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LYMPHOID NEOPLASIA
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Key Points

• The majority of mutations are
found in genes that have low
or no detectable biological
expression.

• Mutated genes often show
differential allelic expression
in multiple myeloma patient
samples.

Recent work has delineated mutational profiles in multiple myeloma and reported a

median of 52 mutations per patient, as well as a set of commonly mutated genes across

multiple patients. In this study, we have used deep sequencing of RNA from a subset of

these patients to evaluate the proportion of expressed mutations. We find that the

majority of previously identified mutations occur within genes with very low or no

detectable expression.Onaverage, 27% (range, 11% to47%) ofmutated alleles are found to

be expressed, and among mutated genes that are expressed, there often is allele-specific

expressionwhereeither themutantorwild-typeallele is suppressed.Even in theabsenceof

an overall change in gene expression, the presence of differential allelic expression within

malignant cells highlights the important contribution of RNA-sequencing in identifying

clinically significantmutational changes relevant toour understandingofmyelomabiology

and also for therapeutic applications. (Blood. 2014;124(20):3110-3117)

Introduction

Multiplemyeloma (MM) is an incurable neoplastic disease involving
the proliferation of monoclonal antibody producing plasma cells.1

MM is a heterogeneous disease but the hallmark genetic changes
include several genomic rearrangements, such as translocations in-
volving the IgH locus or hyperdiploidy.2 The pathogenic molecular
changes and the processes that drive genomic instability during the
development and evolution of the disease are complex and in-
completely understood. Elucidating the precise genetic changes that
drive malignant transformation, affect the phenotypic behavior of
the disease, and alter treatment response is an essential component
of our drive toward individualized therapy.3 Recent studies have
focused on attempts to identify individual driver mutations that
might provide both prognostic information and unique therapeutic
targets. Whole genome and whole exome sequencing of increasingly
large numbers of patient samples have identified a number of
commonly mutated genes in MM patients, such as CCND1, NRAS,
KRAS, BRAF, TP53, and FAM46C.4-8 However, none of these
mutations are found in more than one quarter of patients, and most
are found in less than 10% of samples sequenced.

We recently reported a large cohort of MM exome sequences
involving 84 samples from 67 patients. Of these patients, 15 con-
tributed samples frommultiple time points during disease evolution.9

We again identified a diverse set of gene mutations with significant
heterogeneity across our cohort, with a median of 52 (range, 21-488)
mutations per sample. Computational approaches can be used to
prioritize mutations that are expected to alter protein structure and
function, or to lie in likely driver genes. It is more challenging to
determine which mutations are likely to be clinically meaningful or
even expressed in MM patients.

Although a number of studies have interrogated the role of mu-
tational changes in cancer and in myeloma, the phenotypic impact
has not been evaluated for the majority of these changes.10 The
ultimate significance of these genetic changes will depend on whether
the mutated allele is expressed, and whether the mutation affects ex-
pression, splicing, or function of the gene product. Deep sequencing of
RNA (RNA-seq), in combination with whole exome sequencing, pro-
vides an opportunity for direct quantitation of allele-specific gene ex-
pression, as well as a tool to answer these clinically relevant questions.
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In this study, we perform RNA-seq on 14 samples from 10
patients, for which we have previously evaluated exome sequence,
some of whom have samples from 2 time points during disease
evolution. For the first time, we report allele-specific expression and
correlate it to the DNA mutant allele frequency in MM patient
samples. We find that the majority of identified DNA mutations are
not expressed at detectable levels, and that unbalanced allelic ex-
pression of mutant alleles is a relatively common occurrence in MM
patients.

Materials and methods

Clinical samples

We have performed whole exome sequencing on purified myeloma cells.
Their mutational spectrum was previously described.9 Fourteen of these
samples with adequate quantity of available RNA were chosen to evaluate
allelic-specific expression. Samples were collected after written informed
consent was obtained. Samples and data were obtained and managed in ac-
cordance with the Declaration of Helsinki under protocol 08/H0308/303:
somatic molecular genetics of human cancers, melanoma, and myeloma
(Dana-Farber Cancer Institute). The same protocol was approved by the
National Research Ethics Service Committee East of England—Cambridge
Central.

RNA collection, sequencing, and read mapping

RNA purification and preparation was performed as previously described.9

Total RNA was first put through quality control (QC). RNA quantity was
determined on the Qubit using the Qubit RNAAssay Kit (Life Technologies,
Carlsbad, CA) and RNA quality was determined on the Bioanalyzer using
the RNA Pico Kit (Agilent, Santa Clara, CA). Using the NEBNext Ultra
RNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA),
100 ng of total RNA was converted into a DNA library following the man-
ufacturer’s protocol, with no modifications. Following library construction,
DNA libraries were then put through QC. Library quantity was determined
using the Qubit High Sensitivity DNA Kit (Life Technologies) and library
size was determined using the Bioanalyzer High Sensitivity Chip Kit
(Agilent). Finally, libraries were put through quantitative polymerase chain
reaction (PCR) using the Universal Library Quantification Kit for Illumina
(Kapa Biosystems, Wilmington, MA) and run on the 7900HT Fast quan-
titative PCR machine (ABI, Grand Island, NY). Libraries passing QC were
diluted to 2 nM using sterile water, and then sequenced on the HiSequation
2000 (Illumina, San Diego, CA) at a final concentration of 12 pM, following
all manufacturer’s protocols. Two samples per lane of data were sequenced
via duplex sequencing, yielding a theoretical maximum of approximately
100million 50-nucleotide paired-end sequenced reads per sample (200million
reads per lane). The actual number of sequenced reads per sample, along with
other information, is given in supplemental Data Set NM 1 on the BloodWeb
site.

We mapped RNA-seq reads to the human genome (build hg19) using
TopHat 2.0.10 with default parameters,11 and a gene annotation file from the
Illumina iGenomes Web site corresponding to Ensembl GRCh37. We quan-
tified gene abundances from mapped reads using the “htseq-count” function
from HTSequation 0.6.1,12 also utilizing this annotation file, and the options
“-m intersection nonempty -t exon -i gene_id.” We transformed gene-level
counts to fragments per kilobase per million (FPKM) fragments mapped
values, dividing each count by the total length of nonoverlapping exons of
the gene. To determine the percentage of reads originating from the immuno-
globulin heavy (IGH) locus for each patient, we summed gene-level counts
from HTSeq and divided the total counts from IGH-related genes by this
quantity. For comparison purposes, we also computed estimated gene-level
counts values using RSEM software,13 which uses an internal mapping pro-
cedure independent of TopHat to quantify gene level abundances, adjusting
counts for multiply mapping reads and biases in the data. We used default

parameters, except for the “–estimate-rspd–no-bam-output–paired-end–calc-
ci” options.We found that this alternative approach caused little change in
the percentage of gene-level counts originating from IGH-related genes
(supplemental Data Set 1).

Mutant allele abundance, QC, quantification, and testing

For our RNA-seq data, we took several QC measures to ensure accurate
quantification of relative allele abundances at each mutation location iden-
tified in the previous exome sequencing study. We first filtered and mapped
RNA-seq reads for each sample, to keep only uniquely mapped reads, using
SAMtools 0.1.17,14 and then further removed potential PCR duplicates using
the MarkDuplicates function in Picard 1.7, with default parameters. These
QC steps have been shown to reduce the likelihood of false positives and
biases in observed mutant allele frequencies during mutation calling using
RNA-seq data.15 We calculated allelic counts at each single-nucleotide
variant position in each sample using the SAMtools mpileup function with
default parameters, except for the “-A” option and the “-l” option to specify
the list of mutation coordinates, which we took, for each sample, from
the list of validated mutations in our prior study.9 We recorded the number of
overlapping sequences containing the mutant and wild-type (WT) allele, as
identified in the previous study for each position and sample. We defined the
mutant allele frequency as the number of covering RNA-seq reads contain-
ing the mutant allele at that position, divided by the total number of RNA-
seq reads overlapping that position. We compared these frequencies to
those calculated analogously at the DNA level in the previous exome
sequencing study.

For a given mutation observed in a patient, we tested for signifi-
cant departures in RNA and DNA mutational burden through a Bayesian
hypothesis-testing framework,16 accounting for uncertainty in allelic abun-
dance due to variability in total read depth at the mutation locus in each data
type (supplemental Methods). Briefly, for each mutation and patient, we
computed probabilities that the observed mutant allele frequencies in both
the RNA and DNAwould occur, assuming the true frequencies are either the
same (null hypothesis) or distinct (alternative hypothesis). The ratio of these
probabilities yields a Bayes Factor, where values .10 indicate strong ev-
idence favoring a difference in mutant allele frequencies.We use these Bayes
Factors to measure evidence in favor or against differences in the DNA and
RNA mutant allele frequencies. We also extend this test to 2 time points,
looking for joint changes in both RNA and DNA mutant allele frequency
over time points.

Results

Limited detectable expression of mutant allele in MM

In 14 samples from 10 patients with exome sequencing data and suf-
ficient RNA available, we performed RNA-seq (supplemental Data
Set 1) using the standardized pipeline described in “Materials and
methods.” Of these 10 patients, 4 had RNA samples collected at 2
time points (labeled “early” and “late”) matching those used for our
prior evolutionary analysis.9 The remaining 6 patients had RNA and
DNA sequencing data from only a single time point (supplemental
Table 1). A total of 981 validated DNA mutations were previously
identified across these 14 samples (supplemental Data Set 2). The
number of validated mutations per sample varied significantly
among patients (supplemental Figure 1), reflecting the heterogeneity
in mutational profiles observed between patients. Overall, mapping
rates for our samples were high (65% to 89%) and the number of
reads mapping to the IGH locus did not dominate our RNA-seq data
(supplemental Data Set 1).

We first evaluated whether our previously identified mutations
were found in expressed transcripts from our RNA-seq data after
QCwith the goal of determining the relative frequency of the variant
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sequence of a given mutation in expressed transcripts. We define
“presence” as having at least one covering RNA-seq read containing
the mutant allele. To show the specificity of our approach, we also
demonstrate that our QC steps reduce the probability of identifying
the mutant allele in nonmutated genes in other samples (supplemen-
tal Figure 2). We consider the presence of the mutant allele in non-
mutated genes from other samples to be a false positive due to
technical artifacts. From here onwards, the term “RNA-seq read
coverage” refers to the number of reads that remain after all QC steps.

In all, only 47% (462/981; range, 35% to 65% across patients) of
the total number of mutant genes from all samples had non-zero
RNA-seq read coverage, and only 27% (261/981; range, 11% to 48%
of mutations) had at least one covering RNA-seq read containing the
mutant allele (mutant allele present). This percentage again varied
considerably across samples (plotted in Figure 1) but is in line with
previously published studies.17,18 The majority of mutations showing
“no expression” in Figure 1 originated from genes with low or no
detectable expression, defined as having FPKM ,3 (supplemental
Figure 1, blue and purple boxes). However, among those mutations
that have at least 10 supporting RNA-seq reads, the percentage ex-
pressing the mutant allele is 69.9% (144/206 single-nucleotide variants;
supplemental Figure 3). Local RNA-seq read coverage is related to the
level of gene expression (supplemental Figure 4), therefore, higher
biological expression allows for easier detection of the mutant allele.

Themajority ofmutations (64%)were found in geneswith lowor no
detectable expression. We define low gene-level expression as FPKM
,3. This value corresponds to the 60th percentile of expression across
all samples. Ifweuse a thresholdFPKMof1, this percentagedrops to53
and other results do not change significantly (supplemental Figures 5
and 6).

We next asked whether the presence of a mutation itself altered
the expression of themutant genes. In Figure 2A, the expression level
of eachmutated gene was plotted against the mean expression of that
same gene from samples not containing the mutation. We found that
mutant and WT gene expression across patients, for each gene, was
similar (Spearman correlation of 0.92). Because of the limited
number of samples, and the limited number of genes mutated inmul-
tiple samples, our study does not provide sufficient cases to formally
investigate a link between the presence of an individual mutation and
gene expression in our study. However, when we compared the
overall expression of mutated genes to the expression of nonmutated
versions of the same genes in other samples, we observed lower
expression among the mutated genes relative to the nonmutated
genes (permutation P value for difference in log median expres-
sion5 .032; Figure 2B).

Expression pattern of frequently mutated genes in MM

Our prior exome sequencing study identified a subset of genes
mutated at increased frequency across the patient panel and these
were identified as possible driver mutations. We evaluated whether
these frequently mutated genes were expressed in our subset of MM
patients. We found that the expression of these genes varied across
samples. In Figure 3, we clustered the samples based upon the
relative expression level of these frequently mutated genes, marking
the mutational status in each of our 14 samples. We found that
the majority of the mutated genes were expressed at a level above
3 FPKM (Figure 3 and supplemental Data Set 2). Exceptions
were FAT3 (FPKM 5 0.9), ROBO1 (FPKM 5 1.2), and CYLD

Figure 1. Themajority of mutations are not expressed

in MM patient samples. Mutations identified in the

exome sequencing data were classified into 3 groups:

mutations with the mutant allele found in the RNA-seq

(salmon), those with the mutant allele not found in the

RNA-seq despite RNA-seq read coverage of the

mutation region (green), and those with no covering

RNA-seq reads (blue, “No Expression”). The percentage

of each type of mutation within each sample is shown.
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(FPKM5 2.4). Although there was heterogeneity in terms of gene
expression between patients, early and late samples from the same
patient tended to be similar (Figure 3). Interestingly, the ex-
ception to this was patient PD4292, who previously demonstrated
a pattern of marked clonal change between time points.9

Mutant and WT alleles may be differentially expressed

The frequency with which a specific mutation is found within ex-
pressed RNA transcripts will depend on the clonal frequency of the
mutation at the DNA-level, in addition to the relative expression
level of RNA transcripts containing the mutant allele vs those con-
taining the WT allele. To determine whether mutant alleles were

being differentially expressed as compared with their WT counter-
part, we compared the frequency of each mutant sequence in the
exome sequencing data to its corresponding frequency in the RNA-
seq data. If each allele was used equally during transcription, we
would expect that the prevalence of the mutant allele in the RNA
would be consistent with its prevalence in DNA.17 We plotted the
frequency with which each mutation is found within the RNA-seq
data against DNA mutant allele frequency (Figure 4 and supple-
mental Figure 7). We observed a number of mutations for which
expression of the mutant allele was absent in the RNA, and con-
versely, many others where the expression of the WT allele was
absent. Because the accuracy of this approach is dependent upon
the number of reads covering the mutant sequence, we computed the

Figure 2. The average expression of genes carrying

a mutation is similar to those in samples without

the mutation, but aggregated expression of mu-

tated genes is lower. (A) The expression level (as

measured by log FPKM) of genes in the mutant sample

was plotted against the average expression of the same

gene in samples not harboring the mutation. The

Spearman correlation is 0.92. Due to the limited sample

size and limited number of samples carrying a mutated

copy of a given gene, we do not have strong evidence to

demonstrate lower expression of mutated genes on an

individual gene basis. (B) The distribution of expression

(log FPKM) for all mutated genes aggregated together

is plotted with the expression of the unmutated versions

of these genes in other samples. We find slightly lower

expression within the mutant gene group (permutation

P5 .032). Such aggregation of the data helps to overcome

the per-gene sample size limitation mentioned previously.

Figure 3. Frequently mutated genes are expressed

in MM patient samples. Hierarchical clustering across

all 14 samples based upon gene expression of our

previously identified, frequently mutated genes was

performed. Only those genes with at least 1 mutation in

our RNA sequenced subset of 14 samples are shown.

The presence of a mutation in a gene with FPKM .3

is denoted by an orange square and genes with an

FPKM ,3 is denoted with a purple square. The size of

the square reflects the frequency of the mutant allele as

compared with the WT within our RNA-seq data. A

histogram of log FPKM is displayed in the upper left

corner to illustrate the distribution of the logarithm of

gene expression levels across patients and the genes

displayed in the figure.
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relative probabilities of the frequencies being equal vs different
using a Bayesian hypothesis test (supplemental Methods), ac-
counting for variable read coverage in both DNA and RNA, as
well as possible technical variability in the underlying mutant
allele frequency from other sources.

For example, the mutant allele of the driver gene CCND1 in pa-
tient PD4294 was expressed almost exclusively, compared with the
WT allele in both the early and late time points (Bayes Factor.10),
indicating significant differential expression at this locus (Figure 4
and supplemental Table 2). In patient PD4284, the CCND1 mutant
allele was similarly expressed at a higher level than would be
predicted based on DNA frequencies (Figure 4 and supplemental
Table 2). Another gene showing a similar pattern in patient PD4288
was PARP4 (supplemental Data Set 2). Conversely, in patient
PD4292, the mutant allele frequency of EIF1AX was lower than
would be expected, despite the EIF1AX gene’s overall expression
(FPKM 5 18.9) in that particular sample. These results indicate
that mutations found in DNA may be variably transcribed or not
transcribed at all.

Clonal change in RNA, mirrors that seen in the DNA

In our prior study, we found distinct patterns of clonal evolution in
MM over time, defining evolutionary patterns such as linear evo-
lution, branching evolution, and differential clonal response.9 We
next plotted the change in mutant allele frequency within the RNA
between time points against the corresponding change within the
DNA (Figure 5). The small number of mutations covered adequately
at both time points limited our analysis of clonal change in the RNA.

We found that concomitant changes in both DNA and RNA mutant
allele frequency were only observed in the samples that were pre-
viously observed to showmutational evolution over time (PD4292).
We observed no significant changes in both DNA and RNA in sam-
ples showing no change over time (Figure 5 and supplemental
Figure 8). In PD4292, such changes in DNA and RNA were largely
decreases, indicating a lossofmutant allele frequency, possibly related
to treatment between the time points, leading to loss of subclones
expressing some mutations.

Discussion

MMis a diseasewith heterogeneousmolecular and genetic changes.2

We previously identified a number of gene mutations in MM patient
samples, some common across multiple patients.9 Although this and
other mutational analyses identify recurrent mutations, the relevance
of these mutations for myeloma cell growth, survival, or its bio-
logical behavior and response or resistance to therapy remains
unclear. In this study, we have for the first time in MM, used RNA-
seq to examine the relationship between mutational status of a gene
and its allelic expression as an indicator of its ability to affect cellular
behavior. The majority of the mutated genes identified in the
previous study (64%) have low or no detectable biological expres-
sion, suggesting that many, if not most, mutations may be biolog-
ically silent bystander events. We predict that these mutations are
therefore unlikely to be functionally relevant. Our target sequencing

Figure 4. Mutant alleles are differentially expressed.

The mutant allele frequency of each mutation observed

in the RNA-seq data (y-axis) was plotted against the

mutant allele frequency observed in the exome se-

quencing data (x-axis). We define the mutational

frequency as the number of sequencing reads covering

a mutation that contain the mutant allele divided by the

total number of covering sequencing reads. The degree

of similarity between the exome and RNA-seq data are

represented by red squares (more similar) and blue

circles (less similar). Plots are shown for 4 representa-

tive samples. The size of the point on the plot (circle or

square) represents the level of statistical certainty, as

measured by a Bayesian hypothesis test assessing the

dissimilarity in the mutant allele frequencies, given the

coverage of a mutation in the RNA-seq and exome

sequencing data. Some genes, such as CCND1 contain

multiple mutations, and are therefore represented by

more than 1 point on the graph. Gray points on the plot

correspond to mutations that have zero RNA-seq read

coverage and are placed on the plot to show their

mutant allele-frequency in DNA.
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depth of 100-million paired-end reads provide an adequate number
of reads to determine the expression status of the majority of
mutant genes, as those genes not covered are unlikely to be ex-
pressed at a biologically significant level. The ability to detectmutant
transcripts is associated with the level of gene expression (sup-
plemental Figures 1 and 3-6); therefore, we believe that increasing
sequencing depth would be unlikely to significantly increase our
yield. Moreover, we assume mutations that would be detected via
deeper sequencing would likely have lower functional impact, as
they would be found in lowly expressed transcripts that were not
detected at our original levels of sequencing.

Our finding that the mutant allele is present in the RNA-seq
data for only 27% of our initial set of mutations (on average, across
patients) is in line with other cancer genome and transcriptome-
sequencing reports.17-20 There is no strong evidence that the majority
of mutations directly alter the overall expression levels of their
associated genes (Figure 2A), but we do see that mutated genes
have slightly lower expression than nonmutated genes overall
(Figure 2B). Previous studies have shown that highly mutated gene
regions tend to have lower levels of gene expression21; however,
because our mutation data comes from exome sequencing, we
are unable to assess whether mutations found within enhancer or
promoter regions affect gene expression. We would also like
to emphasize that the main conclusions of our study stem from
a patient-by-patient analysis, and that none of the mutation-level
analyses and tests were performed on the patient samples as a whole.
Our main goal in this study is to show that patient-specific mutations
found in DNA are not always found in RNA, or have limited
or differential expression. For other generalized conclusions,

a significantly larger study will be required. We also note that we ran
several QCmeasures to ensure that the mutant alleles being detected
were of high quality, in order to reduce the probability that our
conclusions may result from experimental artifacts.

Many of the single nucleotide changes identified in our exome
sequencing were predicted to produce nonsense mutations. One
might expect these to be absent from the sequenced transcriptome
due to nonsense-mediated RNA decay. Although this may be the case
for a small subset of genes, we think it is unlikely to explain the
majority of our findings, as we would expect it to lead to a significant
overall decrease in the expression ofmutant genes,which is something
that we did not observe. In contrast to the mutated gene pool at large,
we previously identified a subset of commonly mutated genes within
our MM patient panel. The majority of these genes were expressed at
amoderate or high level inMMcells.Of the 28genes inour study, only
11 exhibited mutations in the 14 samples we examined, and we were
able to detect mutant transcripts in 9 of these 11 genes. These genes
could play an important role in disease pathogenesis, especially
considering that many of them are known to be involved in other
cancer types. Among these genes, mutations found in the majority of
the malignant cells (clonal) and also showed expression of the mutant
transcript, would be candidate functional driver mutations worthy of
future evaluation. However, we found that only a small number of
these mutated genes showed detectable expression of the mutated
allele, consistent with the allele fraction of the mutation as shown by
whole exome sequencing. The strongest example for this was in the
case of CCND1, whose WT allele was completely absent in patient
PD4294, and was silenced to a large extent in patient PD4284. Copy
number array data9 indicated no significant changes at this locus,

Figure 5. Change in RNA expression of mutant

alleles over time correlates with change in mutant

allele frequency. The change in the mutant allele

frequency in the RNA between time points (y-axis)

was plotted against the change in the mutant allele

frequency in DNA (x-axis) from the early time point to

the late time point for each patient. The size of the point

on the plot represents the degree of statistical certainty

as measured by a Bayesian hypothesis test assessing

simultaneous change in both DNA and RNA mutant

allele frequency between time points. The degree of the

similarity is represented by red (more similar) and blue

(less similar), and the significance of the difference is

represented by the size of point (larger point indicates

greater significance).
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suggesting that overexpression of the mutant allele may occur
through other means, such as structural rearrangements or trans-
locations. Indeed, PD4294 and PD4284 harbor the t(11:14) trans-
location, which is known to include the CCND1 gene. Our data
cannot determine whether the translocation included the mutant or
WT allele.2,9

We previously discussed concerns that using BRAF inhibitors in
patients with coexistent RAS mutations might promote secondary
tumors, as the inhibitors may have paradoxical extracellular signal-
regulated kinase activating effects.22,23 However, there would be
less concern for this paradoxical activation if the mutated genes
were not actually expressed. Direct examination of mutant allele
expression in those patients carrying mutations in both genes will
be needed to further evaluate this phenomenon and might provide
one basis for clinical testing using RNA-seq prior to initiating
targeted therapies. This emphasizes the need for continued study
beyond mutational analysis at the DNA level and may explain why
therapies targeted at mutant oncogenes can be ineffective or produce
paradoxical effects.24

In conclusion, we have correlated allele-specific RNA expression
with exome mutant allele frequency in MM patient samples. Al-
though a large number of mutations have been described in MM,
only a small fraction of the mutant alleles have detectable expression
in our data, and are found in genes with low or no detectable
expression. This suggests that the majority of observed mutations
may actually be bystanders with limited, if any, functional im-
plications, and highlights the importance of using RNA-seq to eval-
uate allele-specific expression. These results are intriguing as they
provide a possible explanation as to why it is that multiple prior
expression studies have failed to identify any overlapping set of
genes that correlates with disease state. It is possible that the path-
ogenic changes inMM lead to alteration of allele-specific expression
or alternative splicing that are not reflected in the overall RNA level
expressed from a particular locus. Future study with a larger number
of samples and correlation with in vitro studies will be needed to
more fully evaluate this hypothesis.
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