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Over the past 5 years, many novel ap-
proaches to early diagnosis, prevention,
and treatment of acute graft-versus-host
disease (aGVHD) have been translated
from the bench to the bedside. In this
review, we highlight recent discoveries in
the context of current aGVHD care. The
most significant innovations that have
already reached the clinic are prophylaxis
strategies based upon a refinement of our

understanding of key sensors, effectors,
suppressors of the immune alloreactive
response, and the resultant tissue dam-
age from the aGVHD inflammatory cas-
cade. In the near future, aGVHD prevention
and treatment will likely involve multiple
modalities, including small molecules
regulating immunologic checkpoints,
enhancement of suppressor cytokines
and cellular subsets, modulation of the

microbiota, graft manipulation, and other
donor-based prophylaxis strategies. De-
spite long-term efforts, major challenges
in treatment of established aGVHD still
remain. Resolution of inflammation and
facilitation of rapid immune reconstitution
in those with only a limited response to
corticosteroids is a research arena that
remains rife with opportunity and urgent
clinical need. (Blood. 2014;124(3):363-373)

Introduction

Acute graft-versus-host disease (aGVHD) is a frequent and at times
unpredictably severe inflammatory complication of allogeneic hema-
topoietic cell transplantation (HCT). Despite over 5 decades of ex-
tensive laboratory and clinical investigation into methods to prevent
severe aGVHD, this complication remains a significant cause of
morbidity and mortality in allogeneic HCT recipients. Each year,
~6800 patients undergo HCT (Center for International Blood &
Marrow Transplant Research [CIBMTR] data), and the majority will
suffer some manifestations of aGVHD. Several advancements have
led to novel aGVHD detection, prophylaxis, and treatment methods.
In this review, we highlight aGVHD advancements in the context of
current care. With many new modalities that target host and donor
responses under investigation, an era of multimodal, personalized
immunomodulation in HCT may emerge. However, significant
challenges to elimination of aGVHD remain. These include devel-
oping treatment regimens that retain infectious immunity and graft-
versus-tumor effects, as well as identification of effective therapy for
steroid-refractory aGVHD.

The classic description of aGVHD pathophysiology begins with
activation of host antigen-presenting cells (APCs) by danger signals
expressed on damaged tissues (damage-associated molecular patterns
[DAMPs]) and/or pathogens (pathogen-associated molecular patterns
[PAMPs], eg, lipopolysaccharide).! Activated host APCs then
present host antigens to donor T cells, leading to alloactivation and
inflammatory cytokine release. These inflammatory cytokines then
recruit and induce proliferation of additional immune effector cells,
perpetuating the cycle of alloreactive tissue injury and inflamma-
tion. Although a simplified description of the complexity un-
derlying graft-versus-host (GVH) interactions,? it is the established
foundation for disentangling the pathways involved. A more detailed
overview of each phase of acute GVHD (the initiation, lymphocyte
trafficking, expansion and effector, and treatment phases) will

serve as background for emerging, novel diagnostic and therapeutic
approaches.

Initiation phase

The initiation phase of aGVHD broadly involves triggers and sensors
of GVH reactions (Figure 1). Many aGVHD triggers have been
identified, with the most critical being disparities in major histo-
compatibility antigens (reviewed in detail by Petersdorf®). HLA-
matched donors are not available for all eligible HCT recipients,
making the identification of permissive mismatches of clinical
interest. Several high-risk HLA allele mismatch combinations
associated with severe aGVHD have been identified,* although
a provocative update suggests that HLA allele mismatches have
had a lesser impact on outcomes in recent years (2002 and beyond)
compared with HCT pre-2002.° Recently, the identification of
amino acid substitutions at peptide-binding pockets of HLA class I
molecules HLA-B and HLA-C has been associated with increased
GVHD risk.® This report suggests that unrelated donor selection
might be enhanced by avoiding donor/recipient amino acid sub-
stitutions at positions 99 and 116 of HLA-C, and at position 9 of
HLA-B.° In addition, avoiding mismatches at low expression loci
(HLA-DP, DQ, and DRB3/4/5) could help further reduce adverse
outcomes in 7 of 8 mismatched unrelated HCT.” Minor histo-
compatibility antigens (miHAs) are also implicated as GVHD
triggers, particularly in HLA-matched siblings. The best-described
miHA differences involve immune responses against Y-chromosome—
encoded antigens elicited in female to male HCT, leading to the
preferential selection of male donors.® Differences in autosomal
miHA, especially HA-8 mismatches in related donor HCT, have
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Figure 1. Initiation phase of aGVHD.
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also been associated with aGVHD.? Finally, donor/recipient dif-
ferences in killer immunoglobulin-like receptor (KIR) and KIR-
ligand interactions can alter the risk of aGVHD,'® adding complexity
to the immunogenetic determinants.

Several nongenetic triggers of aGVHD have been identified,
predominantly danger signals: DAMPs and/or PAMPs. DAMPs
include extracellular matrix components, adenosine triphosphate
(ATP), and uric acid. Heparan sulfate, a component of extracellular
matrix and endogenous Toll-like receptor 4 (TLR4) agonist, can
promote alloreactive T-cell responses, is elevated in both murine
and human GVHD, but is not increased by tissue damage related
to conditioning.!' Heparan sulfate levels and GVHD severity could
both be reduced by o 1-antitrypsin treatment in a murine model.'' ATP
released by dying cells can also induce inflammatory responses, and
ATP neutralization or blockade of its receptor on immune cell subsets,
P2X;R, reduced experimental GVHD.'? Uric acid can actas a DAMP,
leading to NLRP3 inflammasome-mediated interleukin-13 (IL-13)
production, a key cytokine involved in aGVHD pathophysiology. '
In addition to endogenous danger signals, bacterial'* and viral'®
PAMPs can both contribute to the inflammatory milieu. The role of
danger signals and pattern recognition receptors in GVHD has been
recently reviewed.'® Interestingly, not all PAMPs cause detri-
mental immune responses in aGVHD. Flagellin, a component of
bacterial flagella and TLRS agonist, has been shown to reduce
GVHD while enhancing immune reconstitution in experimental
HCT."

APCs are the predominant sensors of GVHD-initiating signals.
APCs capable of contributing to GVH reactions include residual
host hematopoietic APCs that remain viable after the conditioning
regimen, host nonhematopoietic APCs, and donor APCs trans-
ferred with the allograft. Because they are central to the initiation of
GVHD,'®"? targeting host APCs is an attractive GVHD prevention
strategy. However, recent animal models have challenged this
dogma, as depletion of host dendritic cells (DCs),%° Langerhans
cells,?' and B cells®® failed to prevent experimental GVHD. In
contrast, depletion of host macrophages from lymphoid organs was
shown to exacerbate GVHD, revealing an unexpected protective
role.? Therefore, it has been unclear which APC subsets are most

* Donor hematopoietic APCs

critical for the initiation phase of aGVHD. Recent evidence
suggests that nonhematopoietic APCs are the most potent GVHD
inducers by 100- to 1000-fold, rendering host and donor pro-
fessional hematopoietic APCs redundant or at least nonessential in
GVH reactions.* How to apply prophylaxis strategies related to
this recent finding is not yet known.

Lymphocyte trafficking, expansion, and
effector phase

The net result of the initiation phase of aGVHD is the cytokine
response made by sensors resulting in recruitment and activation of
donor T cells which home to secondary lymphoid organs (nodes plus
submucosal gastrointestinal and pulmonary sites) and proliferate.
The effector phase of aGVHD consequently begins when cytolytic
donor effector T cells, neutrophils, natural killer cells (NKs), NK
T cells (NKTs), and macrophages begin to cause end-organ damage
in a reaction that overwhelms any tolerance-promoting response
from suppressor cells (Figure 2). Donor T cells are the best-studied
effectors of aGVHD, and most prophylaxis and treatment strategies
are aimed at attenuating their function. T-cell activation requires 2
stimulatory signals. First, the T-cell receptor (TCR) must be engaged
and recognize antigens in the context of HLA. Recently, a small
population of T cells expressing dual TCRs, potentially resulting
from stochastic processes during thymic selection, was found to be
disproportionately responsible for alloreactivity in human GVHD.*
Next, T cells must receive adequate costimulation from APCs to
become activated and acquire effector functions. Many costimula-
tory ligand/receptor interactions and their involvement in aGVHD
have been described, including the B7/CD28/CTLA4, CD30/CD30L,
CD40/CD40L, OX40/0X40L, and ICOS/ICOS-L pathways (recently
reviewed by Briones et al>®). Once activated, these alloreactive T cells
can proliferate and migrate in response to an inflamed environment®’
and the activation of chemokine receptors, including CCR2,%®
CCR5,% CCR6,* and CCR7*' among others (reviewed by Kittan
and Hildebrandt®?). Homing of activated T cells to target tissues
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Figure 2. Expansion, trafficking, and effector phase
of aGVHD.

may yield change in these cell subsets in the peripheral blood. For
example, fewer circulating CCR6" T cells have been observed in
patients with aGVHD due to homing toward CCL20" target
tissues.*® Similarly, fewer circulating CD8*CD45RA 37 integrin "
T cells have also been observed in allogeneic HCT recipients
experiencing gastrointestinal GVHD,>* although increased memory
CD8 " a4p7 integrin™ T cells have also been observed at the onset of
aGVHD.* Naive donor T cells are central for clinical aGVHD
manifestations.*®*” Memory T-cell subsets are less alloresponsive and
do not appear to initiate GVHD to the same degree.**** However,
even if less important as initiators of aGVHD, memory T cells may
perpetuate GVH reactions.*!

Other immune effector cells have inflammatory roles in the
pathophysiology of aGVHD, including neutrophils, NKTs, NKs,
B cells, and mononuclear phagocytes, although their individual
contributions to aGVHD reactions in humans can be difficult to
isolate. Neutrophils engraft rapidly after allogeneic HCT and are
secondary effectors of GVHD, recruited into target organs by
cytokines including IL-8.** Indirect evidence supports an inflamma-
tory role of neutrophils in GVHD given the observation of increased
rates of acute and chronic GVHD with granulocyte colony-
stimulating factor administration post-HCT.**** Regarding NKs,
bioluminescence studies have demonstrated rapid trafficking and
homeostatic proliferation of NKs in a manner similar to allogeneic
T cells after infusion, although NKs did not cause GVHD in this
model.** Classically, NKs have been implicated as a component
of the effector phase in descriptions of GVHD pathophysiology,*®
although in clinical HCT, an increased allograft NK dose is asso-
ciated with less severe aGVHD,*’ possibly due to host APC depletion
by donor NKs. A contribution from B cells in the pathogenesis of
human aGVHD is possible considering reports of a reduced incidence
of aGVHD with B-cell depletion*®*® and reduced risks of chronic
GVHD after rituximab-containing conditioning regimens.>® Finally,
activated macrophages can be observed colocalized with T cells in
areas of highest macrophage migration inhibitory factor expression in
GVHD target organs,”’ adding to the cytolytic effector-induced tissue
damage during this phase of aGVHD.
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Conversely, several cell populations have been demonstrated to
function as suppressors of GVH reactions, dampening inflammation
and promoting tolerance. Intense current investigation involves
regulatory T cells (Tregs), with extensive preclinical and emerging
clinical reports of their function in prevention and treatment of
aGVHD.”>>* Tregs are CD4" T cells that function to suppress
runaway immune responses mediated by mature APCs and effector
T cells.>® Mechanisms of Treg suppression of GVHD are pleiotropic
and only partially known, but include downregulation of aGVHD-
associated TLR5 expression.”®>” Another recently described CD4*
T-cell subset, T helper 9 (Th9) cells, secrete IL-9 and dampen
interferon-y—mediated GVHD while preserving graft-versus-tumor
effects in a murine model.>® Whether this subset can suppress human
aGVHD is not yet known. Myeloid-derived suppressor cells (MDSCs)
can also mitigate GVHD via multiple mechanisms.”>* Finally, even
though these subsets have potential pathogenic roles in aGVHD,
NKs,%! NKTs,%? B cells,®® and macrophages?® can also play toler-
ogenic roles in HCT, which adds further complexity to the land-
scape of effectors and suppressors of aGVHD.

The final components of the effector phase of aGVHD are cyto-
kines. They can amplify or attenuate GVH reactions, and the balance
between proinflammatory and anti-inflammatory cytokines (as opposed
to differing concentrations of a single cytokine) shapes the overall
milieu and GVHD response (reviewed by Reikvam et al®*). The
prototypic effector cytokines in aGVHD are tumor necrosis factor
a (TNF-), IL-1B, and IL-6, although IL-17,%° IL-23,% and Th2
cytokines®’ can also enhance the inflammatory milieu, depending
upon organ involvement and other factors.

During the effector phase of aGVHD, inflammation escalates
rapidly and target tissues are damaged. The inflammatory cascade
and continued tissue damage can lead to release of biomarkers of
aGVHD into the circulation, reflecting both effector activation and
tissue injury. These biomarkers include soluble CD30 from activated
T cells,®® elafin (skin-specific),%® regenerating islet-derived 3-a
(REG3; gut-specific),”® suppressor of tumorigenicity 2 (ST2; a mem-
ber of the IL-1 receptor family-binding IL-33),”" microRNA,”* and
others (reviewed by Paczesny’>), even before the onset of clinical
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Figure 3. Treatment phase of aGVHD.
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Treatment phase

At present, clinicians rely on history, physical examination, and
routine clinical laboratory parameters to determine when treatment
of aGVHD must commence. The classic target organs of aGVHD
are the skin (severity ranging from maculopapular rash to eryth-
roderma and bullae formation), the gastrointestinal tract (resulting in
nausea, vomiting, abdominal cramps, and/or diarrhea), and the liver
(resulting in hyperbilirubinemia, jaundice, and/or elevated trans-
aminases). The hematopoietic system can also be targeted, resulting in
complete donor lymphohematopoietic chimerism and the graft-versus-
tumor response against hematologic malignancies. Endothelium,”*”
lungs, and other organs can also be targeted, although skin, gut, and
liver involvement are the only organs scored in the current grading
system.”® Clinical laboratory clues regarding the onset of aGVHD
frequently include lymphopenia,”” eosinophilia,”® thrombocytopenia,”®
and hypoalbuminemia.”” Histologic confirmation is routinely ob-
tained to rule out opportunistic infections or other alternate ex-
planation for the clinical symptoms, though the classic (mostly
apoptotic) histologic findings of aGVHD are somewhat nonspecific
and can be mimicked by conditioning regimen injury, infections,
and other syndromes. Noninvasive imaging modalities that visualize
processes at the cellular level may be a component of future GVHD
diagnostic and monitoring techniques, but are not reliably accepted
or available at the moment.’*3! The decision to treat is based upon
severity of symptoms, with grade 1 skin involvement typically treated
only with topical corticosteroids. For those requiring systemic
therapy, the standard first-line treatment is oral or IV corticosteroids.

Once treatment begins, 3 primary immunologic outcomes are
possible: the aGVHD inflammatory response (1) is completely re-
solved after therapy, (2) partially responds clinically, but incom-
pletely resolves immunologically, leading to what may be a persistent
state of “injurious resolution,”®* or (3) progresses despite therapy
(Figure 3). It is not entirely known how steroids resolve aGVHD, but
their lympholytic effects as well as alteration in cell adhesion

molecules and chemokines in target organs are involved in reducing
signs of GVHD.® Symptoms can regress rapidly (within days),
unless the patient is refractory, and plasma biomarkers of aGVHD
respond accordingly.®* Reduction in lymphocyte and monocyte
counts may be expected to a degree with corticosteroid therapy,
although severe leukopenia (<200 cells/wL) and a major (median
10-fold) decrease of total circulating leukocytes during acute GVHD
treatment are associated with a significantly lower likelihood of
response to first-line therapy.®® In the wake of severe aGVHD, many
patients are left with compromised hematopoietic and immune
function, endothelial damage,86 and an increased risk of death even
if without ongoing aGVHD signs and symptoms.®” In these patients,
chronic GVHD can emerge through a variety of incompletely under-
stood mechanisms that may include failure of NKs to eradicate CD4 ™
cells undergoing constant antigenic stimulation.®®

It is difficult to predict at the onset of aGVHD who will respond
fully or partially to first-line therapy, or who will be refractory.
Approximately half of patients will not achieve a sustained com-
plete response of aGVHD to first-line therapy with steroids,®” and
timely determination of steroid nonresponse is important for
institution of salvage therapies. Those at higher risk of treatment
failure have been identified clinically as those with hyperacute
GVHD,9O sex-mismatched HCT,90 or with a certain constellation
of organ involvement.”' A recently described biomarker, ST2, the
receptor for IL-33,”" correlates with resistance to initial GVHD
therapy and death.®” During uncontrolled inflammation in refractory
disease, additional rising biomarkers of epithelial cell death can be
observed,”” macrophages heavily infiltrate into the skin in response to
continued inflammation,’ and the chance of long-term survival drops
dramatically. Survival is poor in steroid-resistant aGVHD, ~15% at
2 years.90

Update in prevention and treatment
Prophylaxis

Based upon extensive preclinical studies in canines, post-
HCT methotrexate (MTX) was the first widely used GVHD
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prophylaxis drug in clinical HCT,”® followed by cyclosporine
(for historical perspective of early trials, see review by Vogelsang
et al”®). MTX and cyclosporine exert their antiproliferative effects on
donor T cells by interfering with purine synthesis and calcium-
dependent signal transduction pathways downstream of the TCR,
respectively. Tacrolimus, with mechanism of action similar to
cyclosporine, came to the fore in the 1990s showing similar or supe-
rior efficacy to cyclosporine in prospective, comparative trials’” and
now is widely used in clinical HCT.

Today, the backbone of most T-cell replete conventional
aGVHD prophylaxis regimens includes 2 drugs: (1) a calcineurin
inhibitor plus (2) MTX or mycophenylate mofetil (MMF), the latter
used more frequently in nonmyeloablative regimens and umbilical
cord blood transplants.”® Steroids are typically not used as
prophylaxis due to lack of proven benefit.”® Sirolimus, a mammalian
target of rapamycin inhibitor, has also been demonstrated to have an
impact in the treatment and prophylaxis of aGVHD. Comparison
between sirolimus/tacrolimus to standard MTX/tacrolimus in a
single-center study demonstrated an improved rate of aGVHD-free
survival in the first 100 days posttransplant (43% vs 89%, P < .001).'®
However, a multicenter, randomized phase 3 trial comparing these
2 regimens (Blood and Marrow Transplant Clinical Trials Network
[BMT CTN] clinical trial 0402) did not show a significant difference in
the primary end point of 114-day aGVHD-free survival. Furthermore,
an increase in endothelial injury syndromes was observed in the
sirolimus/tacrolimus arm, particularly following busulfan-containing
conditioning.'°!+192

Additional methods of GVHD prophylaxis include T-cell deple-
tion (ex vivo, ie, CD34™ positive selection or through T-cell subset
depletion methods targeting CD3, a-B T cells,'® or in vivo via
administration of antithymocyte globulin or alemtuzumab). Graft
manipulation by CD34 selection decreases the numbers of T cells in
the graft by several logs, although this alone does not completely
abrogate aGVHD. This is particularly important in haploidentical
HCT, where further immune modulation is required to avoid lethal
GVHD given the significant HLA mismatch. High-dose cyclophos-
phamide (Cy) administered after stem cell infusion is currently used
commonly in this setting, relying on the premise of direct lytic
depletion of rapidly proliferating T cells with concomitant sparing of
stem cells and regulatory T cells, possibly due to differential aldehyde
dehydrogenase expression (higher in stem cells and Tregs).'®* This
simple in vivo graft manipulation is able to break the HLA barrier by
allowing the infusion of haploidentical donor cells with similar or
reduced rates of aGVHD compared with transplants using HLA-
matched grafts.'%>1¢

The results of these studies, as well as the results of 3 recently
published novel though preliminary aGVHD prophylaxis trials,
have prompted new multicenter comparative clinical trials. First,
a phase 1/2 study of maraviroc, a CCRS5 inhibitor that blocks
lymphocyte chemotaxis while preserving effector functions, demon-
strated very low rates of grade II-IV acute GVHD (~15%) and no
visceral GVHD at day 100 post-HCT in 35 evaluable patients.'”
Infection and relapse rates were not significantly increased. Next,
addition of bortezomib, an NF-kB—inhibiting immunomodulator,
given on days +1, +4, and +7 in addition to standard tacrolimus
and MTX in mismatched unrelated donor HCT, resulted in a day
180 cumulative incidence of grade II-IV aGVHD of 22%, notable
given the mismatch donor source.'®® Finally, a phase 1/2 study of
vorinostat, used for its tolerogenic effects on APCs'% and apo-
ptotic effects on alloreactive T cells,"'® given from 10 days prior
to transplant through day +100 in addition to the backbone of
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tacrolimus and MMF-based prophylaxis, resulted in a grade II-1V
aGVHD rate of only 22% by day 100.'!!

Based upon the above studies, the BMT CTN is implementing 2
trials to identify optimal prophylaxis approaches. The first is in the
setting of reduced-intensity conditioning, comparing 3 novel ap-
proaches: addition of maraviroc or bortezomib to a tacrolimus/MTX
platform vs posttransplant Cy follow by tacrolimus/MMF. This trial
(BMT CTN 1203) is a phase 2 trial that will compare the outcomes
of a novel composite end point of GVHD-free, relapse-free survival
to a contemporaneous control population receiving tacrolimus/MTX
identified from the CIBMTR database. The second trial (BMT CTN
1301) is a 3-arm phase 3 that compares 2 approaches without
calcineurin inhibitors (CD34™ cell selection and posttransplant Cy)
to a standard tacrolimus/MTX approach in HLA-matched HCT
using myeloablative conditioning. These 2 trials are part of the
PROGRESS (Prevention and Reduction of GVHD and Relapse and
Enhancing Survival after Stem Cell Transplant) initiative in the
BMT CTN.

At present, several GVHD prophylaxis trials are ongoing,
including sirolimus, cyclosporine plus MMF prior to nonmyeloa-
blative HCT (NCT01251575), ustekinumab (IL-12/23 antagonist)
in addition to a tacrolimus/sirolimus backbone (NCT01713400),
bortezomib in addition to cyclosporine/MTX in pediatric HCT
(NCT01926899), brentuximab vedotin (targeting CD30) in addition
to tacrolimus plus MTX for mismatched HCT (NCT01700751),
atorvastatin (NCT01665677), CD45RA™ (naive) T-cell graft depletion
(NCT01858740), extracorporeal photopheresis (NCT01174940),
gene-modified donor T cells for haploidentical HCT (NCT01494103,
NCT01744223), inducible Tregs (NCT01634217), and a-f3 T-cell
depletion (NCT01810120). With many mechanisms to target
in different HCT settings, it is unlikely that a 1-size-fits-all approach
to aGVHD prophylaxis will be adopted in the near future.
Importantly, promising results from phase 2 studies nearly always
need broader testing in a multicenter comparative setting, such as in
the US National Heart, Lung, and Blood Institute/National Cancer
Institute/National Institute of Allergy and Infectious Diseases
sponsored BMT CTN.

Initial therapy of aGVHD

The standard treatment of patients requiring systemic therapy is
corticosteroids at a daily dose of 2 mg/kg,''? although there
appears to be little detriment to a lower daily dose of 1 mg/kg for
overall grade 1-2 aGVHD' 3! thereby sparing some of the side
effects of high-dose steroids for milder disease. The determina-
tion of steroid-responsive or refractory disease should be made
within a few days of initial therapy, recognizing nonresponse after
7 to 10 days and progression even sooner if the patient is clearly
worsening 3 to 4 days after the start of high-dose steroids.''> The
optimal duration of steroid therapy is unknown, but should be
limited if possible to avoid side effects of long-term administra-
tion. The preferred rate to taper steroids for aGVHD has been rarely
studied,''® but tapering limits have been included in some pro-
spective trials."'” For trial purposes, important clinical end points
for control of aGVHD include the day 28 response,''® day 56
aGVHD-free survival,''® and 6-month freedom from treatment
failure,"'? as well as rates of cGVHD, nonrelapse mortality, and
survival. In an effort to safely improve responses to first-line
steroid therapy, the BMT CTN recently conducted 2 clinical
trials: BMT CTN 0302 and 0802. In BMT CTN 0302, patients
were randomized to receive 1 of 4 immunomodulatory drugs in
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Table 1. Emerging approaches for the prevention and treatment of aGVHD
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Treatment or pathway Potential mechanism(s) of action Level of evidence References
Small molecules
PKC inhibitors, such as R524 (Rigel Inhibition of PKCa/6, proteins that maintain Preclinical (mouse) Sotrastaurin being 125,126
Pharmaceuticals), and sotrastaurin (Novartis) immunologic synapse between APC and investigated in solid organ transplant clinical
effector T cell trials
Sphingosine 1-phosphate receptor agonist Modulates DC function and lymphocyte efflux from  Preclinical (mouse) 127
FTY720 (fingolimod; Gilenya secondary lymphoid organs, enhancement of
Pharmaceuticals) endothelial barrier function
Hypomethylating agents azacitidine and Induction of FOXP3 expression Preclinical (mouse) phase 1/2 clinical 128,129
decitabine
Retinoic acid signaling Reduction of T-cell homing, reducing Th1 Preclinical (mouse) 130
differentiation, inducing Tregs
Tim-3/Gal-9 pathway Increased activation-induced T-cell death in the Preclinical (mouse) 131
absence of Tregs
PDL-1 pathway Coinhibitory molecule, conversion of Th1 cells to  Preclinical (mouse) 132
Tregs
IDO Rate-limiting enzyme in tryptophan (required for Preclinical (mouse, human) 133,134
T-cell proliferation) metabolism
Arginase-1 L-arginine depletion, reducing T-cell signaling and  Preclinical (mouse) 59
inflammatory cytokines
TLR/MyD88 signaling inhibitors Interfere with danger signaling, especially via Preclinical (mouse) 135
inhibitory oligonucleotides against TLR9, to
reduce inflammation
Notch/notch ligand inhibitors Detal-like1/4 (notch ligand) inhibitor given Preclinical (mouse) 136
peritransplant prevented GVHD, while Notch 1
inhibitor lead to intestinal toxicity
Cytokine/growth factor modulation
JAK/STAT inhibition Reduction in inflammatory cytokines Preclinical, case report 137,138
IL-17 downregulation Curcumin downregulates IFNy and IL-17 Preclinical (mouse) 139
production, ameliorating aGVHD
IL-21 blockade Enhances generation of inducible Tregs Preclinical (mouse) 140
IL-22 augmentation Protective factor for intestinal stem cells under Preclinical (mouse) 141
immune attack
IL-28 blockade Reduces inflammatory cytokines, T-cell trafficking, Preclinical (mouse) 66,142
gut protection Case report, phase 2 (ongoing)
Cell-based therapies
MSCs Suppress immune effector functions, secrete Phase 3, not yet reported in peer-reviewed 124,143
cytokines/growth factors for tissue repair and literature (NCT00366145)
angiogenesis, can be obtained from related
donors or third party
MAPCs No expression of classical HLA class | markers Preclinical (mouse) 144,145
(distinct from MSC), suppress T-cell activation
via prostaglandin E2 synthesis, but only if
colocalized with T cells at sites of activation
Tregs Expanded from umbilical cord blood, reduced Phase 1 54,146
aGVHD grade II-1V incidence from 61% to 43%
in double UCB HCT (historical control); in
haploidentical-related donors, Tregs reduced
GVHD and enhanced immune reconstitution
TRAIL" T cells Cytolytic mechanism against both tumor cells and  Preclinical (mouse) 147
alloreactive T cells
NKs GVHD protection only conferred if infusion was Preclinical (mouse) 148
derived from Ly49-mismatched donor
NKTs Invariant NKTs attenuated murine GVHD in Preclinical (mouse) 149
association with increased IL-2, IL-4, and IL-5
levels
DCs Tolerogenic DCs enhanced immunosuppressive Preclinical (mouse) 150
cytokines in circulation, increased Tregs
MDSCs L-arginine depletion, contact-dependent Preclinical (mouse) 59

immunosuppression

IDO, indoleamine 2,3 dioxygenase; IFN, interferon; JAK, Janus kinase; KGF, keratinocyte growth factor; MAPC, multipotent adult stromal cell; PDL, programmed death
ligand; PKC, protein kinase C; STAT, signal transducer and activator of transcription; TRAIL, TNF-related apoptosis inducing ligand; UCB, umbilical cord blood.
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Table 1. (continued)
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Treatment or pathway Potential mechanism(s) of action Level of evidence References
Microbiota
a-defensins Antimicrobial peptides secreted by intestinal Preclinical (mouse) 151
Paneth cells, a target of GVHD
Physiologic diversity GVHD causes increase in Lactobacillales and Preclinical (mouse and human) 152
decreases in Clostridiales, resulting in loss of
physiologic diversity in gut bacteria
Candida colonization Patients colonized with Candida spp. had an Preclinical (human) 153
increased incidence of grade II-IV GVHD
(50% vs 32%)
a-galactosylceramide (RGI-2001; Regimmune)  Produced by microbiome, can bind C1d and Preclinical (mouse) 154,155
activate NKTs, induce Tregs Phase 1/2a (ongoing)
Donor-based immunomodulation
KGF (palifermin) Epithelial, including thymic cytoprotection, Preclinical (mouse) 156,157
inflammatory cytokine response, skewing
toward Th2 cytokine response, although there
was no reduction in GVHD when recipients were
treated with palifermin in a phase 1/2 clinical trial
Statins Retrospective study demonstrated reduced grade  Preclinical (mouse, human) 158

-V GVHD in related HCT from statin-treated

donors

Phase 2 (ongoing)

IDO, indoleamine 2,3 dioxygenase; IFN, interferon; JAK, Janus kinase; KGF, keratinocyte growth factor; MAPC, multipotent adult stromal cell; PDL, programmed death
ligand; PKC, protein kinase C; STAT, signal transducer and activator of transcription; TRAIL, TNF-related apoptosis inducing ligand; UCB, umbilical cord blood.

combination with steroids as first-line therapy: etanercept, MMF,
denileukin diftitox, or pentostatin.'?® In this study, the day 28
complete response rate for MMF was 60%, compared with 26%
for etanercept, 53% for denileukin, and 38% for pentostatin.
Therefore, MMF was selected as the agent of choice to be com-
pared with placebo in a phase 3 trial, BMT CTN 0802. However,
in 0802, addition of MMF did not improve outcomes compared
with steroids alone for first-line therapy.''” At present, there are
few registered trials of treatment of aGVHD, and they are often
uncontrolled phase 1-2 pilots. For grade I/Il aGVHD, a trial of
cannabidiol is ongoing (NCTO01596075), and for grades II-1IV
aGVHD, a trial of novel histone deacetylase inhibitor LBH589
(NCTO01111526) is ongoing.

Refractory and steroid-resistant aGVHD

Refractory aGVHD remains a vexing problem and leads to poor
prognosis. It is a broad category that includes different clinical
scenarios, usually requiring escalation of immunosuppressive
therapy. Minimal, delayed, or absent response to first-line corti-
costeroids defines steroid-resistant aGVHD, as does inability to
maintain aGVHD control upon tapering corticosteroid therapy.
There is no standard treatment of refractory GVHD, however,
anti-thymocyte globulin (ATG) or TNF inhibitors are most frequently
used clinically, along with the other agents tested in BMT CTN 0302
(pentostatin, MMF, or denileukin diftitox). Although used clinically,
agents such as ATG and pentostatin have a very low durable complete
response rate (20% or less).'>"'?* Other immunosuppressants avail-
able include anti-IL-2 receptor—, anti-IL6 receptor—, anti-CD20—, and
anti-CD52—targeted therapies. There is some data in support of
extracorporeal photopheresis'>® and infusion of mesenchymal
stromal cells (MSCs)'?* in refractory aGVHD. Current clinical trials
available for the treatment of steroid-refractory aGVHD include
a combination of basiliximab plus infliximab (combined target-
ing of the IL-2 receptor and TNFa, NCT01485055). tocilizumab
(targeting the IL-6 receptor, NCT01475162, NCT01757197), al
antitrypsin (NCT01523821, NCT01700036), and brentuximab vedotin
(NCT01596218).

Emerging approaches

Many additional novel aGVHD prevention and treatment strategies
are undergoing preclinical study or clinical development based upon
a deeper understanding of the complex immunologic processes
involved. These treatments include small molecules that target
different checkpoints in the aGVHD cascade, cytokine/growth
factor milieu-based therapies, cell-based therapies, alteration of host
microbiota, infusion of Tregs or other suppressor populations, as
well as new approaches to tolerize donor cells prior to collection. A
summary of these new approaches is detailed in Table 1 (Brunstein
et al,>* Highfill et al,>® Das et al,% Valenzuela et al'*>-Rotta et al'>®).
Several of these have reached the early clinical trial stage or will be
clinically tested in the coming years.

Conclusion

Many new components of the aGVHD cascade have recently been
identified, and translation of findings from bench to bedside has
been faster than ever. Although prevention of aGVHD is clearly an
important goal, finding new methods to resolve established aGVHD is
critically needed today. Compared with prophylaxis studies, relatively
fewer models dealing with the complicated problem of resistant
aGVHD exist. Clinical features plus biomarkers may identify those
most likely to fail and thereby classify those most suitable for study
of intensified early treatment. Novel tolerance induction regimens
that systematically and durably reprogram immune responses may
become possible with ongoing research efforts. Identifying toler-
izing factors and methods of manipulating microbiota may represent
additional options for adjunctive aGVHD therapy that can be
rapidly translated into clinical trials. Finally, more in-depth study
of how to rescue patients from the cycle of incompletely resolved
inflammation, where organ function has improved, but poor
graft and immune function persist in the wake of severe aGVHD,
remains an unmet need. Although we have seen significant
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innovation in methods to approach aGVHD in recent years, much
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work remains.
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