
8831 pediatric ALL patients enrolled in Children’s Cancer Group
therapeutic protocols from 1983 to 1995, the cumulative incidence of
SPMs was 1.18% at 10 years, more than a sevenfold increased risk
compared with that of the general population.10

Our study is the first to report SPMs in adult ALL patients. We
found a 43% relative increase in SPMs in ALL patients (O/E5 1.43;
95% CI, 1.01-1.95) compared with the general population. The risk
of specific SPM depends on the patient’s age and the latency period.
Cancer-specific screening during follow-up of ALL survivors may
help diagnose the SPM at an earlier stage.

The strengths of our study include the large number of patients
with long-term follow-up from a large geographic area. There are
several limitations. The SEER database does not have information on
the chemotherapy used, comorbid conditions, social habits, exposure
to carcinogens, or family history.
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To the editor:

Genome-wide scan identifies variant in 2q12.3 associated with risk for multiple myeloma

Common inherited genetic variants associated with disease risk may
uncover important biological mechanisms behind neoplastic de-
velopment. Here, we report a novel susceptibility locus associated
with multiple myeloma (MM) risk and an additional promising
locus, and we replicate 6 previously published associations.

Germ line DNA was isolated from leukapheresis products
obtained from a test set of 972 newly diagnosed patients of European
ancestry with MM and from a validation set of 252 more recent
patients treated at the Myeloma Institute for Research and
Therapy. In the test set, genotyping was performed using Illumina
HumanOmni1-Quad BeadChips, and genotypes have been submitted

to the database of Genotypes and Phenotypes (accession no.
phs000545.v1.p1). Control data for our studywere downloaded from
the database of Genotypes and Phenotypes and consisted of 1064
unrelated cancer-free patients of European ancestry recruited in the
south-central United States for the High Density Single Nucleotide
Polymorphism (SNP) Association Analysis of Melanoma (accession
no. phs000187.v1.p1).1

We excluded SNPs with greater than 2% missingness or with
minor allele frequency less than 1%, as well as SNPs that violated
Hardy-Weinberg equilibrium (P , .001) among control patients.
We removed 2 SNPs strongly suspected of genotyping error

Table 1. Two novel SNPs associated with MM risk

SNP Risk allele

MM cases Controls

OR P * P†N Genotypes RAF N Genotypes RAF

rs12614346 (2q12.3) A AA AG GG AA AG GG

Discovery 972 126 462 384 0.37 1064 89 449 526 0.29 1.39 7.1E207 1.7E205

Replication 249 38 102 109 0.36 1.33 .007

rs73486634 (9q22.33) G GG GA AA GG GA AA

Discovery 971 5 85 881 0.05 1064 0 47 1017 0.02 2.28 4.7E206 6.3E204

Replication 249 0 14 235 0.03 1.28 .416

OR, odds ratio; RAF, risk allele frequency.

*Cochran-Armitage trend test.

†Logistic regression assuming additive inheritance and including 4 genome-wide multidimensional scaling parameters as covariates.
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because of unusual patterns of segregation in genotype clustering
plots (see supplemental Data, available on the Blood Web site)
and highly significant risk associations (P , 10222) in regions
containing no other risk-associated SNPs. The resulting data included
972 case subjects, 1064 control subjects, and 777 681 SNPs. Gene
expression profiling on CD138-selected plasma cells was available
for a subset of 650 patients.2 The validation set of 252 patients
was genotyped at selected SNPs by LGC Genomics, LLC (Beverly,
MA), using quantitative PCR (polymerase chain reaction).

The genomic scan identified 2 regions containing multiple
SNPs with significant association with MM risk (P , 1025). The
most significant genetic variant was a SNP located in 2q12.3
(rs12614346; P5 7.13 1027; odds ratio, 1.39) upstream of the ST6
b-galactosamide a-2,6-sialyltranferase 2 (ST6GAL2) gene, which
encodes a sialyltransferase that catalyzes the transfer of sialic acid
from cytidine monophosphate to an oligosaccharide substrate. Sialic
acids are expressed on the cell surface and play a fundamental role in
cell–cell and cell–microenvironment interactions. The protein
encoded by the gene is widely distributed in normal human tissue, and
its expression is increased by cytokines such as interleukin 6.3 The risk
association was replicated by the validation sample of 252 patients
(Table 1; P5 .007). There was no relationship between the risk allele
and expression of ST6GAL2 in CD138-selected plasma cells.

At the 9q22.33 locus, the most significant association was
at rs73486634 (P 5 4.7 3 1026; odds ratio, 2.28), located both
between and upstream from the genes forkhead box E1 (FOXE1)
and xeroderma pigmentosum, complementation group A (XPA).
FOXE1 is an intronless gene belonging to the forkhead family of
transcription factors, and changes in the gene may be involved in
carcinogenesis.4 XPA encodes a zinc finger protein that partic-
ipates in DNA nucleotide excision repair of DNA toxicants,5 and
variants in XPA are associated with lung and colorectal cancer.6,7

Gene expression of FOXE1, but not XPA, was significantly lower
among risk allele carriers (P5 .026). The validation sample failed
to replicate the association with statistical significance because of
the SNP’s low minor allele frequency (Table 1; P 5 .416).

We also replicated 6 of 7 previously published genome-wide
association study–discovered MM associations8,9 (P , .05; supple-
mental Data). In the current study, we studied risk-associated
genotypes from patients eligible for high-dose melphalan (mean
age, 57.7 years; mean age at diagnosis for patients in the MyelomA
Genetics International Consortium [MAGIC],9 61.0 years). In MM,
an age-related risk has been shown for genetic variants in the IL6
gene.10Alongwith thegeographicdifferencebetween studypopulations
and the known heterogeneity of MM disease, this may explain why
our currently reported associations have not previously been identified.
Our current study strengthens the evidence for 6 previously identified
susceptibility loci and introduces 2 novel loci toward a greater
understanding of the genetic etiology of multiple myeloma.
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