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Systemic bacterial infection induces a hematopoietic response program termed “emer-
gency granulopoiesis” that is characterized by increased de novo bone marrow (BM)

e ECs express Tir4 and Myd88 | neutrophil production. How loss of local immune control and bacterial dissemination
and, after in vivo LPS or E coli | is sensed and subsequently translated into the switch from steady-state to emergency
stimulation, are the prime granulopoiesis is, however, unknown. Using tissue-specific myeloid differentiation
sources of G-CSF. primary response gene 88 (Myd88)-deficient mice and in vivo lipopolysaccharide (LPS)

e ECs are sensors of administration to model severe bacterial infection, we here show that endothelial cells
systemically spread pathogens (!ECs) but not h.ematop0|et|c cells, hepatocytes, pferlcy?es, or I?M strc.>mal cells, are ess?n-

. tial cells for this process. Indeed, ECs from multiple tissues including BM express high

and subsequent dnvers Qf BM levels of Tir4 and Myd88 and are the primary source of granulocyte colony-stimulating
emergency granulopoiesis. factor (G-CSF), the key granulopoietic cytokine, after LPS challenge or infection with
Escherichia coli. EC-intrinsic MYD88 signaling and subsequent G-CSF production by ECs
is required for myeloid progenitor lineage skewing toward granulocyte-macrophage progenitors, increased colony-forming unit
granulocyte activity in BM, and accelerated BM neutrophil generation after LPS stimulation. Thus, ECs catalyze the detection of systemic

infection into demand-adapted granulopoiesis. (Blood. 2014;124(9):1393-1403)

Introduction

Granulocytes are generated from upstream bone marrow (BM)
precursors under the control of various myeloid cytokines, most
importantly granulocyte colony-stimulating factor (G-CSF).! Among
granulocytes, neutrophils are the dominant cell type in BM, peripheral
blood (PB), and tissues in the steady state and during bacterial
infection. Neutrophils serve as key first line of defense cells of the
innate immune system.” To exert their critical function, neutrophils
are recruited to respective sites of infection.> Although some neu-
trophils are able to reenter the vasculature,® the majority of cells
are consumed and undergo cell death in the inflamed tissue as a
consequence of launching their antimicrobial defense mechanisms.”
In locally poorly controlled and consequently systemically spread
microbial infection, neutrophils are in high demand and need to be
regenerated in large numbers. Hence, because of their already short
half-life in the steady state, ranging from a few hours to a few days,®
during severe systemic infection, steady-state granulopoiesis is switched
to “emergency granulopoiesis” (ie, massively enhanced de novo
neutrophil production in BM).”® Thus, besides efficient neutrophil
recruitment to sites of infection and microbicidal neutrophil effector
functions,” the third critical component of a protective innate im-
mune response is the ability of the hematopoietic system to launch
the emergency granulopoiesis program.

A prerequisite for the initiation of emergency granulopoiesis
is sensing of pathogen dissemination. Pattern-recognition receptors

such as Toll-like receptors (TLRs) recognize respective conserved
pathogen-associated molecular patterns as diverse as proteins,
polysaccharides, and nucleic acids.” TLRs can be found on the cell
surface as well as within endosomal compartments, and TLR signal
transduction occurs via adaptor molecules such as MYDS88 and
TRIF, leading to transcription of genes involved in the host response
toward invading pathogens.'® TLR expression and function has been
best characterized in mature immune effector cells.” In addition,
accumulating evidence has revealed that nonhematopoietic cells
such as bladder epithelial cells,'' mesenchymal stromal cells,'>!?
and endothelial cells (ECs)'*' also express TLRs, thereby critically
contributing to innate immune responses. Furthermore, it has been
demonstrated that hematopoietic stem and progenitor cells (HSPCs)
express some TLRs and directly respond to pathogen-associated
molecular patterns with increased myelopoiesis and directed migra-
tion to inflamed sites.'®?* However, we have recently shown that
direct pathogen sensing by HSPCs does not play an essential role in
the immediate lipopolysaccharide (LPS)-induced emergency gran-
ulopoiesis response. By contrast, TLR4 agonist sensing by non-
hematopoietic cells followed by granulopoietic growth factor release,
primarily G-CSF, is the main route for the initiation of emergency
granulopoiesis.?

We address here the fundamental question of which cell type out
of the vast plethora of putative nonhematopoietic cells and tissues is
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the key sensor of systemically spread pathogens, specifically LPS
and Escherichia coli, and how this sensing is translated into
emergency granulopoiesis.

Methods
Mice

C57BL/6J (CD45.2%), B6.SIL-Piprc® Pepc’/Boy] (CD45.17), Myd88™'~,
Tlr47/7, Trifk/*, LysM-Cre, Nes-Cre, Pdgfrb-Cre, Alb-Cre, Tie2-Cre,
Myd88™™ (B6.129P2(SIL)-Myd88™P*/1), and loxP-GFP (B6.Cg-Gt(ROSA)
2680y CAGZGreenlHze /Iy mice were used in this study. All animals were
maintained at the University Hospital Zurich animal facility and treated in
accordance with guidelines of the Swiss Federal Veterinary Office. Experiments
and procedures were approved by the Veterindramt des Kantons, Zurich,
Switzerland.

LPS injections, E coli infection, and G-CSF injections

Mice received 2 intraperitoneal injections with 35 wg ultrapure LPS from
E coli 0111:B4 (InvivoGen) 48 hours apart and were analyzed 24 hours after
the second injection. For some experiments, mice were administered 20 g
LPS 3 times (at 0, 12, and 20 hours) and were analyzed at time point 24 hours.
Alternatively, mice were intraperitoneally (IP)-injected with 0.5 to 4.5 X 10®
E coli and analyzed 48 hours later. Some mice were IP-injected with 250 pg/kg
body weight human G-CSF (Filgrastim; Amgen) 6 times in a 12-hour interval
and analyzed as LPS-injected mice.

Flow cytometry

The following antibodies (all from eBiosciences, unless otherwise stated)
were used to assess mature BM and PB cell populations: anti-CD11b
(M1/70), anti-Grl (RB6-8C5), anti-Ly6-G (1A8; Biolegend), anti-Ly6-C
(HK1.4), anti-B220 (RA3-6B2), and anti-CD3¢ (145-2C11). For fluorescence-
activated cell sorter (FACS) analysis of HSPCs, the following antibodies were
used: anti-CD3e (145-2C11), anti-CD4 (GK1.5), anti-CD8« (53-6.7), anti-B220
(RA3-6B2), anti-CD19 (MB19-1), anti-CD11b (M1/70), anti-Grl (RB6-8C5),
anti-Ter119 (Ter-119), anti-IL7Ra (A7R34), anti-cKit (2B8), anti-Scal
(D7), anti-CD34 (RAM34), anti-FcgR (93), and anti-NK1.1 (PK136; Becton
Dickinson).

ECs were stained with anti-CD45 (30-F11), anti-TER119 (Ter-119), and
anti-CD31 (390). In some experiments, anti-VE-cadherin (BV13), anti-Scal
(E13-161.7; BD Biosciences), anti-VCAM1 (429), and anti-CD 105 (MJ7/18)
antibodies were used.

Classical and plasmacytoid dendritic cells were stained using anti-CD3¢g
(145-2C11), anti-CD19 (MB19-1), anti-NK1.1 (PK136; Becton Dickinson),
anti-CD45RA (14.8; BD Biosciences), anti-CD11c (N418), and anti-MHCII
(M5/114.15.2).

Hoechst33342 (Life Technologies) was used to exclude dead cells. Cells were
analyzed or sorted on a FACS Canto II or FACS Aria III flow cytometer (BD
Biosciences), respectively. Data were analyzed by FlowJo (Tree Star) software.

BrdU incorporation assay

Mice were injected with phosphate-buffered saline (PBS) or LPS according
to the scheme depicted in Figure SA. Twelve hours before analysis, mice
received 1 single IP injection of 2 mg 5-bromo-2’-deoxyuridine (BrdU;
Sigma-Aldrich). In addition, BrdU at a final concentration of 0.8 mg/mL as
well as 5% glucose were added to the drinking water. Cells were isolated and
further processed according to the manufacturer’s protocol (BrdU Flow Kit;
BD Pharmingen).

Colony-forming unit (CFU) assay

After in vivo PBS or LPS stimulation according to the scheme depicted in
Figure 1A, 1 X 10* red blood cell-depleted whole BM cells were plated in
methylcellulose (Methocult M3234; StemCell Technologies) mixed with
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Iscove’s modified Dulbecco’s medium (30% fetal calf serum, 2 mM
L-glutamine, 50 wM 2-mercaptoethanol) with the following factors added: mIL3
(10ng/mL), hIL6 (10 ng/mL), hIL11 (10 ng/mL), mFLT3-Ligand (10 ng/mL),
mSCF (10 ng/mL), mGM-CSF (10 ng/mL), huTPO (50 ng/mL), and huEPO
(4 U/mL) (all R&D Systems). Colonies were scored after 8 days of in vitro
culture.

Quantitative reverse-transcription PCR

ECs were sorted directly into lysis buffer belonging to RNeasy Micro Kit
(QIAGEN). Total RNA extraction was carried out according to the man-
ufacturer’s protocol and subsequently subjected to reverse transcription using
a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
Quantitative real-time polymerase chain reaction (PCR) was performed using
SYBR green reagent (Applied Biosystems) and samples were run on a 7500
FAST real-time PCR thermal cycler (Applied Biosystems). Actb was used to
normalize the RNA content of samples.

Enzyme-linked immunosorbent assay

PB was obtained from mice postmortem by cardiac puncture using hep-
arinized syringes and centrifuged to obtain plasma. G-CSF plasmalevels were
measured using Quantikine ELISA kits according to the manufacturer’s
instructions (R&D Systems).

Equations and statistical analyses

Significance of differences was analyzed using Student ¢ test. A difference
between experimental groups was considered significant when the P value
was <.05. All statistical analyses were calculated with Prism software
(GraphPad Software, version 5.01).

Results

LPS-induced emergency granulopoiesis requires intact
MYD88-mediated TLR signaling in nonhematopoietic cells

To examine whether MYDS88 expression within hematopoietic or
nonhematopoietic cells is required for LPS-induced emergency gran-
ulopoiesis, we generated BM chimeric mice with MYD88 expression
restricted to either the hematopoietic (wild-type [WT]—»Myd88_/ )or
the nonhematopoietic cellular compartment (Myd88'~—WT) as
well as respective control mice (WT—WT and Myd88 '~ —Myd88™"")
(Figure 1A). We IP-injected chimeric mice with high doses of LPS to
mimic severe systemic infection (Figure 1A) and analyzed typical
surrogate hallmarks of emergency granulopoiesis. Although absolute
leukocyte counts did not change significantly in PB upon LPS stim-
ulation (data not shown), the frequency and absolute numbers of PB
CD11b™ cells significantly increased in WT—WT mice (Figure 1B). This
response was completely absent in Myd88 ' —Myd88~'~ mice,
indicating that LPS-induced elevation in PB CD11b™ cells depends on
MYD88 signaling. Strikingly, although WT—>Myd887/ " mice were also
completely nonresponsive toward LPS, Myd88~~—WT mice showed
a normal LPS response (Figure 1B). Next, we analyzed the BM of
chimeric mice after LPS treatment. We found that total BM cell numbers
are significantly decreased upon LPS stimulation in WT—WT mice
(Figure 1C). The reduction of BM cellularity is mediated in a MYDS88-
dependent manner because Myd88 '~ —Myd88 '~ mice did not show
this response. This depends on MYDS88 expression within non-
hematopoietic cells because Myd88~'~—WT mice responded nor-
mally but WT—Myd88 '~ mice lacked this response (Figure 1C). A
characteristic feature of emergency granulopoiesis is a significant,
relative, and absolute decrease in BM CD11b" Gr1"&" mature
neutrophils (Figure 1D-E). This response is paralleled by a significant
relative increase in BM CD11b " Gr1'¥ immature neutrophils®* > and
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Figure 1. LPS-induced emergency
granulopoiesis requires intact MYD88-
mediated TLR signaling in nonhema-

Experimental outline
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a trend toward an absolute increase in BM CD11b"Gr1'®” immature ~ alone is sufficient to induce a response indistinguishable from

neutrophils. These reciprocal changes in BM CD11b*Gr1"" mature
neutrophils and BM CD11b" Gr1'®" immature neutrophils after LPS
injection require intact MYDS88 signaling in nonhematopoietic cells
(Figure 1D-F).

Although various cytokines such as granulocyte-monocyte colony-
stimulating factor (GM-CSF), macrophage colony-stimulating factor,
interleukin-6, and G-CSF have the capacity to stimulate both steady-
state as well as emergency granulopoiesis, none of these cytokines
is absolutely essential.'**5?° However, G-CSF plays an out-
standing role in these processes as demonstrated in studies of
G-csf~'~ and G-csfr '~ mice showing hematopoietic defects in
steady state, and most importantly, upon infection.'***! Notably,
administration of recombinant G-CSF is routinely used to treat
iatrogenic®” and congenital®* neutropenia. Furthermore, G-CSF

LPS-induced emergency granulopoiesis.”>** We therefore as-
sessed G-CSF plasma levels in BM chimeric mice after LPS
stimulation. We found highly significant increases in plasma
G-CSF levels in WT—WT and Myd88~'~—WT mice (Figure 1G).
By contrast, Myd88~'~ >Myd88~'~ and WT—>Myd88™ '~ mice
did not show elevated plasma G-CSF levels. Thus, LPS-triggered
G-CSF release requires intact Myd88 within nonhematopoietic
cells.

To corroborate our findings on the importance of nonhemato-
poietic cells for the initiation of emergency granulopoiesis and to
further rule out a role for tissue-resident macrophages for this
process, we generated LysM-Cre;Myd88™" mice with a Myd88
deficiency restricted to myeloid cells including macrophages.®® In line
with the results on hematopoietic chimeric animals, we observed that
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Figure 2. LPS-induced emergency granulopoiesis is abrogated in Tie2-Cre;Myd8
control Myd88", and experimental Nes-Cre;Myd88™, Pdgfrb-Cre;Myd88™, Alb-Cre;Myd8s™, and Tie2-Cre;Myd88" mice. (B) BM cellularity after LPS stimulation in control Myd8sg™,
and experimental Nes-Cre;Myd88"", Pdgfrb-Cre;Mydg8™, Alb-Cre;Myd88™, and Tie2-Cre;Myd88"™ mice. (C) Representative FACS profile showing characteristic LPS-induced
changes in BM CD11b*Gr1"9" mature and BM CD11b*Gr1"" immature neutrophils in control Myd88"™, and experimental Nes-Cre;Myd88"", Pdgfrb-Cre;Myd88™, Alb-Cre;Myd8g™™,
Oand Tie2-Cre;Myd88"" mice. (D) Frequencies and absolute numbers of BM CD11b*Gr1"9" mature and (E) BM CD11b"Gr1'°" immature neutrophils, and (F) plasma
G-CSF levels in the different sets of tissue-specific Myd88~'~ mice after systemic LPS injection. Black squares, PBS-injected mice; red squares, LPS-injected mice; rel.,
relative; abs., absolute. Data from at least 3 independent experiments are shown. Two-tailed Student ¢ tests were used to assess statistical significance (*P < .05, **P < .01,

***P < .001).

LysM-Cre;Myd88™™ mice are fully capable to launch emergency
granulopoiesis (supplemental Figure 1, available on the Blood Web site).

Altogether, our results on MYD88 and previous data on TLR4>
unambiguously show that LPS-induced emergency granulopoiesis
is initiated through TLR agonist sensing and MYD88-dependent
signaling by nonhematopoietic cells.
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To unravel the identity of the nonhematopoietic cell type critical for
emergency granulopoiesis, we used Cre-loxP recombination technol-
ogy to delete Myd88 from various candidate nonhematopoietic cell
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populations to study their relative contribution to pathogen sensing
(supplemental Table 1). To achieve MydS88 deletion in cells of the BM
microenvironment (Nestin™ mesenchymal stem cells and perivascular
stromal cells), we used Nes-Cre’®>® and Pdgfrb-Cre®® mice. Cells
belonging to the vasculature (ECs and pericytes) were targeted using
Tie2-Cre*® and Pdgfrb-Cre®® mice, respectively. We also employed
Alb-Cre*! mice to target hepatocytes as a candidate parenchymal organ
cell type. First, we assessed the LPS response in PB of control and tissue-
specific Myd887/7 mice. We observed that the frequency and absolute
numbers of PB CD11b" cells significantly increased in LPS-injected
Myd88™ control, Nes-Cre;Myd88™, Pdgfrb-Cre;Myd88™", and
Alb-Cre;Myd88™" mice, whereas Tie2-Cre;Myd88™™ mice lacked
the response (Figure 2A). The majority of PB CD11b™ cells could be
identified as neutrophils based on coexpression of Ly6-G, whereas PB
CD11b " Ly6-C" inflammatory monocytes showed a relative de-
crease but overall stable absolute numbers (supplemental Figure 2).
Next, we investigated the BM response toward LPS. Not only did we
observe a decrease in BM cellularity in LPS-injected Myd88™ control,
Nes-Cre;Myd88™", Pdgfrb-Cre;Myd88™", and Alb-Cre;Myd88™™ mice

(Figure 2B), we also revealed a reduction in the frequency and absolute
number of BM CD11b*Gr1"&" mature neutrophils (Figure 2C-D).
Although the percentage of BM CD11b*Gr1" immature neutrophils
was highly significantly increased, there was only a minor increase in
absolute numbers that, likely because of the higher variation in BM
cellularity, did not always yield statistical significance (Figure 2C,E).
Strikingly, Tie2-Cre;Myd88™ mice were nonresponsive toward sys-
temic LPS injection, with the exception of a small but significant
decrease in BM cellularity that was, however, significantly reduced in
magnitude compared with the other groups of mice (Figure 2B-E). In
line with these findings, G-CSF levels increased massively, up to
100-fold, in control and respective tissue-specific Myd88~'~ mice
with the exception of Tie2-Cre;Myd88™™ mice that lacked a signifi-
cant rise in plasma G-CSF concentration (Figure 2F).

ECs express high levels of Myd88 and Tir4 and respond to LPS
challenge with strong upregulation of VCAM-1 and G-csfin vivo

Our findings suggested that ECs, which are targeted in Tie2-Cre mice,
are the cells within the nonhematopoietic compartment responsible
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Figure 4. Endothelial cells are effectively targeted
in Tie2-Cre-loxP-GFP reporter mice and are the
main source of G-csf after in vivo LPS stimulation.
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for sensing LPS, translating this signal into G-CSF release, and
consequently initiating emergency granulopoiesis.

To assess expression of 7/r4 and MydS88 in ECs, we isolated CD45 ™
Ter119-CD31" ECs from BM, heart, lung, liver, spleen, and kidney and
compared these with pooled spleen classical and plasmacytoid dendritic
cells with defined TLR expression patterns.*> No immunophenotypical
differences were observed between ECs from different organs with
respect to the endothelial markers VE-cadherin, CD105, CD34, and
Scal (data not shown). Myd88 and Tlr4 were abundantly expressed in
ECs at similar or higher levels compared with dendritic cells, ie, cell
populations known for their TLR expression profile (Figure 3A-B).

To analyze the functional relevance of 7ir4 and MydS§8
expression in ECs, we injected mice with LPS or PBS (Figure 3C);
isolated ECs from BM, heart, lung, liver, spleen, and kidney; and
assessed G-csf transcripts by quantitative real-time PCR. Although in
the PBS-injected steady-state mice, G-csf was only detectable at very
low levels, LPS injection resulted in a strong upregulation of G-csf
(up to several hundred-fold) in ECs from all organs analyzed
(Figure 3D). Interestingly, G-csfinduction was relatively highest in
ECs from BM (ie, the primary site of hematopoiesis). However, it
needs to be emphasized that this does not necessarily imply that
absolute G-CSF amounts produced are also highest in this tissue.
Transcription and protein production do not always correlate, and
quantity of protein produced in a given organ will also depend on
frequency of producing cells at site.

To test whether there might be heterogeneity in the responsive-
ness toward LPS within different sections of the vasculature, we
analyzed the activation status of ECs upon systemic LPS stimulation
by measuring VCAMI cell-surface expression.43 However, we did
not detect differences between ECs isolated from different tissues
and, importantly and in line with the observed nonresponsiveness,
VCAMI upregulation on ECs was abrogated in Tie2-Cre;Myd88™™
mice (Figure 3E and data not shown).

To confirm that disrupted MYDS88 signaling in Tie2-Cre; Myd88™"
mice does not affect G-CSF signal transduction and consequently
impairs emergency granulopoiesis, we injected Myd88™® and Tie2-
Cre;Myd88™™ mice with recombinant human G-CSF (Figure 3F). In
accordance with our previously published data on G-CSF effects in
Tird™'~ mice,23 we observed that G-CSF alone without an additional
inflammatory stimulus is sufficient to accurately mimic emergency
granulopoiesis (Figure 3G-I and data not shown).

Given the possibility of insufficient tissue specificity of Cre-loxP
technology, we generated Tie2-Cre-loxP-GFP reporter mice to study
the effectiveness and specificity of EC targeting. To this end, we iso-
lated nonhematopoietic cells from BM, heart, liver, kidney, spleen,
and lung and analyzed both GFP and expression of the EC marker
CD31 by FACS (Figure 4A-D). In accordance with previously
published reports,*” we found that the vast majority of ECs (approxi-
mately 90%) were efficaciously targeted in Tie2-Cre-loxP-GFP reporter
mice. This pattern was robustly observed in all tissues analyzed, except
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Figure 5. Endothelial cell-intrinsic MYD88 signaling is required to stimulate accelerated neutrophil production, myeloid progenitor lineage skewing toward
granulocyte-macrophage progenitors (GMPs), and increased CFU-G activity in vivo. (A) Graphical scheme depicting experimental outline to induce LPS-induced
emergency granulopoiesis and to assess BrdU incorporation. (B) Representative FACS profile showing BrdU incorporation in in BM CD11b™Gr1"9" mature and BM
CD11b*Gr1'" immature neutrophils in control Myd88"", and Tie2-Cre;Myd88"" mice during steady-state and LPS-induced emergency granulopoiesis. (C) Frequencies of
BrdU* BM CD11b*Gr1"" mature and (D) BrdU® BM CD11b*Gr1'®" immature neutrophils in PBS- or LPS-injected Myd88"" and Tie2-Cre;Myd88"" mice. (E)
Representative FACS profile showing myeloerythroid progenitors in control Myd88"", and Tie2-Cre;Myd88"" mice during steady-state and LPS-induced emergency
granulopoiesis. (F) Frequencies of Lin~cKit*Sca1~FcgR*CD34" GMPs in PBS- or LPS-injected Myd88"" and Tie2-Cre;Myd88"" mice. (G) Absolute CFU numbers
per 1 hind leg in control Myd88"" and Tie2-Cre;Myd88"™" mice during steady-state and LPS-induced emergency granulopoiesis (CFU-G, CFU granulocyte; CFU-M, CFU
macrophage; CFU-GM, CFU granulocyte/macrophage; CFU-GEMM, CFU granulocyte/erythrocyte/macrophage/megakaryocyte; BFU-E, burst-forming unit erythrocyte). Black
squares, PBS-injected mice; red squares, LPS-injected mice. Data from 2 independent experiments are shown. Two-tailed Student t tests were used to assess statistical
significance (*P < .05, ***P < .001).

for the lung, where we found a higher fraction of CD31" cells within
the CD45 Terl19 GFP  fraction (Figure 4B-D). Furthermore, we
observed that about 20% (with some variations between the different
tissues) of CD45 Terl 19" GFP™ cells in Tie2-Cre-loxP-GFP reporter
mice do not express the EC marker CD31 and thus, presumably, are
not ECs (Figure 4B-C).

To evaluate the role of these CD45 Ter119”GFP"CD31 ™ cells
for the initiation of emergency granulopoiesis, we injected Tie2-Cre-

loxP-GFP reporter mice with LPS, sorted the CD31 " EC and CD31~
non-EC fractions of the CD45 Terl19”GFP" nonhematopoietic
compartment and compared G-c¢sf expression by quantitative reverse-
transcription PCR as a surrogate marker for the ability of the respective
cell type to stimulate emergency granulopoiesis (Figure 4A). There
was no difference in steady-state G-csf expression between both
cell fractions (data not shown), whereas after LPS injection, G-csf
expression in CD45 Ter119”GFP*CD31" ECs was always
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significantly higher (2- to 5-fold) than in the CD45 Ter119~ GFP™"
CD31  non-EC fraction in all organs analyzed (Figure 4E). Thus,
given the 4-fold higher numbers of CD45 Ter119”GFP*CD31™"
ECs vs CD45 Ter119”GFP*CD31 ™~ non-ECs and the 2- to 5-fold
higher amount of G-csfexpression in CD45 ™ Ter119”GFP*CD31*
ECs vs CD45 Ter119” GFP*CD31 ™~ non-ECs, we infer that most
(>95%) of G-CSF derived from ECs and, importantly, Tie2-Cre
mice, are a valid tool to assess ECs within the nonhematopoietic
compartment.

Collectively, ECs are equipped with the functional machinery
to detect LPS and are indeed the dominant G-CSF—producing cell pop-
ulation upon systemic LPS challenge, sufficient to induce emergency
granulopoiesis.

EC-intrinsic MYD88 signaling is required to stimulate
accelerated neutrophil production, myeloid progenitor lineage
skewing toward granulocyte-macrophage progenitors, and
increased CFU-G activity in vivo

Next, we assessed neutrophil generation in the BM of Myd88"™

and Tie2-Cre;Myd88™™ mice in the steady state and during LPS-
induced emergency granulopoiesis (Figure 5A). During 12 hours,
approximately 10% and 50% of BM CD11b" Gr1™&" mature and
BM CD11b"Gr1'™" immature neutrophils incorporated BrdU into
newly synthesized DNA in PBS-injected control and Tie2-Cre;
Myd88™™ mice, respectively (Figure 5B-D). After LPS injection,
there was a significant increase in BrdU incorporation in Myd88™™
mice in both BM CD11b* Gr1"#" mature and BM CD11b* Gr1'*"
immature neutrophils. However, this increase was absent in LPS-
injected Tie2-Cre;Myd88"" mice (Figure 5B-D). These results
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demonstrate that neutrophil turnover is significantly accelerated
upon LPS stimulation, and that this response is dependent on EC-
intrinsic MYD88 signaling.

We also analyzed the myeloid progenitor compartment in
steady-state and LPS-injected Myd88"™ and Tie2-Cre; Myd88™™"
mice. In accordance with previously published results,** we observed
an increase in the percentage of Lin cKit"Scal “FcgR"CD34"
granulocyte-macrophage progenitors (GMPs) upon LPS stimulation
in Myd88™™ mice. This response was absent in Tie2-Cre;Myd88™™
mice (Figure 5E-F). These data demonstrate that LPS induces a
lineage bias at the HPC level in favor of enhanced granulopoiesis.

Finally, we determined the CFU activity in BM from steady-state
or LPS-injected Myd88™™ and Tie2-Cre;Myd88™™ mice. After LPS
injection, there was a significant increase in the overall number of
CFUs in Myd88ﬂ/ﬂ mice. Notably, this increment was due to an
increase in CFU-granulocyte (CFU-G) with no changes in the
number of other CFU types. Importantly, this response was absent
in LPS-treated Tie2-Cre;Myd88™™ mice (Figure 5G).

Taken together, these data unambiguously demonstrate that,
besides its many known biological effects, including stimulation of
hematopoietic stem cell division*® and of neutrophil migration and
recruitment to inflamed tissues,'*'> LPS stimulates emergency
granulopoiesis via MYD8S signaling in ECs.

EC-intrinsic MYD88 signaling is required to efficiently stimulate
emergency granulopoiesis during systemic E coli infection

To evaluate whether MYDS88 signaling in ECs is also important to
initiating emergency granulopoiesis in a far more complex setting
of infection with living bacteria, we performed experiments with
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Figure 7. Model for pathogen sensing and subsequent translation into emergency
granulopoiesis. (1) Gram-negative bacteria and/or their structural components that
have gained access to the systemic circulation are recognized by TLR4-expressing
endothelial cells (2), thereby indicating an emergency state. Upon TLR4/MYD88 signaling
in endothelial cells, G-CSF is released in large quantities (3). In the bone marrow,
endothelial cell-derived G-CSF acts on myeloid precursors expressing the G-CSF
receptor resulting in enhanced generation, accelerated turnover, and increased neutrophil
release from the bone marrow to the systemic circulation (4). These neutrophils are
recruited to the site of infection (5) where they participate in clearing the pathogen (6).

E coli. First, we titrated the E coli dose necessary to elicit a similar
quantitative response in WT mice as observed with the LPS dose
used in prior experiments. We determined this dose to be 4.5 X 10°
E coli CFU given IP per WT mouse (supplemental Figure 3A-E).
In parallel, we also infected Myd88~'~ mice. Although these mice
showed some response to E coli, the responses were severely and
highly significantly reduced compared with WT mice for the entire
previously assessed readouts characteristic for emergency granulo-
poiesis (supplemental Figure 3A-E). Importantly, the minor MYD88-
independent responses upon E coli infection are also independent of
G-CSF because there was no significant rise in plasma G-CSF
levels in Myd887/7 mice (supplemental Figure 3E).

Next, we infected control Myd88™™ and Tie2-Cre;Myd88"" mice
with E coli (4.5 X 10® CFU per mouse). We observed the same pattern,
with Myd88ﬂ/ﬂ mice showing the same response as WT mice, and Tie2-
Cre;Myd88™™ mice showing a minor, in comparison with Myd88™™ mice
significantly reduced response. This indicates that EC-intrinsic MYD88
signaling is required to induce full-blown emergency granulopoiesis
also upon live E coli infection (Figure 6A-E). The minor response
observed in Tie2-Cre;Myd88"™ mice in an infection with live bacteria
might not be surprising because in this far more complex situation,
in contrast to exclusive LPS-mediated stimulation, other pattern-
recognition receptor agonists and additional tissue damage also might
activate alternative, independent signaling pathways. Notably,
however, plasma G-CSF levels did not rise above steady-state
levels in Tie2-Cre;Myd88™" mice, revealing ECs to be major
sources of G-CSF also during infection with E coli (Figure 6E).

ENDOTHELIUM GUIDES EMERGENCY GRANULOPOIESIS 1401

To test whether TLR adaptor TRIF might partially compensate
for the severely diminished E coli-induced emergency granulopoi-
esis in Myd88~'~ and Tie2-Cre;Myd88™™ mice, and to determine the
relative contribution of each pathway to it, we infected WT, Tlr4 '~
Myd88~'~, and Trif '~ mice with 4.5 X 10® E coli CFU IP. We
observed that both Tlr4 '~ and Myd88~'~ mice show an equally
reduced ability to launch emergency granulopoiesis compared
with WT mice. By stark contrast, 7rif '~ mice responded to E coli
(supplemental Figure 4) with emergency granulopoiesis, as did
WT mice. These data demonstrate that TRIF is dispensable for the
initiation of emergency granulopoiesis.

In summary, our findings demonstrate that abrogated
MYDSS signaling in ECs leads to severely defective emergency
granulopoiesis upon E coli infection.

Discussion

We addressed here the fundamental question of which cell types act
as primary sensors of bacterial dissemination during severe infection
and consequently induce the switch from steady-state to demand-
adapted emergency granulopoiesis.

Two general models have been proposed for how pathogen sensing
and translation into emergency granulopoiesis may be achieved.”®
According to the concept of indirect hematopoietic activation, tissue-
resident macrophages might serve in this critical function*®*’
because they indeed express pattern-recognition receptors, and, after
respective stimulation, produce granulopoietic growth factors.*8>"
But data from stringent in vivo experimentation supporting this
model are lacking. Alternatively, several recent studies suggested
a model of direct hematopoietic activation based on the observation
that mouse and human HSPCs express TLRs and that TLR agonist
stimulation leads to enhanced myelopoieisis.'¢'**! However, these
studies used either in vitro'® or very specific in vivo experiments such
as adoptive HSPC transfer under the renal capsule,'® direct injection
of HSPCs into Staphylococcus aureus—infected wounds,' or pre-
treatment with chemotherapeutic agents and ionizing radiation>
to convey their respective proposed model. By contrast, we have
demonstrated that pathogen sensing by both immature HSPCs and
mature hematopoietic cells, including macrophages, is dispensable
for the acute process of emergency granulopoiesis in 3 independent
and complementary experimental approaches. First, in both hema-
topoietic Tlr4 '~ chimeric mice®® and hematopoietic Myd88 '~
chimeric mice, emergency granulopoiesis is indistinguishable from
that in WT mice. Of note, we and others could show that BM
chimeric mice are an appropriate tool to broadly dissect biological
effects contributed by either hematopoietic or nonhematopoietic
tissues by confirming that tissue-resident macrophages, although they
are able to locally self-renew in the steady state,>> are replenished by
donor-derived cells after lethal irradiation.”** Second, liposomal
clodronate-mediated macrophage-depleted WT mice launch
undiminished emergency granulopoiesis upon LPS stimulation.?®
Third, as shown here, mice with a Myd88-deficiency in the myeloid
compartment, most importantly macrophages (LysM-Cre;Myd88™™
mice), respond normally toward LPS with emergency granulopoiesis.

To determine the identity of the nonhematopoietic cell types re-
quired for the initiation of emergency granulopoiesis, we undertook
an extensive genetic targeting approach using Cre recombinase—
mediated tissue-specific Myd88 ablation. Specifically, we targeted the
nonhematopoietic BM microenvironment (Nestin ™ mesenchymal stem
cells and perivascular stromal cells) using Nes-Cre*®>® and Pdgfib-Cre®
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mice. These cells have been shown to be part of the hematopoiesis-
supporting BM microenvironment.>® Vascular cells (ECs and
pericytes) were targeted using Tie2-Cre®" 38493 and Pdgfrb-Cre®
mice, respectively. In addition, we used Alb-Cre*' mice to target
hepatocytes as a candidate prototypic parenchymal cell type. Our
data revealed that ECs express high amounts of T/r4 and Myd88 and
respond to systemic LPS stimulation or E coli infection with massive
upregulation of the primary granulopoiesis-supporting growth factor
G-CSF. Most importantly, mice with a Myd88 deficiency in ECs
do not respond with emergency granulopoiesis upon systemic LPS
stimulation and have a severely defective response toward E coli
infection. The E coli—driven MYD88- and G-CSF-independent minor
responses in Myd88 '~ and Tie2-Cre;Myd88™™ mice are likely
triggered by activation of alternative, redundant pathways that evolved
to secure this critical response. Of interest, a recent study showed that
granulopoiesis after antibody-mediated neutrophil removal depends
on TLR4/TRIF signaling.>® We therefore studied whether a similar
feedback regulatory mechanism via TLR4/TRIF might account for
the residual emergency granulopoiesis observed in E coli-infected
Myd88~'~ and Tie2-Cre; Myd88"™ mice. However, we observed that
TLR4 signal transduction via TRIF is dispensable for the induction
of E coli-driven emergency granulopoiesis as Trif '~ mice show
a response that is indistinguishable from those in WT mice.

Because congenital®® or iatrogenic®> forms of neutropenia are
associated with a high incidence of lethal infectious complications, it
seems very likely that the ability to induce emergency granulopoiesis
per se has a live-saving role in massive infection. However, direct
experimental evidence for this notion is lacking and future studies
will need to dissect emergency granulopoiesis from neutrophil
recruitment to inflamed tissues and neutrophil effector functions,
which together ensure host survival during bacterial infection.

Given the general caveat of lack of absolute tissue specificity in
the Cre-loxP system, we have analyzed Tie2-Cre-loxP-GFP reporter
mice. In accordance with the literature,”**4%>* Tje2-Cre mice are
an excellent tool to genetically manipulate ECs, but, of note, there is
also a small fraction of other (ie, non-EC and nonhematopoietic) cells
targeted in Tie2-Cre mice. However, we have addressed this issue
experimentally by analyzing the G-CSF response in non-ECs in
these mice and could exclude a relevant contribution of these
nonhematopoietic, non-EC cell populations to the overall emer-
gency granulopoiesis response.

Interestingly, the versatile and critical function of endothelium is
an emerging aspect in hematopoiesis research. It has recently been
demonstrated that ECs are an important constituent of the BM
microenvironment. Using a similar genetic tissue-specific deletion
approach, ECs were shown to be major sources of stem cell factor’’
and CXCL12,%%* 2 molecules that are involved in HSPC main-
tenance and their BM retention, respectively. Our results now show
that ECs are not only critical for the regulation of steady-state
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hematopoietic maintenance but are also essential for demand-
adapted hematopoiesis in response to the paradigmatic gram-negative
bacteria—derived compound LPS and the clinically relevant pathogen
E coli. In conjunction with previously published data on the
importance of TLR signaling in ECs for neutrophil recruitment to
inflamed tissues,'*'> our findings reveal a sophisticated degree of
functional interplay between the vascular, the hematopoietic, and the
immune systems, which have a common developmental root and
might thus be understood as 1 functional organ.’®*” Of note, our
findings also confirm and extend prior landmark observations on
the importance of nonhematopoietic cell-derived hematopoietic
growth factors.’®> Although these seminal studies established
arole for nonhematopoietic cells as a major source of hematopoietic
growth factors, they, because of technical limitations at that time,
were unable to identify the precise identity of this cell type that we
now show to be ECs.

ECs are ideally positioned to mark the threshold of local vs
systemic infection, and using ECs as safeguards seems a very
plausible, danger-adapted defense strategy established in evolution.
In summary, based on the data presented here, we propose a model
(Figure 7) in which ECs are critical for pathogen sensing and
subsequent induction of emergency granulopoiesis.
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