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As essential mediators of red cell pro-

duction, erythropoietin (EPO) and its cell

surface receptor (EPO receptor [EPOR])

have been intensely studied. Early inves-

tigations defined basic mechanisms for

hypoxia-inducible factor inductionofEPO

expression,andwithinerythroidprogenitors

EPOR engagement of canonical Janus

kinase 2/signal transducer and activa-

tor of transcription 5 (JAK2/STAT5), rat

sarcoma/mitogen-activated protein kinase/

extracellular signal-regulated kinase (RAS/

MEK/ERK), and phosphatidylinositol

3-kinase (PI3K) pathways. Contemporary

genetic, bioinformatic, and proteomic ap-

proaches continue to uncover new clinically

relevant modulators of EPO and EPOR ex-

pression, and EPO’s biological effects. This

Spotlight review highlights such factors and

their emerging roles during erythropoiesis

and anemia. (Blood. 2015;125(23):3536-3541)

Introduction

Early parabiotic experiments with anemic and nephrectomized rats
predicted the existence of erythropoietin (EPO) as a blood-borne
kidney-derived activator of erythropoiesis.1 Evidence that EPO occurs
as a unique glycoprotein hormone was further advanced via arduous
fractionations and bioassays of urinary proteins from anemia patients.2

The purification, partial sequencing, and cloning of erythropoietin3

have led to the generation of recombinant human EPO (rhEPO) (and
derivatives) for the treatment of anemia associated with chronic kidney
disease, chemotherapy, and low-risk myelodysplastic syndrome.4 The
subsequent discovery of the EPO receptor (EPOR) as a plasma mem-
brane single-pass homodimer5,6 elevated the EPO/EPOR system as
a paradigm for hematopoietic cytokine receptor action. The EPOR, for
example, was among the first discovered to associate with a Janus
kinase (JAK),7 to transduce signals via transmembrane conforma-
tional mechanisms,8 and to be causally associated with polycythemia.9

EPO’s clinical and scientific successes have prompted in-depth inves-
tigations into EPO/EPOR biology. This review focuses on intriguing
advances in understanding the regulation of EPO and EPOR ex-
pression, and the nature of novel EPO/EPOR signals that regulate
erythroid progenitor cell (EPC) development. EPO also has been
reported to exert survival, proliferative, and/or developmental effects
in a wide range of nonhematopoietic tissues.10-16 In such cell types,
however, EPOR protein expression (including cell surface levels) can
be nominal,17 thereby complicating interpretations for direct vs indirect
effects. Nonetheless, incisive EPOR loss-of-function approaches have
revealed interesting EPO effects in cardiomyocyte mitochondrial
biogenesis,18 retinal cell cytoprotection,19 melanoma cell survival,20

and adipogenesis.21 This broad area of investigation, however, lies
beyond the scope of the present report.

EPO expression

The nature of rare Epo-producing cells is first becomingmore clearly
defined. During primitive erythropoiesis, studies using an Epo gene
green fluorescent protein knock-in mouse indicate predominant Epo
expression by neural crest and neuroepithelial cells.22 Tracking

studies ofmyelin protein-zero23marked peripheral neural cells dem-
onstrate that Epopos embryonic neural crest fibroblasts migrate to
the kidney,24 and perinatally reside within peritubular interstitia.25

Renal fibrosis due to ureteral obstruction can promote transdif-
ferentiation of Epohigh fibroblasts to Epolow myofibroblasts.24 Epo
levels in myofibroblasts can be increased, however, via neuro-
tropin or dexamethasone dosing. During stress erythropoiesis, Epo
expression can also be induced in the liver,26 as well as bone
marrow (BM) osteoblasts as demonstrated upon von Hippel–
Lindau factor (VHL) inactivation.27

New insight has also been gained into EPO gene regulation. Early
investigations of hypoxia-induced EPO expression established impor-
tant roles for a downstream EPO enhancer (E-39) as a binding site for
hypoxia-inducible factor (HIF) and hepatocyte nuclear factor 4 tran-
scriptional regulators.28 In vivo studies inmicewith a greenfluorescent
protein-marked Epo allele demonstrate that E-39 deletion results in
embryonic and neonatal anemia.25,26 In juvenile and adult kidney,
however, Epo production is unexpectedly regained in the absence of
E-39,26 whereas hepatic Epo production continues to depend upon E-39
effects.26 For renal EPO production, this raises new questions con-
cerning activation mechanisms.

Among HIF1a, -2a, and -3a, HIF2a has been defined as a prime
component of an EPO gene activating complex.29 New insight into
HIF2a regulation (beyond requisite heterodimerizationwithHIFb/aryl
hydrocarbon receptor nuclear translocator)30 has also been gained.
Hif2a’s translation first has been shown to be suppressed via iron
response element binding protein 1 (Irp1) (in a knockout [KO] mouse
model), thus connecting iron levels to Hif2a/HIFb-regulatedEpo gene
expression.31 HIF2a’s activity is also modulated by lysine acetylation
and deacetylation via CREB-binding protein (CBP) and sirtuin, re-
spectively.32 For acetylation, acetyl-CoA levels during stress erythro-
poiesis can become physiologically limiting. Specifically, Hif2a’s
acetylation, CBP association, and enhanced activity have been shown
in an Acss2-KO model to depend upon acetyl-CoA synthetase-2.33

Moreover, acetate supplementation in vivo elevates Epo levels as well
as hematocrits in hemolytic, partial nephrectomy chronic kidney
disease, and Kit mutant models. The turnover of HIFs is promoted via
hydroxylation by prolyl 4-hydroxylases (PHDs), and ubiquitination by
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VHL.30 Notably, several PHD inhibitors have been developed as HIF
stabilizers to enhance EPO and erythrocyte production (eg, roxadustat
[FibroGen/Astellas], AKB-6548 [Akebia Therapeutics], and
GSK1278863 [GlaxoSmithKline]).34

EPO receptor expression and EPOR
signal modifiers

The expression of EPO’s receptor is stringently regulated and is at
a low level (;1100 EPORs per primary human EPC and ;300 per
late-stage erythroblast) as determined via 125I-EPO binding studies.35

At the EpoR locus, Gata1,36 Sp1,37 and Scl/Tal138 stimulate tran-
scription, but additional regulators are not well defined. For EPOR
trafficking, certain new insights have been gained. Over-expression
studies in murine myeloid 32D cells suggest ligand-independent
EpoR turnover, with replenishment from a predicted large intra-
cellular pool.39 For the endogenous EPOR, however, studies in
human UT7epo and/or primary EPCs demonstrate substantial up-
modulation of cell surface EPORs when EPO is limited, marked
down-modulation upon EPO exposure, and only modest intracel-
lular EPOR pools.40 During EPOR endocytosis, coordinated roles
for p85-a (PI3 kinase regulatory subunit), ubiquitinated casitas
B-lineage lymphoma and Epsin1 have been described.41,42 In
UT7epo cells, b-transducin repeat containing E3 ubiquitin ligase
(b-TRCP) subsequently promotes EPOR degradation.43 Dynamic
down-modulation of low-level EPOR cell surface expression em-
phasizes a need for cautious interpretation of apparent EPOR levels,
and the use of high-specificity reagents.17,40

Several new EPOR interacting factors have been described. Pro-
teomic analyses of biotin-EPO/EPOR complexes have identified
transferrin receptor 2 (TFR2) as an EPORpartner.44 InUT7epo cells,
TFR2 facilitates EPOR processing and transport to the cell surface.44

In primary human EPCs, TFR2 knockdown decreased hemoglo-
binized cell formation, and increased numbers of early stage EPCs.44

EPCs from Tfr22/2 mice exhibit decreased EPO sensitivity and
erythroid colony-forming unit formation.44 During iron deficiency,
Tfr2 also acts to balance erythrocyte production with available
iron.45 Beyond its established roles in hepatocyte iron transport,46

Tfr2 also therefore modulates EPO-dependent erythropoiesis. In
addition, phospho-proteomic analyses have identified the integral
plasma membrane protein regulator of human erythroid cell expan-
sion (RHEX) as a new EPOR-associated factor. In UT7epo cells,
RHEX co-IP’s with EPOR/JAK2 complexes, and its tyrosine phos-
phorylation is strongly induced by EPO. In primary EPCs, RHEX
exhibits stage-specific expression,47 and its knockdown attenuates
extracellular signal-regulated kinase 1/2 (ERK1/2) activation as well
as late-stage human erythroblast development. Interestingly, RHEX
is not represented among rat, mouse, or lower vertebrates.

Transferrin receptor 1 (TFR1) can also modulate EPOR sig-
naling. Specifically, Tfr1 ligation by polymeric-IgA1 (p-IgA1) in
murine erythroblasts increases EPO/EPOR-dependent mitogen-
activated protein kinase and phosphatidylinositol 3-kinase signal-
ing.48 This occurs in the absence of transferrin binding, but depends
upon a Tfr1 endocytic motif. In a knock-in model, human p-IgA1
enhances recovery from anemia due to 5-fluorouracil, hypoxia, and
hemolytic anemia. p-IgA1 also binds CD89, an Fc-a receptor and
suppressor of inflammatory cytokine production.49 By speculation,
p-IgA1 might also aid stress erythropoiesis by lessening inflamma-
tion, a mechanism implicated for an activin receptor-IIA ligand trap
as a new anti-anemia agent.50

EPOR signal transduction via rat sarcoma/
mek kinase/mitogen-activated protein kinase
(RAS/RAF/MEK)/ERK circuits

As demonstrated in primary human EPCs, balanced activation of
RAS pathways is required for effective EPO-dependent erythroblast
formation.51 In mouse models, the deletion of K-Ras (but not H-Ras
or N-Ras) generates severe anemia,52 and compromises EPO-
dependent fetal liver EPC development. Activated K-RasG12D

likewise induces severe anemia due to ineffective fetal erythropoi-
esis,53 and persistently stimulates Erk1/2, Akt, and signal transducer
and activator of transcription 5 (Stat5).54 Of clinical interest, the
inhibition of RAS farnesylation by tipifarnib decreases polycythe-
mia vera erythroid burst-forming unit hyperproliferation.55 During
erythropoiesis, RAS is also regulated by newly emerging guanosine
triphosphate (GTP)/guanosine diphosphate exchange factors. One is
the Ras-GTPase activating protein Rasa3, which when mutated in
Scat mice leads to anemia and thrombocytopenia.56 A second is
neurofibromin (Nf1), for whichmutations have been associated with
juvenile myelomonocytic leukemia, including anemia due to limited
EPC differentiation.57

Regulation of RAS-modulated targets is also important for EPO-
dependent erythropoiesis.C-Rafdeletion results in embryonic anemia.58

And in b-thalassemia proerythroblasts, phospho-C-Raf levels cor-
relate with increased ERK activation.59 Mek2 is dispensable for
mouse development,60 implicating prime roles for Mek1 in Erk1/2
signaling. In mice expressing a truncated EpoR-HM allele, phar-
macologic inhibition of Mek reverses stage-specific EPC differen-
tiation defects,61 whereas in mice with somatic inactivation of Nf1,
Mek1/2 inhibition decreases splenomegaly and enhances erythro-
poiesis.57 For ERKs, Erk12/2 mice exhibit heightened splenic ery-
thropoiesis and hematocrits.62

RAS-like GTPases can also regulate EPO-dependent EPC for-
mation. As a new EPO/EPOR target gene and Roco family GTPase,
malignant fibrous histiocytoma-amplified sequences with leucine-
rich tandem repeats 1 (MASL1) supports C-RAF/MEK/ERK acti-
vation and primary human erythroblast development.63 As Ras
homolog family GTPases, RACs also regulate EPC development
and erythroblast enucleation.64 In 32D-EpoR and UT7epo cells,
EPO rapidly activates RAC1, implicating possible EPO/EPOR
regulation of RACs.65 In oncology contexts, as new inhibitors of
RAS and RAS-like factors are developed,66 their potential negative
effects on erythropoiesis should therefore be evaluated.

EPO/EPOR cytoprotective circuits

EPO’s best-known effects are cytoprotective.67 Koulnis et al have
described EPO’s slow yet persistent down-modulation of proapop-
totic Bcl2-like 11 (Bim) in murine splenic EPCs.68 Prior studies in
HCD57 cells and primary murine EPCs also demonstrated EPO-
induced Bim phosphorylation and proteasomal degradation.69 The
inhibition of Bim therefore represents one EPO-induced EPC sur-
vival mechanism. Post-EPO dosing, Bcl-xL levels in splenic EPCs
transiently increase,68 and in 32D-EPOR cells Bcl-xL is an EPO/
EPOR/STAT5 target gene.70 These latter EPO effects, however, are
not observed in erythroid colony-forming unit-like murine BM
EPCs,71 and EPO can efficiently cytoprotect Bclx-KO EPCs.72

Important questions therefore arise concerning possible additional
mediators of EPO/EPOR cytoprotection.
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Via gene profiling of murine BM EPCs, an intracellular Spi2A
serpin has been identified as a new EPO/EPOR/JAK2/Stat5 target,
and cytoprotective factor.71 Spi2A inhibits B- and L-cathepsins,
which when leached from damaged lysosomes can trigger apoptosis.73

Spi2A-KO mice exhibit compromised EPO-induced EPC formation,
andworsened anemia due to hemolysis or irradiation. Spi2A further cy-
toprotects erythroblasts against ROS, an effect that is phenocopied by a
cathepsin-B inhibitor. Pharmacologically, selective cathepsin inhibitors
therefore might act to limit cell loss due to oxidant damage in thal-
assemia and/or sickle cell EPCs.74,75 During stress erythropoiesis, Fas
ligand (FasL)/Fas levels can also substantiallymodulatemurine splenic
EPC survival.76 In human EPCs, tumor necrosis factor (TNF)-related
apoptosis inducing ligand or TRAIL may be a more potent pro-
apoptotic TNF, and FASL may support caspase-dependent late
differentiation events.77 As further illustrated by recent gene profiling
studies of human and murine EPCs,78 complexities can exist in ery-
throid regulator utilization among species (and erythroid tissues)
that require reconciliation.

Additional emerging EPO response circuits

In the context of erythroid neoplasia, JAK2 hyperactivation due to
a V617F mutation (within an inhibitory pseudokinase domain) is
a frequently contributing factor.79 Polycythemia vera V617F EPCs
can develop in the absence of EPO, although at lower efficiencies.80

In a Ba/F3 cell model, JAK2V617F’s transforming potential is also
promoted by EPOR (or thrombopoietin receptor [MPL]) expres-
sion.81 For JAK2 R867Q or S755R/R938Qmutations (as associated
primarily with thrombocytosis), however, transformation is sup-
ported byMPL and not the EPOR. These findings implicate selective
EPOR (andMPL) interactionswithmutated JAK2 alleles in a context
of myeloproliferative disease. JAK2’s degradation interestingly has
been demonstrated to involve VHL-mediated ubiquitination. This is
illustrated in Chuvash polycythemia in which the VHL mutation
R200W alters properties of VHL-SOCS1 E3 ligase complexes, and
limits activated phospho-JAK2 turnover.82

Although EPO/EPOR effects at large require JAK2, supporting
roles for Src familykinases are also emerging.MurineEPCsdeficient in
Lyn exhibit diminished EPO-dependent erythroblast formation.83 And
Src, but not Jak2, may mediate posttranslational modification of Cbl,
a ubiquitin ligasewhich promotes EPOR down-modulation (as studied
in F-36P cells).84 Mouse KO models additionally have revealed
nonredundant Stat5-independent roles for phospholipase-cg1 (Plc-g1)
in promotingEPOR/Jak2 signals for EPCdevelopment.85 In oncology
contexts, promising inhibitors of SRC are being developed that addi-
tionally can affect Plc-g1 and/or RAS circuits.86,87 For these agents,
potential compromising effects on erythropoiesis should also be
considered.

Via EPOR/Jak2/Stat5 signaling, EPO can also induce cytokine
expression by EPCs,88 with the C1q/TNF cytokine family member
erythroferrone (ERFE/Ctrp-15) as a new example.89 Specifically,
ERFE has been discovered to act on hepatocytes to suppress hepcidin
production, thereby lessening hepcidin’s inhibitory effects on iron
efflux from enterocytes, hepatocytes, and macrophages.90 Following
phlebotomy, ERFE expression is heightened, with ERFE-KO mice

Figure 1. Emerging EPO and EPOR regulators, and action circuits. (A) Regu-

lators of EPO expression in renal peritubular interstitial fibroblasts: during embryo-

genesis, neural tissue derived EPOpos protein-zeropos fibroblasts occupy interstitial

peritubular sites within the neonatal kidney. Renal damage and fibrosis can convert

these cells to EPOlow myofibroblasts.24 Within EPOpos interstitial fibroblasts, the EPO

production is modulated in part by HIF2a, which itself is regulated at multiple levels.

Iron reverses apo-IRP inhibition of HIF2a translation.31 HIF2a turnover is promoted by

VHL and PHDs,30 and pharmacologic inhibitors of PHDs stabilize HIF2a.34 During stress

erythropoiesis, acetate supplementation can further enhance HIF2a complex

acetylation, activity, and EPO production via an Acss2-CBP circuit.33 (B) Modu-

lation of EPOR signaling by interacting plasma membrane proteins: TFR2

associates with the EPOR and can modulate its trafficking.44 Upon p-IgA1

ligation, Tfr1 can also enhance EPOR signaling.48 RHEX also associates with the

hEPOR, and promotes EPO-dependent human erythroblast formation.47 (C)

Recently defined EPO/EPOR signal transduction circuits: newly discovered EPO/

EPOR response genes include ERFE, Spi2A, and MASL1. As a secreted TNF-

related cytokine, ERFE completes a circuit between EPO action, and regulation of

systemic iron levels.89 By inhibiting leached lysosomal cathepsins, Spi2A cytopro-

tects erythroblasts against consequences of oxidative damage.71 MASL1 acts within

a central RAS/MEK/ERK circuit,63 together with RHEX, to reinforce ERK1/2

activation.47 Further dynamic balancing of essential RAS/MEK/ERK signals (and of

EPC formation) occurs via RAS down-modulation by Rasa356 and Nf1.57 Pro-

erythropoietic effects also are being established for Akt, Plc-g1, Lyn, and Src

kinases. Akt can affect erythroid development via serine phosphorylation of Gata1,92

whereas Lyn and Src can act to enhance EPO/EPOR activated growth/development

Figure 1 (continued) signals,83,84 and to modulate Cbl’s E3 ligase effects on EPOR

turnover.74,75 For each of these EPO/EPOR signal transducers, their engagement

and actions appear to become especially important during anemia and/or stress

erythropoiesis.
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exhibiting delayed recovery from blood-loss–induced anemia. By
comparison, the disruption of ERFE in b-thalassemia mice diminishes
iron overload.89 ERFE modulation therefore has therapeutic potential
for balancing systemic iron levels. Unexpectedly, EPO has also been
shown to exert effects on pluripotent hematopoietic progenitor cells.
Specifically, EPO at elevated levels can alter the transcriptomes of
multi- and bi-potent progenitors.91 This generates lineage bias, and
increases erythroid output while decreasing myelopoiesis.91 EPO
therefore may guide EPC differentiation, as previously implicated in
studies of EPO/EPOR-stimulated Akt phosphorylation of Gata1.92

Such EPO actions might contribute to rhEPO’s enhancement of ery-
throid recovery following allogeneic transplant.93

Summary

Within EPO and EPOR circuits, important new components are being
revealed. Several regulate endogenous EPO expression (Figure 1A).
Apo-IRP1 inhibitsHif2a transcript translation,31 whereas iron reverses
this effect, heightening HIF2a and EPO levels. Pharmacologically,
PHD inhibitors that stabilize HIF2a can likewise increase EPO ex-
pression,34 as does acetate supplementation via enhancement of Hif2a
acetylation during stress erythropoiesis.33

Within EPCs, EPOR activity can be unexpectedly augmented by
interactionswith several plasmamembrane proteins (Figure 1B). TRF2
acts via association with EPOR complexes, whereas Tfr1 is engaged
upon p-IgA1 ligation, with each bolstering EPC formation.44,48 This
ties two iron importers to EPOR’s effects. In addition, the novel hEPC
protein RHEX associates with the hEPOR, enhances ERK1/2 acti-
vation, and supports erythroblast development.47

Important downstream EPOR signal transducers are also being
discovered (Figure 1C). Within a central RAS/MEKmodule, these
include MASL1,63 Rasa3,56 and neurofibrin,57 that act to balance

ERK1/2 signaling and EPC production. For EPC cytoprotection,
an EPO-induced Spi2A serpin and small molecule inhibitors of
leached lysosomal cathepsins have emerged that lessen ROS-
associated damage. Pro-erythropoietic actions of Akt, Plc-g1, and
Src family kinases are also being more clearly defined. Finally,
EPO is proving to exert guiding effects on early hematopoietic
progenitors,91 pointing to new EPO target populations (and indi-
cating an ability of EPO to affect cells harboring few EPORs). High
merit therefore persists for continued investigations of novel EPO/
EPOR action mechanisms.
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