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Key Points PML/RARA, a potent transcriptional inhibitor of nuclear receptor signaling, represses
myeloid differentiation genes and drives acute promyelocytic leukemia (APL). Associ-

¢ PML/RARA loss or
detachment from target
promoters suffices to
differentiate APL cells.

* PML/RARA degradation by
arsenic thus explains arsenic-
induced differentiation.

ation of the retinoid X receptor-a (RXRA) coreceptor to PML/RARA is required for
transformation, with RXRA promoting its efficient DNA binding. APL is exquisitely
sensitive to retinoic acid (RA) and arsenic trioxide (arsenic), which both trigger cell
differentiation in vivo. Whereas RA elicits transcriptional activation of PML/RARA targets,
how arsenic triggers differentiation remains unclear. Here we demonstrate that extinction
of PML/RARA triggers terminal differentiation in vivo. Similarly, ablation of retinoid X
receptors loosens PML/RARA DNA binding, inducing terminal differentiation of APL cells
ex vivo or in vivo. RXRA sumoylation directly contributes to PML/RARA-dependent

transformation ex vivo, presumably by enhancing transcriptional repression. Thus, APL differentiation is a default program triggered
by clearance of PML/RARA-bound promoters, rather than obligatory active transcriptional activation, explaining how arsenic elicits
APL maturation through PML/RARA degradation. (Blood. 2014;124(25):3772-3780)

Introduction

Acute promyelocytic leukemia (APL) is characterized by gene
fusions involving retinoic acid receptor-a (RARA) gene. The most
common t(15;17) translocation fuses PML to RARA, yielding the
PML/RARA fusion oncoprotein. PML, the key organizer of nuclear
bodies (NB), is involved in redox sensing and hence confers
sensitivity to arsenic.'” PML/RARA is a potent transcriptional
repressor of retinoic acid (RA) signaling that interferes with gene
expression programs involved in both hematopoietic progenitor self-
renewal and terminal myeloid cell differentiation.*> Treatment of
APL patients with RA induces terminal differentiation and transient
remissions. Mechanistically, this is believed to reflect transcriptional
reactivation of PML/RARA-silenced genes by RA, the ligand
for RARA and PML/RARA.® whereas RA-triggered PML/RARA
degradation accounts for loss of self-renewal.”® Arsenic definitively
cures a substantial proportion of patients as a single agent.”'' Ex vivo
studies have demonstrated that arsenic primarily induces apoptosis
of APL cells,'? although subsequent studies demonstrated partial
and complete differentiation ex vivo and in vivo, respectively.'®
Molecularly, arsenic degrades PML/RARA but otherwise does not
directly affect transcriptional regulation by RARA, raising the issue of
the basis for differentiation.'*'> Arsenic also acts on normal PML to
promote loss of self-renewal, likely explaining its clinical potency.”!6

In normal cells, RARA is always associated with retinoid X
receptors (RXRs) the universal partners of type II nuclear receptors
to bind their responsive elements. RA binds to retinoic acid receptors
(RARs), inducing conformational changes within the RXR/RAR
complexes, thus resulting in enhancement of DNA binding, release
of corepressors, recruitment of coactivator complexes, and tran-
scriptional activation of target genes. The RA pathway plays an
important role in determining and regulating differentiation path-
ways such as myelopoiesis.'”® For example, RARA regulates the
kinetics of granulocytic differentiation,'® whereas RXRA promotes
monocytic differentiation.’” In contrast to RARA, PML/RARA
homodimers bind DNA independently of RXRs ex cellulo,?'*
suggesting than RXRs are not implicated in the transformation
process. RXR agonists, however, may activate transcription from
a PML/RARA-specific response element®>>* and may efficiently
initiate APL cell differentiation.***> RXRA interacts with PML/
RARA,*"*2? and chromatin immunoprecipitation (ChIP)-sequencing
studies demonstrate that RXRA is always found at PML/RARA-
bound promoters.>’>* The presence of RXRA in the PML/RARA
complex greatly enhances its ability to bind DNA and to recognize
highly degenerate sites.>""*> Additionally, RXRA may provide an
independent repression signal through its sumoylation, the latter
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being sharply enhanced by PML/RARA.>>*® Accordingly, a PML/
RARA mutant defective for RXR binding fails to initiate APL
in vivo,?® whereas silencing of RXRA induces apoptosis ex vivo.”!

Here, we show that RXR excision from PML/RARA-driven APL
relaxes association of the fusion and its target genes, inducing
terminal differentiation of leukemic cells. Inactivation of PML/
RARA by RNA interference also triggers differentiation. These
unexpected observations provide a mechanistic basis for arsenic-
induced APL differentiation.

Materials and methods

Cell culture and retroviral transductions

Complimentary (c)DNAs encoding PML/RARA and RARA were previously
described.?® The Cre-ERT2 cDNA was inserted in MSCV-IRES-cRed (kind
gift of R. Williams). The murine RXRA WT and RXRA K113R ¢cDNAs (kind
gift of C. Egly) were inserted in MSCV-Babe-IRES-cRed. The MSCV-
FLT3ITD-IRES-GFP construct was previously described.*® Short hairpin
(sh)RNA constructs were purchased from Sigma-Aldrich. The two shRNA
constructs targeting human PML (5'-CACCCGCAAGACCAACAACAT-3’,
5'-GTGTACCGGCAGATTGTGGAT-3’), were inserted into pLKO.1-
CMV-tGFP.

Bone marrow cells from 5-fluorouracil-treated mice (C57BL/6JRj)
depleted in mature myeloid and lymphoid cells were cultured overnight
with interleukin (IL)-3, IL-6 (10 ng/mL), and stem cell factor (100 ng/mL)
(Eurobio Abcys). Bone marrow progenitors were infected twice by
spinoculation with retroviral supernatant produced with Platinum-E cells. On
the day following the second spinoculation, an equivalent 5 X 10° cells was
seeded per 1.1 mL of Methocult M3231 methylcellulose medium (Stem Cell
Technologies) supplemented with 10 ng each of murine recombinant
IL-3, IL-6, granulocyte macrophage—colony-stimulating factor and stem
cell factor.”> One week after the initial infection, RXRA-expressing
mCherry-positive cells were sorted and replated. One week later, secondary
colonies were counted and cells were analyzed by May-Griinwald-Giemsa
(MGG) staining and western blot.

Cell cycle profiles were assessed using propidium iodide.

Protein and cell analyses

Cell lysates were resolved by sodium dodecyl sulfate—polyacrylamide gel
electrophoresis and transferred on nitrocellulose membranes. We carried out
detection with the chemiluminescent substrate SuperSignal West Pico or
Femto (Pierce Biotechnology). Antibody RP115 (RARA) was kindly provided
by P. Chambon, anti-RXRa D-20 was purchased from Santa-Cruz, and anti-
B-actin (20-33) and anti— glyceraldehyde-3-phosphate dehydrogenase (71.1)
were purchased from Sigma-Aldrich.

H1299 cells stably expressing HIS-SUMO1 or HIS-SUMO2 were
cotransfected (+) or not (—) with PML/RARA and RXR WT or K113R
mutant. HIS-sumoylated proteins were purified by nickel pull-down® and
probed with the corresponding antibodies. Cos-7 cells were cotransfected
with pSG5-RARA and pSG5-RXRA WT or pSG5-RXRA K113R constructs
and treated with 0.1 mg/mL cycloheximide (Calbiochem) and a solution of
1pM RA for 0, 1, 3, and 6 hours. RARA and RXRA stability were then
analyzed by western blot.

For flow cytometry analysis, cellular Fc receptors were blocked with
rat immunoglobulin G. We then carried out immunophenotypic analysis
using fluorochrome-conjugated monoclonal antibodies to Macl and Gr-1
(clone RB6-8-C5; eBioscience). Staining was done at 4°C for 20 minutes.
We washed the cells twice and resuspended them in Hanks balanced salt
solution with 2% fetal bovine serum and 0.5 pg/mL-1 propidium iodide.
We gated dead cells out by high propidium iodide staining and forward
light scatter. Immunofluorescences were performed using a homemade
antibody against PML.** For morphological analysis we performed MGG
staining.
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Transgenic mice and in vivo animal treatment

PML/RARA transgenic mice® were crossed with RXRA”" RXRB"*
RXRG ™/~ mice.*® Bone marrow progenitors from RXRA" RXRB™
RXRG ™'~ PML/RARA were infected with retroviruses encoding FLT3-
ITD, yielding a transplantable APL (Figure 2A). The latter was transduced by
retroviruses encoding Cre-ERT2, and the leukemias were then serially trans-
planted in NMRI-Nude mice. Animal handling was done according to the
guidelines of institutional animal care committees, using protocols approved
by the Comité Régional d’Ethique I’Expérimentation Animale No. 4. Mice
were treated with tamoxifen (4-OHT; Sigma-Aldrich) by daily intraperitoneal
injections, 1 mg/day for 5 days, and RA or arsenic as previously.*”

RT-gPCR, ChIP, and array experiments

Immortalized RARs ™/~ mouse embryonic fibroblasts (MEFs) were retro-

virally transduced with RXRA or RXRAKI113R in presence or absence of
PML/RARA and treated or not with RA (1 wM) overnight. Total RNAs were
isolated using the RNeasy kit (Qiagen) and first-strand cDNAs were
synthetized using the SuperScript III reverse transcriptase (Invitrogen).
Rarb and Act probes and primers for TagMan assays were from Applied
Biosystems. Quantification was performed by real-time quantitative
polymerase chain reaction (RT-qPCR) using the 7500 Fast Real-Time
PCR system.

ChIP was performed using the LowCell ChIP kit (Diagenode) according
to manufacturer’s recommendations, except that chromatin was first in-
cubated with antibodies overnight and then for 2 hours with beads. The
following antibodies were used: anti-GFP-FL and RXR AN 197 from Santa-
Cruz; and anti-H3, anti-H3 trimethyl K4, and anti-PML+RARA fusion from
Abcam. RT-qPCR was performed using the Fast SYBR Green Master Mix
(Applied Biosystems), and relative occupancy was calculated as fold
enrichment over the control antibody anti-GFP. Amplicon for Rarb on
chromosome 14: from 16 575 561 to 16 575 501; amplicon for Hoxal on
chromosome 6: from 52 153 671 to 52 153 580. RXRA- and RXRB-excised
DNAs were quantified as above. The Dpp9 gene was used as internal control.

Expression arrays and statistical analysis

RNA samples for array experiments were isolated as above and were hybridized
on Affymetrix Human or Mouse Gene 1.1 ST Arrays. Log2 measures were
obtained using robust multi-array average (RMA) normalization. The threshold
was 2 for humans and 1.8 for mice, unless otherwise indicated. Expression
profiles were normalized in batch and independently in each series using the
robust multi-array average method, yielding normalized log2 intensity
measures. Log2 ratios were then obtained from these log2 intensities,
using control samples as reference. To assess whether or not the genes
upregulated or downregulated in the two conditions (A and B) and to
determine whether or not they were significantly overlapping, we ranked
the genes for both conditions and performed a x test measuring the overlap
between the top N genes in condition A and the top N genes in condition B
(N ranging from 100 to 1200).

Results

RXRA sumoylation favors transformation of mouse primary
hematopoietic progenitors

PML/RARA enhances RXRA sumoylation.? Purification of
His-SUMOL1 or His-SUMO2 conjugates demonstrated that the PML/
RARA-enhanced RXRA sumoylation occurs on lysine K113 (data
not shown; Figure 1A). We observed higher RA-dependent
transcriptional activation of Rarb, a canonical RA primary target
gene,*® in MEFs transduced by RXRAK113R compared with RXRA
(Figure 1B, left panel), a finding in line with studies showing that
RXRA sumoylation contributes to transcriptional repression.>® We
also detected a higher RA-dependent transcriptional activation in
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Figure 1. RXRA sumoylation enhances PML/RARA-mediated immortalization. (A) Sumoylation profile of transfected RXRA WT or K113R in H1299 cells stably
expressing HIS-SUMO1 and expressing (+) or not (—) PML/RARA. (B) Analysis of rarb gene activation by RA (1 nM) in MEFs expressing RXRA or RXRA K113R in the
presence (Rars™’~ MEFs, right panel) or absence (MEFs, left panel) of PML/RARA. Error bars represent standard deviations of 3 independent biological replicates.
Significance of observed differences was evaluated using Student t test. *P < .05. (C) Progenitors transduced with murine RXRA WT or K113R and PML/RARA, RARA, or
MLL-ENL were analyzed for clonogenicity. Error bars represent standard deviations of 3 independent biological replicates. Significance of observed differences was evaluated
using Student ftest. *P < .05; **P < .01; ***P < .001. (D) Progenitors transduced with murine RXRA WT or K113R and PML/RARA, RARA, or MLL-ENL were analyzed for
morphology (bottom bar, 10 um; MGG stain). (E) Protein expression by western blot (black dividing lines show grouping of images from different parts of the same exposed
film). (F) Cos-7 cells coexpressing RARA and RXRA or RXRA K113R were treated with cycloheximide (0.1 mg/mL) and RA (1 pM) for the indicated time, and the half-life of

RXRA and RARA proteins was analyzed by western blot.

the presence of PML/RARA (Figure 1B, right panel) and argue that
RXRA sumoylation is involved in PML/RARA-dependent tran-
scriptional repression. Thus, PML/RARA-enhanced RXRA sumoy-
lation contributes to PML/RARA-mediated repression.

We then tested the ability of the sumoylation-defective RXRAK113R
mutant to modulate transformation of primary progenitors by PML/
RARA, RARA, or the MLI/ENL fusion,39 which does not directly inter-
act with nuclear receptor signaling. RXRA slightly diminished RARA-
or PML/RARA-triggered clonogenic activity (Figure 1C), most likely
through RARA or PML/RARA destabilization. RXRK113R reduced
clonogenic activity even further (Figure 1C-D), although it paradoxically
stabilized the driving oncoproteins. Moreover, a significant induction of
basal differentiation was observed (Figure 1E). In contrast, no effect of

RXRA or RXRAK113R was observed on MLL/ENL-transformed cells.
Directly measuring the half-life of RARA and RXRA on RA exposure,
we observed that RXRA sumoylation promotes their degradation
(Figure 1F). Thus, RXRA not only contributes to DNA binding of
the complex but its sumoylation also directly regulates PML/RARA-
dependent differentiation block and clonogenic activity.

RXRA loss induces differentiation and apoptosis

We next investigated the consequences of acute RXR ablation on
survival and differentiation. We crossed PML/RARA transgenic mice
driven by the MRP8 promoter®® with RXRA” RXRB" RXRG ™/~
mice.*® After backcrossing on the RXRA”" RXRB" RXRG ™/~
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Figure 2. RXR loss induces growth differentiation and apoptosis of PML/RARA-transformed cells. (A) Generation of RXRA” RXRB" RXRG ™~ PML/RARA FLT3-ITD Cre-ERT2

leukemia in mouse model. GFP-sorted spleen cells from leukemic mice were treated with 100

nM 4-OHT or 1 uM RA in culture and analyzed for cell cycle (B), PML/RARA expression (top bar,

10 wm) (C-D), and differentiation (E). RXRA” RXRB" RXRG '~ MLL/ENL Cre-ERT2 leukemia are shown as negative control (bar, 10 wm; MGG stain). IP, intraperitoneal; PI, propidium iodide.

mice, we obtained the PML/RARA transgene on a homozygous
background for the RXR floxed and null alleles. Because those mice
did notrapidly develop APL, we transduced their bone marrows with
a retrovirus encoding FLT3-ITD, a constitutively activated kinase that
accelerates progression to APL.***" Transduced marrows were trans-
planted in irradiated Nude mice, yielding aggressive APLs after
16 weeks that closely resemble previously studied ones (data not
shown). These APLs were then transduced with a retrovirus coex-
pressing Cre-ERT?2 and Cherry, yielding a transplantable APL in which
4-OHT induces ablation of both RXRA and RXRB (Figure 2A).

We first assessed the effects of RA and 4-OHT in ex vivo cultures of
these primary blasts from murine APLs. APL spleen cells proliferated,
even in presence of RA. Ablation of RXRs by 4-OHT induced cell

death (data not shown), as previously shown in ex vivo trans-
formed cells.?! Yet, loss of cell viability was not observed for MLL/
ENL-transformed cells (data not shown). Apoptosis induction by
4-OHT was confirmed by appearance of a sub-G1 peak (Figure 2B,
arrow). Although RA triggered PML/RARA degradation, RXR ab-
lation actually stabilized PML/RARA (data not shown; Figure 2C-D),
in keeping with the fact that RXRA facilitates RARA deg-
radation.*' Strikingly, 4-OHT treatment led to terminal differ-
entiation of APL blasts, very similar to that triggered by RA. In
contrast, the differentiation status of MLL/ENL-transformed cells
was unaffected by ablation of RXRs (Figure 2E). Thus, loss
of RXRs triggers apoptosis and differentiation of PML/RARA-
transformed cells.
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Figure 3. RXR loss induces in vivo differentiation. (A) Left panel: Survival of mice inoculated with APL cells derived from RXRA" RXRB" RXRG '~ PML/RARA FLT3-ITD
Cre-ERT2 mice, untreated or treated with 4-OHT. Right panel: Cherry-positive cells after 5 days of treatment. After 2 days of treatment with 4-OHT or RA in vivo, spleen cells
were GFP sorted and analyzed for RXRA and RXRB ablation (B), protein expression (black dividing lines show grouping of images from different parts of the same exposed
film) (C), differentiation by MGG staining (top bar, 10 um) (D), and flow cytometry (E-F).

We then investigated the effect of RXR ablation in vivo.
4-OHT treatment a few days before the death of untreated animals
inoculated with APL cells significantly increased survival
(Figure 3A, left) and led to rapid APL regression (Figure 3A,
right). When 4-OHT—treated mice ultimately died of APL, blasts
were primarily Cherry-negative, pointing to the selection of cells
that had silenced CRE (data not shown). In vivo ablation of RXRA
and RXRB with 4-OHT treatment was complete, as demonstrated
by qPCR. Unexpectedly, however, a basal spontaneous hemi-
ablation of RXRB was constantly noted (Figure 3B). At the protein
level, 4-OHT triggered the appearance of truncated RXRA-reactive
protein species but did not affect PML/RARA expression
(Figure 3C). Critically, terminal blast differentiation was again
observed 2 days post 4-OHT exposure in vivo (Figure 3D).
Morphologic differentiation was accompanied by loss of c-kit
expression and enhanced Mac1 and Grl expression (Figure 3E),
very similar to RA treatment (Figure 3F). Acute ablation of RXRs
in MLL/ENL-transformed cells in vivo did not induce differen-
tiation or tumor regression (data not shown). Thus, in vivo loss of
RXRs in APL blasts induces rapid terminal differentiation and
APL regression.

RXRA ablation detaches PML/RARA from its target sites

The presence of 4 DNA-binding domains in the PML/RARA-RXRA
complex greatly facilitates its DNA binding, notably on noncanonical
sites.”> We thus examined by ChIP whether 4-OHT would modify
the occupancy or the chromatin environment of two primary targets,
Rarb and Hoxal >’ Ex vivo, 4-OHT sharply decreased the amount of
RXRA and PML/RARA associated with their binding sites. The
remaining precipitated RXRA may be either residual full-length
RXRA or PML/RARA-bound truncated RXRA. A small decrease in
histone H3 was reproducibly observed, with a significant increase in
histone H3 K4 trimethylation (Figure 4A). These observations are
consistent with the proposal that, at least for a subset of targets,
RXRA loss is accompanied by reduced DNA binding of PML/
RARA and by transition of chromatin toward an active state.

To assess any global change in transcriptional regulation on RXR
ablation, we performed transcriptomic arrays comparing ex vivo
4-OHT and RA treatments of primary APL cells at4, 8, and 16 hours.
A set of genes was very reproducibly activated or repressed after RA
administration or ablation of RXRs in a time-dependent manner (as
shown in supplemental Figure 1 on the Blood Web site). Although
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Figure 4. RXR loss induces PML/RARA detachment from target genes. (A) APL
mice were treated or not for 48 hours ex vivo with 4-OHT. Immunoprecipitated DNA
with the indicated antibodies was analyzed by qPCR as indicated. Error bars
represent standard deviations of 3 independent biological replicates, and signifi-
cance was assessed using Student t test. *P < .05; **P < .01. (B) Comparison of
gene expression activation (left; 1.7-fold up) or repression (right; twofold down) after
16 hours of ex vivo treatment with 4-OHT (red) or RA (blue). See supplementary Figure 1
for primary data. (C) Tgm2 gene expression after 16 hours of ex vivo treatment with
4-OHT or RA (2 biological replicates).

genes induced or repressed by 4-OHT did not match the genes most
potently modulated by RA (supplemental Figure 1), a significant
association was found between genes repressed over twofold by either
treatment (Figure 4B), as well as between the 200 to 1000 top genes
activated or repressed by RA and 4-OHT (data not shown). RXR-
sensitive genes could not be identified as corresponding to a defined
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pathway. Finally, RXR ablation blunted the basal expression
levels of PML/RAR A-activated targets such as Tgm2 (Figure 4C).**
Collectively, these findings suggest that in APL, myeloid differen-
tiation occurs through a series of subtle transcriptional changes,
rather than through massive activation of a specific master pathway.

shRNA inactivation of PML/RARA triggers differentiation in vivo

To directly investigate the effect of PML/RARA loss in established
APL cells, we used lentiviral constructs expressing either a scrambled
shRNA or a shRNA specifically targeting human PML gene, thus
destabilizing PML/RARA expression without affecting murine pm!/
(data not shown). We transduced the vectors in murine APLs with
identical efficiency and re-injected them in irradiated recipients.
After 3 weeks, we observed a considerably lower proportion of GFP-
expressing cells in the marrows of shRNA targeting PML/RARA
compared with control shRNA mice (Figure 5A), formally
demonstrating that sustained PML/RARA expression is required for
APL growth. The majority of the remaining GFP-labeled cells
had lost PML/RARA microspeckled staining but, critically,
now displayed terminal granulocytic differentiation (Figure 5B-C),
demonstrating that in vivo, downregulation of PML/RARA ex-
pression promotes terminal myeloid differentiation.

Reassessing the basis for arsenic-induced differentiation

Similar to RXRA ablation or PML/RARA silencing, arsenic triggers
differentiation and apoptosis whose respective extents, however,
vary greatly with the experimental system used.'>'*!> To investigate
the role of arsenic-initiated PML/RARA loss in transcriptional
regulation, we first compared the mRNA expression profiles of
the NB4 APL cells treated with RA or arsenic. Upregulated and
downregulated genes in response to these two unrelated agents were
found to be extremely redundant (x° test; P < le-50), whatever the
time considered (Figure 5D top and 5E). Critically, a similar situation
was observed in APL mice (Figure 5D bottom, SE, and supplemental
Figure 2).” Thus, RA and arsenic regulate a common set of genes,
most likely by a promoter clearance mechanism.

Discussion

Our results demonstrate that RXRA and its sumoylation play a
key role in PML/RARA-initiated transformation. Unexpectedly, we
observed that loss of RXRs leads to the terminal differentiation of
APL blasts. Extinction of PML/RARA by RNA interference also
induced differentiation of APL blasts. Our results therefore imply
that promoter clearance is sufficient to differentiate APL cells, thus
explaining how arsenic induces myeloid maturation in vivo.
PML/RARA interacts with the SUMO E2 enzyme UBC9 through
its RING domain and enhances RXRA sumoylation.25 Here,
we demonstrate that PML/RARA-enhanced RXRA modification
occurs on lysine K113, blunts transcriptional activation and, critically,
favors the ex vivo transformation of primary mouse hematopoietic
progenitors. Thus, PML/RARA recruits the sumoylation machinery
onto RXRA to enhance repression by the PML/RARA-RXRA
complex. Such recruitment of the sumoylation machinery onto
chromatin may also be involved in the modification of other histone
or nonhistone proteins. Sumoylation of transcription factors and
histones is primarily responsible for transcriptional repression,* at
least in part by antagonizing activating marks such as acetylation
or ubiquitylation.** RXRA sumoylation—dependent decrease in
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Figure 5. PML/RARA extinction triggers APL
differentiation in vivo. Bone marrow APL blasts were

@ PML Sh RNA

50 - Ctrl

PML Sh RNA

infected with a GFP-expressing lentivirus encoding a
scrambled shRNA sequence (Ctrl) or an shRNA se-

40

GFP cells (%)

Mac1

12

quence directed against human PML and injected in
secondary recipients. Inoculated animals were analyzed
21 days after engraftment (6 mice, 2 independent
experiments) to determine the proportion of GFP-
positive cells in the marrow (A), PML/RARA or GFP
immunofluorescence (bottom bar, 10 um; arrow points

61

to differentiated GFP-positive cells with PML/RARA
extinction) (B), and fluorescence-activated cell sorter

30
20
10
0 -

D NB4 cell line 6h

PML Sh RNA

E
sample comparison down up
NB4 AR vs As ; 3h 0 ~1e-200
NB4 AR vs As ; 6h ~1e-60 ~1e-100
NB4 AR vs As ; 12h ~1e-12 ~1e-18
935 AR10 vs As ; 6h ~1e-120 ~0
935 AR100 vs As ; 6h ~1e-200 0
935 AR10vs As ; 12h ~1e-50 ~1e-80
935 AR100 vs As ; 12h ~1e-140 ~1e-130

chi2 test p values
(median p-value for the different thresholds N tested)

the transformation ability of PML/RARA is accompanied by the
paradoxical stabilization of the fusion. Moreover, RXRA sumoyla-
tion is an important determinant of basal or RA-induced RARA
degradation (Figure 1F). Retinoids or rexinoids induce the deg-
radation of the RARA/RXRA complex,®*' and posttranslational
modifications have been implicated in activation-triggered degrada-
tion of many transcription factors.*> Thus, RXRA sumoylation could
also be an important determinant of RXRA and RARA catabolism.
Previous studies have implicated RXRA in several aspects of
APL pathogenesis.>>*¢3!#6% To examine the cellular effects of
acute RXR loss, we designed a genetic system allowing excision
of both RXRA and RXRB in murine APLs. Administration of
4-OHT induced terminal differentiation together with apoptosis,
both ex vivo and in vivo. Loss of RXRs also initiated detachment of
PML/RARA from some target genes, supporting the observation that
the PML/RARA-RXRA complex that contains at least four DNA-
binding domains has an enhanced affinity for DNA compared
with PML/RARA homodimers.?? Moreover, acute RXRA excision
enhances H3 K4 trimethylation, a modification associated with
transcriptional activation. Although RXRA downregulation is re-
quired for granulocytic differentiation,'” we observed differentiation
with some monocytic features on RXRA ablation (Figure 2E).

6h in-vivo

> analysis of GFP-positive cells (C). (D) Gene expression
analysis 6 or 12 hours after RA (blue) or As,O3 (red)
treatment in human APL NB4 cell line (top row) or of APL
mice (bottom row). See supplemental Figure 2 for
representative data. (E) x? test P values (median P value for
the different thresholds tested: N = 100-1200) for associ-
ation of the upregulated and downregulated genes. Sample
935 refers to murine APLs; AR10 and AR100 indicate the
doses of RA administered.

NB4 cell line 12h

genes

Recruitment of the RXRA/RARA complex onto the RARB promoter
after RA-induced PML/RARA degradation was proposed to be key
for transcriptional reactivation and RA-response.’® In contrast with
this proposal, our observations of terminal differentiation upon RXR
excision do not favor a model in which transcriptional reactivation by
RARA/RXRA is essential for differentiation (Figure 6).
PML/RARA degradation is essential to loss of self-renewal,
whereas direct transcriptional activation is believed to trigger APL
differentiation.®”->">2 Our observations of terminal differentiation
on PML/RARA silencing or its detachment from its target promoters
suggest an alternative or a complementary model wherein impeding
PML/RARA binding to DNA suffices to initiate differentiation by
a promoter clearing mechanism (Figure 6). This model explains the
overlap between RA and arsenic targets and provides a molecular
mechanism for arsenic-induced APL differentiation in vivo.
PML/RARA has strong antiapoptotic effects® so that, in the
absence of survival signals, loss of PML/RARA triggers apoptosis
(Figures 2C and 6).*>*>> RA activates potent antiapoptotic genes such
as MCL1,>® allowing the progression of an unabridged differentiation
program ex vivo. In RXR-excised or arsenic-treated cells ex vivo, the
proapoptotic signals triggered by loss of PML/RARA DNA binding
are unopposed, precipitating cell death (Figure 6). Yet, growth factors

%20z KB 61 uo 3sanb Aq ypd z.2€/068Y9YLIZLLEIST/VE L /PA-BloIE/POO|q/ABU"SUOlEDIgNdyS.//:dlY WOy papeojumog



BLOOD, 11 DECEMBER 2014 - VOLUME 124, NUMBER 25

APL DIFFERENTIATION BY PROMOTER CLEARANCE 3779

Figure 6. Model. Loss of PML/RARA DNA binding c
through RXRA ablation, PML/RARA extinction, or RA/ 2 33
arsenic-triggered catabolism clears target genes from [ ) a
the PML/RARA repressor, triggering differentiation. PML/ Sags Transcriptional
RARA loss also induces apoptosis. The latter may be ‘ ; 1 REPRESSION
blocked by RA, growth factors, or the microenvironment. @
RARE, RA responsive elements. £ z PROMYELOCYTIC
| — DIFFERENTIATION
i~ Mm Mm BLOCK
| J—— A
/ \
RXR RA, Arsenic
excision Sh PML/RARA
PML-RARA

release from DNA

PML-RARA loss — APOPTOSIS

[

Transcriptional
DEREPRESSION

Promoter clearance

g e S e

N rare

enhance survival and promote terminal differentiation by arsenic ex
vivo.””® Qur results could thus explain the balance between treatment-
induced differentiation and apoptosis in arsenic-treated APLs.'*

Collectively, our studies establish that PML/RARA clearance not only
abrogates self-renewal”® but also suffices to initiate APL differentiation.
These findings demonstrate that APL maturation is a default program
and further unifies the mode of action of RA and arsenic.
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