhibitor sensitivity; however, later
studies showed that GCB-DLBCL is addicted to EZH2 and shows
general sensitivity to the EZH2 inhibitor independent of its muta-
tional state,56 and such an EZH2 addiction was not seen in the
activated B-cell type of DLBCLs, a more differentiated lymphoma
subtype with EZH2 repressed.56 These findings are consistent with
the clinical observation that EZH2 mutations exclusively occur
in GCB-DLBCLs and not activated B-cell DLBCL,4 providing

a rationale for a personalized medicine for lymphoma therapy.
Furthermore, the efficacy of EZH2 inhibitors has been established in
various B-cell lymphomas with wild-type EZH2, including MCLs
andBurkitt lymphoma.75,93 Therefore, othermolecular determinants
for EZH2 inhibitor sensitivity remain to be defined for B-cell
lymphomas in order to improve personalized therapy. Such genetic
determinants were defined in other cancers, including SNF inac-
tivation in malignant rhabdoidtumors,91 MMSET/NSD2 transloca-
tion in multiple myeloma,99 and MLL rearrangement in acute
leukemia,95,100 and all of these affected pathways have been con-
nected to PRC2 genetically. Thus, it is likely that lymphomas
carrying TrxG gene mutations,5,6,66 such as MLL2 mutations, may
render sensitivity to PRC2 inhibition.

Furthermore, it remains to be examined if EZH1, a less-studied
EZH2-related enzyme, is overexpressed in B-cell malignancies and
if EZH1 inhibition improves the therapeutic potential. Given that
EZH1 compensates the function of EZH2, inhibitors that target both
EZH2 and EZH1 such as UNC199990 (Figure 4A) and Constellation
Pharmaceuticals compound 392 (Figure 4C), are expected to have
benefits for treating a broader spectrum of B-cell malignancies with
overexpression of EZH2 or EZH1. Indeed, we have recently shown
that UNC1999 offers advantages over EZH2-selective inhibitors
and represents a novel efficient therapeutic for MLL-rearranged
leukemias that coexpress EZH2 and EZH1.95

In line with therapeutic advances, combination therapy shall be
explored, because EZH2 inhibitors can be used together with inhib-
itors against other oncogenic pathways that act in parallel. Indeed,
our recent studies demonstrated synergy of EZH2 and HDAC
inhibitors to inhibit lymphoma clonogenic cell growth, induce apo-
ptosis, and suppress growth of MCLs or aggressive c-MYC–
associated lymphomas.75,77 The effects are at least partially due to
disruption of c-MYC/EZH2-mediated miRNA silencing and vicious
amplification loops (Figure 3B). In addition, combination treatment
with EZH2 andBCL2 inhibitors outperformed the single-drug therapies
in lymphoma models.56 Lastly, given cooperation between DNA
methylation and histone modification in transcriptional regulation, it
would be of great interest to test if lymphoma cases with a higher
degree of epigenetic silencing and hence reduced reversibility are
less sensitive to PRC2 inhibitor single treatment butmore responsive
to a combined treatment with DNA demethylating agents.

Figure 4. Highly selective, small-molecule inhib-

itors of PRC2. (A) Scaffold demonstrating that several

of the recently developed EZH2 or EZH2/1 inhibitors

all possess a pyridone motif as well as an indole or

indazole core. The inserted table details the identity of

each designated substituent of the described inhibitors.

(B) Chemical structure of EPZ-6438. (C) Chemical

structure of Constellation Pharmaceuticals compound

3, the first non–pyridone-containing EZH2 inhibitor.
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Conclusion

Gene regulation by PcG complexes is critical for regulation of various
biological programs related to normal development and oncogenesis.
PcG aberration, caused by its deregulated expression, somatic muta-
tion, and chromosomal translocation, is common in various B-cell
malignancies, demonstratingPcGas a centralmechanism in lymphoma
initiation and development. PcG complexes interact with other epi-
genetic machineries such as HDACs, DNMTs, and miRNAs in a
context-dependent manner to control gene expression and promote
lymphomagenesis. Recent advances in developing targeted strategies
against PcG have demonstrated early success and display great po-
tential in treating incurable B-cell malignancies.
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