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MYELOID NEOPLASIA
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Key Points

• This study describes a
method for the comparison of
gene expression data of any
type of cancer cells with their
corresponding normal cells.

• Our analyses reveal novel
disease entities, identify
common deregulated
transcriptional networks,
and predict survival.

Gene expression profiling has been used extensively to characterize cancer, identify novel

subtypes, and improve patient stratification. However, it has largely failed to identify

transcriptional programs that differ between cancer and corresponding normal cells and

has not been efficient in identifying expression changes fundamental to disease etiology.

Here we present a method that facilitates the comparison of any cancer sample to its

nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We

first generated a gene expression-based landscape of the normal hematopoietic hierarchy,

using expression profiles from normal stem/progenitor cells, and next mapped the AML

patient samples to this landscape. This allowed us to identify the closest normal

counterpart of individual AML samples and determine gene expression changes between

cancer and normal. We find the cancer vs normal method (CvN method) to be superior to

conventional methods in stratifying AML patients with aberrant karyotype and in iden-

tifying common aberrant transcriptional programs with potential importance for AML

etiology. Moreover, the CvN method uncovered a novel poor-outcome subtype of normal-

karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great

potential as a tool for the analysis of gene expression profiles of cancer patients. (Blood. 2014;123(6):894-904)

Introduction

Global gene expression profiling (GEP) has been used for more than
a decade to uncover the underlying transcriptional programs of
normal andmalignant cells. In cancer, GEP has been used successfully
to identify cancer subtypes, to stratify patients into responders vs
nonresponders, and to predict survival but has, to a large extent,
failed to uncover genes that are causally involved in cancer initiation
and maintenance.1-8 These genes are obviously of great interest be-
cause they constitute potential targets for therapeutic intervention.

The reasons for the failure of GEP to uncover targets of ther-
apeutic relevance are potentially many and may differ between
different cancer types. However, as most studies compare cancer
with cancer, a lot of the detected transcriptional changes between
different cancer samples may arise from differences in cell type and
developmental stage and, consequently, will not identify those gene
expression programs that underlie the malignant phenotype. More-
over, in the few instances in which comparisons of cancer cells with

normal cells have been attempted, they have generally used hetero-
geneous cell mixtures of the organ in question (such as whole bone
marrow [BM] or CD341 cells in acute myeloid leukemia [AML]),
which is not ideal when the aim is to precisely map changes in gene
expression between cancer cells and their nearest normal counterpart.
Given the caveats with the standard procedures of analyzing large-
scale GEP data sets from cancer patients, we hypothesized that a
method that facilitates a comparison of gene expression profiles be-
tween cancer samples and their nearest normal counterpart holds the
potential to significantly improve disease stratification, the identifica-
tion of novel disease subtypes, prognostication, and the identification
of gene expression changes underlying the malignant phenotype.

Here we present such a method and apply it retrospectively to 5
publically available data sets from AML patients.9-15 We show that
comparison of cancer vs normal (CvN) is equivalent to cancer vs
cancer (CvC) in terms of GEP-based prediction of AML subtypes

Submitted February 20, 2013; accepted December 15, 2013. Prepublished

online as Blood First Edition paper, December 20, 2013; DOI 10.1182/blood-

2013-02-485771.

K.T.-M. and B.T.P. contributed equally to this study.

The data reported in this article have been deposited in the Gene Expression

Omnibus database (accession number GSE42519).

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked “advertisement” in accordance with 18 USC section 1734.

© 2014 by The American Society of Hematology

894 BLOOD, 6 FEBRUARY 2014 x VOLUME 123, NUMBER 6

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/123/6/894/1378733/894.pdf by guest on 20 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2013-02-485771&domain=pdf&date_stamp=2014-02-06


harboring different aberrant karyotypic lesions (AK-AML). More-
over, applying this method to data sets of AML patients with
normal karyotype AML (NK-AML) lead to identification of a
novel AML subtype associated with poor outcome. Finally, the
method provides a list of deregulated genes and common tran-
scriptional programs that differ from those of normal progenitors.
These may potentially underlie the malignant phenotype in dif-
ferent AML subtypes.

Materials and methods

GEP of normal hematopoietic stem and progenitor cells

BM samples were aspirated from the posterior iliac crest of healthy subjects,
according to the standard protocol of the Department of Hematology,
Rigshospitalet University of Copenhagen, and in accordance with the
Declaration of Helsinki. Normal hematopoietic stem and progenitor cells
(HSCs/HPCs), as well as mature myeloid cells representing successive
developmental stages of the hematopoietic differentiation, were purified
from BM samples of healthy subjects by flow cytometry-based cell sorting
and subjected to GEP (see the supplemental Methods, available on the
Blood Web site). All microarray files of our newly generated data set are
available at the Gene Expression Omnibus database (accession number
GSE42519).

Bioinformatics analyses

Gene expression-based map of the normal hematopoietic hierarchy. The
normalized16 and batch-corrected17 data set of normal blood and BM popu-
lations was filtered to exclude probe sets with low variance and low expression
(see Table 1 for sample list and origin18-22 and the supplemental Methods
for data normalization and batch correction). Probe sets with a standard
deviation 3 times lower than the average standard deviation of the entire
data set and with an average log2 expression below 6 were excluded from
the analysis, yielding a total of 2119 probe sets (1367 unique gene
symbols). These were used in a principal component analysis (PCA)23 to
generate a map of the normal hematopoietic hierarchy by projection of the
data onto the first 2 principal components (ie, the 2 directions, which
explain the most variance in the 2119 dimensional space of standardized
gene expression values).

Mapping of AML samples onto the gene expression-based map of the
normal hematopoietic hierarchy. Each AML sample was normalized
together with the data set of normal cells, using the same procedure described
earlier. The normal populations closest to each individual AML sample were
identified by a 2-step approach. First, we computed the Euclidian distances
between the AML sample and all normal populations, using the expression
profiles projected to the first 6 principal components, which explain more than
90% of the variation for more than 95% of the samples. Second, for each
individual AML sample, we selected the 50% most varying probe sets within
the 15 closest normal samples and subsequently mapped the AML sample in
this reduced local gene expression space. Using PCA projections in these steps
reduces noise and computation time while preserving relevant information. For
each AML sample mapped in the gene expression landscape of normal
hematopoiesis, we next calculated a weighted average gene expression profile
of the 5 nearest normal samples. The weights were based on the Euclidian
distance between normal and AML samples in the reduced second PCA and
were set to decrease exponentially with distance and, subsequently, renorm-
alize to sum to 1. This approach gives more weight to populations closest to the
AML sample. Finally, gene expression changes between individual AML
samples and their corresponding individual average-weighted normal counter-
part were computed.

For the standardCvCmethod,we generated an averageGEPprofile based
on all the samples in a given AML data set. We used this to compute the log2
fold-changes for individual AML samples.

Gene set overlap analysis. We created gene sets using the 1%most up-
and downregulated genes for each AML sample compared with its computed
normal counterpart. Using a hypergeometric test, we calculated the significance
of the overlap between gene sets of up- and downregulated genes against
various AML-subtype signatures, as well as curated gene signatures (C2), gene
ontology signatures (C5), and oncogenic signatures (C6) from the MSigDB
molecular signature database (www.broadinstitute.org/gsea/msigdb/).

Further information on experimental procedures and bioinformatics anal-
yses are provided in the supplemental Methods. Here we describe methods for
supervised and unsupervised classification of AML, the identification of
deregulated transcriptional programs in AML compared with normal, and
the generation and performance assessment of a novel survival signature
for NK-AML.

Results

The gene expression-based landscape of the normal

hematopoietic hierarchy

Using our own and publically available microarray data sets (Table 1)
of highly purified HSCs/myeloid HPCs and their mature progeny (see
supplemental Figure 1A-B for cell sorting strategy), we generated
a gene expression-based landscape representing the developmental
hierarchy of the hematopoietic system using the first 6 components of
a PCA (Figure 1A-B; gene lists provided in supplemental Table 1A).
Significantly, this landscape not only faithfully reconstructed the

Table 1. Data sources

Data set
Sample
number Cell types Reference

Normal blood and BM populations

GSE42519 34 HSC, MPP, CMP, MEP,

GMP, early PM, late PM,

MY, MM, BC, PMN

This study

GSE17054 2 HSC Majeti et al19

GSE19599 4 GMP, MEP Andersson

et al20

GSE11864 2 Monocytes Hu et al21

E-MEXP-1242 2 Monocytes Wildenberg

et al22

Total 44

AML patient samples

GSE13159 191 t(8;21), inv(16), t(15;17),

t(11q23), complex

Haferlach et al9

GSE14468 526 MDS:-5/7(q), 29q, 11q23,

8, complex; AML: NK,

complex, inv(3q), inv(16),

t(15;17), t(6;9), t(8;21),

t(9;22)

Wouters et al11

GSE15434 251 NK-AML Kohlmann et al,2

Klein et al12

TCGA 183 Various genetic aberrations,

including t(8;21), inv(16),

t(15;17), t(11q23), complex

Cancer Genome

Atlas Research

Network13

GSE6891 91 Various genetic aberrations,

including t(8;21), inv(16),

t(15;17), t(11q23)

de Jonge et al18

GSE12417 79 NK-AML Metzeler et al15

Total 1321

Description and origin of all microarray data sets used in this study, including

normal blood and BM populations and AML patient samples. All samples were run on

the HG-U133 Plus 2.0 Array Affymetrix platform.
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normal hierarchical order of myeloid differentiation but also demon-
strated a tight clustering of replicates from the same normal popu-
lations, thereby highlighting both the high quality of data processing
and the data itself.

A method for assessment of gene expression changes between

AML and its nearest normal counterpart (CvN method)

We next applied a 2-step approach to identify the closest normal
population for individual AML patient samples using publically
availableAK-AMLgene expression data sets (Table 1; supplemental
Table 2). In the first step, we mapped individual AML samples onto
the PCA space of normal hematopoietic differentiation, using genes
selected by a high-stringency variance filter (Figure 1C). Next we

reduced thefilter stringency to increasemapping precision and identify
the 5 closest normal BMpopulations. Finally, the GEPs of these 5 BM
populations were merged into a “virtual” distance-weighted GEP
representing the closest normal counterpart of the tested AML sample
and subsequently used to calculate gene expression changes between
normal and the individual AML sample (Figure 1C).

Mapping of individual AML patient samples to the gene ex-
pression landscape of the normal hematopoietic hierarchy demon-
strated varying normal counterparts for different AML subtypes.
Whereas samples of AML patients with a complex karyotype mapped
to different normal populations, ranging fromHSCs to monocytes, the
more defined t(15;17) AMLs predominantly mapped closely to the
related granulocyte-monocyte progenitors and early promyelocytes
(early PMs), representing the developmental stage of this particular

Figure 1. CvN method: identification of the nearest normal population for individual AK-AML samples, using a gene expression-based landscape of the normal

hematopoietic hierarchy. (A) PCA of gene expression profiles from the following normal purified BM populations: HSCs, multipotent progenitors (MPPs), common myeloid

progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), megakaryocyte-erythrocyte progenitors (MEPs), early PM, late PM, myelocytes (MY), metamyelocytes

(MM), band cells (BC), polymorphonuclear neutrophilic granulocytes (PMN_BM), and monocytes (Mono). The PCA was performed on 2119 probe sets (1367 genes) selected

by variance filtering. (B) Spearman correlation matrix of gene expression of the samples from A. (C) Workflow of the CvN method for the identification of the nearest normal

counterpart for individual AK-AML samples (CvN method): AML samples are normalized individually together with the data set of the normal hematopoietic hierarchy shown in

A and B, and the normal populations closest to AML samples are identified by a 2-step approach. First, the Euclidian distances between each individual AML sample and all

the normal blood and BM populations are calculated using gene expression profiles projected onto the first 6 principal components. Next, the 50% most varying probe sets

within the 15 closest normal populations are selected for each individual AML samples and used in a second PCA to map the AML sample to its 5 nearest normal populations.

Subsequently, a weighted average gene expression profile based on the Euclidian distance between the 5 normal populations and AML sample is calculated. Finally, gene

expression profiles of AML samples and their corresponding individual average-weighted normal population are compared with defined differentially expressed genes in

individual AML samples for enrichment analysis, prognostification, and further analyses.
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AML subtype (Figure 2A-B). Other AK-AML subtypes demonstrated
mapping patterns between these extremes (supplemental Figure 2).

The CvN method is comparable to the classical CvC method in

stratifying AK-AML patients

We next performed a side-by-side comparison of the CvN and CvC
methods, using unsupervised standard analysis of a GEP data set
derived from 4 distinct AML subtypes [inv16/t(16;16), t(11q23),
t(15;17), t(8;21)]. Both methods generated distinct clusters, each
representing a genetically defined AK-AML subclass (P , 1e25;

Kruskal–Wallis test), as visualized by either unsupervised PCA
(Figure 2C-D) or hierarchical clustering (supplemental Figure 3A-B).
However, testing the intercluster and intracluster variance of the first
5 principal components in an analysis of variance (ANOVA) test
(Figure 2C-D) demonstrated that genes identified by the CvNmethod,
but not the CvC method, form significant clusters in an unsupervised
analysis (P5 .004 and P5 .49, respectively).

We next used a standard supervised classification analysis and
found that genes selected by the CvN method performed as well as
those selected by the CvC method for the training set9 (error rates,
CvC: 2.05%; CvN: 1.55%; supplemental Figure 4), as well as in an

Figure 2. Cluster analysis of AK-AML samples using the CvN method and the CvC method. (A-B) Example of PCA plots of individual gene expression profiles of complex

karyotype AML (A) and t(15;17) AML patient samples (B) projected to the gene expression-based map of the normal hematopoietic hierarchy, using the CvN method (see

“Bioinformatics analyses” and Figure 1). Only the 2 first (ie, PC1 and PC2) PCs are given in the PCA plot. A line indicates the nearest normal counterpart for each of the AK-AML

samples. (C-D) Unsupervised clustering of AK-AML. PCA of AK-AML based on genes identified by the CvC- (C) and CvNmethod (D). Genes were selected by variance (1545 and

1449 probe sets in (C) and (D); respectively). ANOVA analysis of the segregation of the clusters using the first 5 PCs reports P values of .49 for the CvC method (inter-group

variance: 6.08, intra-group variance: 495.85) and .004 for the CvN method (inter-group variance: 115.58, intra-group variance: 1685.95) for the CvC and CvN methods,

respectively. (E) ROC curves (classification performances) for 2 published and 1 novel AML t(11q23) gene signatures. Areas under ROC curve (AUCs) are reported in the graph.

(F). Heat map representing the degree of enrichment (-log10[P value]) in the 1% upregulated genes in AML patients9 of known and novel AK-AML gene signatures.
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independent AK-AML test set18 (error rates, CvC: 8.62%; CvN:
6.46%). To test whether the CvN method correctly identifies tran-
scriptional changes specific for distinct AK-AML subtypes, we
generated signatures of the most discriminatory genes for each AML
subtype (supplemental Table 3; supplemental Methods).24 We next
generated patient-specific signatures for each individual AML patient
based on the 1% most up- and downregulated genes between AML
and normal. Finally, using a hypergeometric test, we calculated the
significance of the overlap between the subtype-specific CvN-defined,
aswell as previously reportedCvC-defined,AK-AML signatures and
the patient-specific signatures for upregulated genes (Figure 2E).
Both types of subtype-specific AK-AML signatures displayed a
strong overlap with the patient-specific signatures, but receiver-
operator characteristic curves showed that the CvN-defined signa-
tures outperformed their CvC-defined counterparts (Figure 2F;
supplemental Figure 5A-D; supplemental Table 4). Significantly,
this was also demonstrated in an independent data set11 (supple-
mental Figure 5E-I).

In conclusion, our CvN method allows for the efficient classi-
fication of AK-AML subtypes with defined cytogenetic aberrations
and outperforms the CvC method in unsupervised and supervised
classification analysis.

The CvN method identifies genes and common transcriptional

programs potentially linked to malignant transformation and

maintenance of AK-AML

Although the CvNmethod allows for classification of AML subtypes,
its main strength lies in its potential to identify changes in gene
expression between cancer and normal.We therefore identified genes
that exhibit deregulated expression (|log2 FC| . 2; P , 1025; see
supplemental Table 1D-G for gene lists) between AML and normal
for patients belonging to different AK-AML subtypes. This yielded
complex patterns of gene expression changes between different AK-
AML subtypes and their respective normal counterparts, which is also
evident from the corresponding hierarchical clustering (supplemental
Figure 6A-C). Of particular interest is the 1018 probe sets that are
commonly deregulated (|log2 FC| . 1; P , 1025; supplemental
Table 1C) in all the 4 AK-AML subtypes. Among the genes up-
regulated compared with their nearest normal counterpart, we find the
RAS homology gene RHOB as well as the epigenetic regulators
JMJD3 and BRD4 (supplemental Figure 7). Notably, the latter was
recently identified as a therapeutic target in AML.25

The CvN method also identified high expression of EVI1 to be
specifically associated with t(11q23) AML (supplemental Table 3).
This concurs with the previously reported cooccurrence of t(11q23)
lesions with high EVI1 expression, and it has been suggested that the
latter correlateswith thematuration stage of the leukemic blasts.26 To
test this, we separated the t(11q23) cohort into EVI1high and EVI1low

patients (supplemental Figure 8A). We next assessed the average
expression values of genes belonging to a novel stem cell signature
(supplemental Methods) and find the EVI1high group to exhibit
a higher score, suggesting that this subgroup of t(11q23) is more
immature (supplemental Figure 8B). As high EVI1 expression
correlates with adverse outcome,26 we predict the EVI1high subgroup
to have a poor overall survival (OS).

To further explore the transcriptional programs underlying the
leukemic phenotypes, we used a hypergeometric test to compare the
significance of the overlap between the patient-specific signatures,
described earlier, and known gene expression signatures representing
curated gene sets (C2), gene ontology gene sets (C5), and oncogenic
signatures (C6) from the MSigDB database. Using this gene set

overlap analysis, we identified the 200 best correlated MSigDB
signatures for each AK-AML subclass (P , 1e25; supplemental
Table 5) and selected for signatures that, based on literature review
of experimental design, represented bona fide correlates of normal
cellular activities and responses (ie, cell cycle, signaling, and in-
flammatory and hypoxia response). We report this selection of sig-
natures and theirmedian log2 fold-changewhen comparedwith normal
for patients derived from each AK-AML subtype (Figure 3A).

Strikingly, our analysis identified a predominance of transcrip-
tional programs in all AK-AML subtypes, reflecting a low cell cycle
activity combined with elevated activities of inflammatory response,
hypoxia, and signaling. High cell cycle activity was most abundant
among AK-AML patients with inv16/t(16;16) and t(11q23) and was
low among t(15;17) and t(8;21) patients. Significantly, thesefindings
demonstrate that our CvN method-based gene set overlap analysis
allows for the identification of common sets of transcriptional pro-
grams shared by AK-AML patients of different genetic subclasses.
Because of the lack of publicly available survival data for the AK-
AML cohort, wewere unfortunately not able to assess the relevance of
differences in common transcriptional programs with respect to clini-
cal outcome. It is, however, likely that individual patients of genet-
ically defined AK-AML subclasses whose common transcriptional
programs differ substantially (high vs low cell cycle activity, etc) also
may exhibit differential survival.

Finally, to validate the functional relevance of one of the tran-
scriptional programs identified by the CvN method, we performed
cell cycle analysis on CD341 cells from t(8;21) AK-AML patients
predicted to exhibit low cell cycle activity andCD341 populations of
healthy subjects (Figure 3B-C). Indeed, this analysis demonstrated
a low proliferation rate of leukemic compared with normal CD341

cells, which is consistent with the predicted low “transcriptional”
cell cycle activity of t(8;21) AK-AML. Importantly, the GEP-based
prediction of proliferation could also be extended to normal myeloid
progenitors (Figure 3D).

Overall, our CvN-based analysis suggests that genetically and
clinically diverse AK-AML subclasses share a common set of
transcriptional programs that potentially represent abnormal activity
of core cellular functions associated with transformation and mainte-
nance of the leukemic phenotype.

Comparison of NK-AML patient samples to their nearest normal

counterpart identifies novel subtypes

Having demonstrated the ability of the CvN method to correctly
classify subtypes of AK-AML patients and identify common tran-
scriptional programs, we next tested its potential on a data set of NK-
AMLpatients, including survival rates.2NK-AML is associatedwith
mutations in key hematopoietic and epigenetic regulators (NPM1,
CEBPA, FLT3, RUNX1, TET2, DNMT3A, and others27,28), but only
NPM1 and CEBPA mutant AML constitutes distinct subtypes ap-
proved by the World Health Organization.29 We reasoned that,
similar to AK-AML, NK-AMLwould harbor distinct subtypes that
could be identified through the CvN method.

As afirst approach to estimate the number of potential subtypes in
NK-AML patients, we used a similar strategy as that outlined earlier
to perform hierarchical clustering on an data set of 218 NK-AML
patients,2 including information on survival and mutational status of
CEBPA,FLT3, andNPM1.Visual inspection of this initial clustering
analysis suggested the presence of 6 subtypes in the NK-AML data
set (supplemental Figure 9). To further refine the analysis, we next
performed K-means clustering to assign the patients to 6 clusters
using variance-selected genes (Figure 4A-B,D-E; supplemental
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Figure 10A-G). We note that NPM1 and FLT3 mutations did not
segregate to any distinct cluster with either the CvN nor the CvC
method, which likely reflects the high frequency of patients with

combined NPM1 and FLT3 mutations in our NK-AML cohort. In
contrast, patients with CEBPAmutations formed a distinct cluster
with both methods (CvC cluster_5, Figure 4A; CvN cluster_3,

Figure 3. Identification of deregulated gene expression programs in AK-AML. (A) Median gene expression fold change of selected MsigDB gene signatures that overlap

significantly (P , 1e-5, median, subclass-wise) with patient-specific AK-AML signatures. (B-C) Cell cycle analysis of CD341 cells from healthy subjects (n 5 3) and t(8;21)

AML patients (n 5 3). (D) Median gene expression fold-change (vs normal GMPs) in cell cycle-related gene signatures for purified normal BM populations together with the

experimentally determined cell cycle status (cell cycle profiles were presented in Mora-Jensen et al48). The correlation coefficient between “percentage of cells in SG2M” and

the average median fold change for the 6 cell cycle signatures was r250.8. The following populations are depicted: early promyelocytes (ePM), late promyelocytes (lPM), MY,

MM, band cells (BC) and polymorphonuclear neutrophilic granulocytes (PMN).
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Figure 4. The CvN method improves classification of NK-AML patients. Side-by-side comparison of clustering performance of the CvC (A-C) and CvN (D-F) methods on

a NK-AML data set (GSE15434). Heat maps (hierarchical clustering) of genes identified by the CvC method (A) and CvN methods (D), using a NK-AML patient data set.

Differentially expressed genes identified by each method were selected by variance (1614 and 1383 probe sets in A and D, respectively) and rescaled gene wise. An initial

hierarchical clustering was used to identify the optimal number of patient clusters (n 5 6; supplemental Figure 9). This was followed by K-means clustering (K = 6), which

distributed the samples into 6 patient clusters (color labeled). (B,E) 3-dimensional-PCA plots of the 6 K-means-derived patient clusters identified by the CvC (B) and CvN (E).

(C,F) Kaplan-Meier plots depicting the OS curves for of the 6 NK-AML clusters assessed by (C) the CvC method and (F) the CvN method (P5 .04 and P5 .007, respectively,

x-square). (G) Median gene expression fold change of selected MsigDB gene signatures that overlap significantly (P , 1e25, median, subclass-wise) with patient-specific

NK-AML signatures.
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Figure 4D). Although the data set does not contain information on
the presence of bi- vs monoallelic CEBPA mutations, the published
frequency of biallelicCEBPAAML (�70%) suggest that these cluster
contains the biallelic CEBPA AMLs (76% in CvC cluster_5; 71% in
CvN cluster_3).11

To assess the relative performance of the 2 methods, we per-
formed a silhouette analysis,30 which demonstrated that both the
CvN and CvC clusters were robust (with the former being slightly
better [P , 1e25, t test]; supplemental Figure 10H-I). However,
when the intercluster and intracluster variance of the first 3 principal
components were tested by ANOVA, only the CvN method yielded
significant clusters (P5 .9 vs P5 .004).

To determine to what extent the CvC and CvN methods used
different or overlapping genes to separate their respective clusters, we
next merged the lists of genes selected by the 2 methods. Of the
approximately 450 genes that were used for clustering by each
method, 54% were shared. Importantly, when we analyzed the
contribution of CvC-specific, shared, and CvN-specific genes to
cluster formation, we found that the CvN-specific genes were better
than the CvC-specific genes in separating the clusters (supplemen-
tal Figure 10B-G; CvN: P5 .001; CvC: P5 .02; ANOVA test on
first 3 principal components, using the method-specific probe sets).
Hence, the residual predictive power of the CvC genes in our
analysis of NK-AML is primarily driven by a subgroup of genes,
which is also selected by the CvN method, thus highlighting its
excellent performance.

Overall, our cluster analysis demonstrates that the CvNmethod is
capable of identifying potential subtypes of NK-AML patients with
distinct patterns of aberrantly expressed genes.

The CvN-predicted NK-AML clusters display differential OS

Wenext assessed the potential of theCvNandCvC clusters to predict
OS in NK-AML (Figure 4C,F). Interestingly, the clusters generated
by the CvN method displayed distinct distributions of OS rates
among NK-AML patients, suggesting that this method is capable of
extracting prognostic relevant disease entities that are not defined by
specific genetic lesions but, rather, by distinct gene expression
programs representing surrogates of their leukemic phenotype. Of
the 6 CvN clusters, we found cluster_2 to be associated with
significantly worse outcome compared with the remaining 5 clusters
(Figure 4F; supplemental Table 6). Moreover, multivariate Cox
regression analysis identified cluster_2 as the strongest independent
prognostic factor for OS in NK-AML patients, performing better than
known risk factors such as FLT3mutations and age (Table 2). These
findings were corroborated by a random forest analysis31 that
highlighted cluster_2 as the most important variable for the
prediction of OS (supplemental Figure 11). Collectively, this
demonstrates the ability of the CvN method to identify novel
prognostic relevant subtypes of NK-AML patients.

To explore potentially disrupted core cellular functions associ-
atedwith the leukemic phenotype andOS of the 6NK-AMLclusters,
we again generated patient-specific signatures (as described earlier)
and scored the significance of the overlap for each individual NK-
AML signature against the gene expression signatures from the
MSigDB database. We identified the 200 most significant and
positively correlated MSigDB signatures for each NK-AML cluster
(P, 1e25; supplemental Table 5) and selected for signatures based
on literature review, as described earlier. This analysis allowed us to
identify NK-AML patients with high (cluster_2 cluster_4) vs low
(cluster_0, cluster_1, cluster_3, cluster_5) cell cycle activity
compared with their normal counterparts. Similar to AK-AML, the

majority of NK-AML patients shared a common transcriptional pro-
gramreflectingelevatedactivityof inflammatory response, hypoxia, and
signaling activities independent of their mutation and cluster status
(Figure 4G).

Surprisingly, cluster_2 and cluster_4, which differed widely with
respect to clinical outcome, shared high cell cycle activity and did not
differ markedly with respect to activity of other common transcrip-
tional programs. Consistently, we noted that cluster_2, with a poor
outcome, expressed a very similar set of deregulated genes compared
with cluster_4 with a favorable outcome (|log2 FC| . 2; P , 1025

vs normal cells; Figure 4D; supplemental Tables 1H and 4). We
therefore hypothesized that the few differentially expressed genes
between these clusters would be highly enriched in genes that account
for chemotherapy resistance, and thus could predict OS for the entire
NK-AML patient data set. To test this, we identified differentially
expressed genes between cluster_2 and cluster_4 (|log2 FC| . 2;
P, .05) and determined the significance by which they could predict
differences in OS in the upper and lower fold-change quartiles, using
the entire NK-AML patient data set (supplemental Table 1I). We next
used these genes to build a poor-outcome signature, a good-outcome
signature, and a combined survival signature, which were all able to
efficiently allocate the entire NK-AML data set, as well as 2 inde-
pendent data sets,13,15 into patients with good and poor outcome
(Figure 5A-E). Importantly, the genes in these signatures are
predicted to be enriched for genes directly involved in disease etio-
logy, including resistance to chemotherapy (supplemental Table 7).
On a final note, we found that a previously reported hematopoietic
stem cell signature32 was unable to predict survival in the NK-AML
patient data set15 (Figure 5F).

Collectively, our analyses demonstrate that the CvN method is
able to stratify NK-AML patients into known subtypes (cluster_3
with CEBPA mutations), stratify patients into new subtypes exhi-
biting differential OS, and extract a set common transcriptional
programs that likely represent disrupted core cellular functions un-
derlying the leukemic phenotype (see supplemental Table 5 for
additional data). In addition, our analysis might imply that increased
chemotherapy resistance inNK-AMLclusterswith poor vs favorable

Table 2. Multivariate Cox regression analyses of the NK-AML
data set

Analysis

OS

Hazard ratio P value

NK-AML patients

Age 1.741 .018

Blast cell count 1.177 .264

CEBPA status 0.786 .190

Cluster_2 2.722 .004

FLT3 2.299 .002

Sex 0.962 .439

NPM1 0.432 .001

CvN method

Cluster_1 0.80 .276

Custer_2 2.51 .017

Cluster_3 0.63 .144

Cluster_0 0.67 .154

Cluster_4 0.64 .161

Cluster_5 did not converge

Multivariate Cox regression analyses illustrating the prognostic power of the

NK-AML cluster_2. Cluster_2 was analyzed alongwith other clinical risk factors for the

NK-AML patient data set. Cluster_2 was analyzed together with the other clusters

identified by the CvN method. Cluster_5 fitting did not converge because of the few

events in this cluster. None of the NK-AML clusters identified by the CvCmethod were

significant in the multivariate Cox regression analysis.
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outcome is primarily driven by a limited number of highly prog-
nostically relevant genes rather than higher or lower activity of some
of the common transcriptional programs.

Discussion

GEP has the potential to yield fundamental insights into the
transcriptional programs of cancer cells and has thus been used for
more than a decade to probe tumor phenotypes. However, with few
exceptions, these analyses have all compared cancer to cancer, with
the obvious risk that differences in cell type and developmental
stage may render the identification of truly malignant gene ex-
pression programs impossible. Here we present a simple method,
referred to as the CvN method, that allows us to identify the nearest
normal counterpart for individual AML patient samples and cal-
culate gene expression differences between AML and normal. Our
method performed extremely well in classification of AK-AML and
identified gene expression programs associated with distinct AK-
AML subtypes. Moreover, we were able to clearly separate an
NK-AML patient data set into several clusters according to tran-
scriptional differences between individual AML patient samples and
their closest normal counterpart. These clusters were associated with
distinct OS and were predictive in multivariate analysis, highlight-
ing their biological relevance.

Recent epidemiologic and clinical studies have demonstrated a
higher incidence and aggressiveness of cancer in patients with
diabetes and in patients with inflammatory and autoimmune
diseases.33-35 Consistently, treatment with metformin reduces
cancer in patients with diabetes, and inflammatory ligands are ele-
vated and promote maintenance and proliferation of malignant
cells in different cancer entities.33,36-39 In addition, NF-kB, the key
transcriptional regulator of inflammatory response, was demon-
strated to be constitutively activated in various types of cancers,
including AML, and to play an important role in malignant trans-
formation in mouse models.39,40-43 Finally, the ability of various
solid cancer cells to adapt to hypoxia and switch metabolism from
oxidative phosphorylation toward glycolysis has emerged as
a novel hallmark of cancer that defines more aggressive cancer
phenotypes.44

Consistent with these reports, a previous study45 identified a
cancer signature ofmalignant transformation that is not only shared
by various types of cancers but also overlaps significantly with gene
expression signatures of chronic inflammatory conditions (colitis
ulcerosa, rheumatoid arthritis, systemic lupus erythematosus, Crohn’s
disease) and metabolic diseases (diabetes, obesity, hypercholesterol-
emia, atherosclerosis, cardiomyopathy). On the basis of their findings,
the authors argued that physiological and/genetic disruption of core
biological pathways maintaining normal cell functions generates
a gene expression program that is common to a diverse set of human
diseases.45

Figure 5. Survival signature predicts survival of patients with NK-AML. (A-C) Survival analysis based on 3 survival signatures derived from genes differentially expressed

in patient cluster_2 and cluster_4. The effect of the expression of individual probe sets on survival was tested by dividing the entire data set into low- and high-scoring samples

(median). Probe sets associated with poor and good OS (P , .05, moderated t test) and the ability to separate the data set (P , .05, log-rank test) were used to generate

a poor outcome signature (A), good outcome signature (B), and combined survival signature (C). (D-E) Testing of the combined survival signature on 2 independent NK-AML

patient data sets.13,15 (F) Testing of a previously published HSC signature32 revealed its inability to predict survival in the NK-AML patient data set in D.
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In line with these findings, our analysis demonstrated a signi-
ficantoverlapof the “commoncancer signature”andAK-AMLandNK-
AML signatures generated by the CvNmethod (supplemental Table 5;
HIRSCH_CELLULAR_TRANSFORMATION_SIGNATURE_UP).
Strikingly, our analysis also unraveled common transcriptional pro-
grams among all AML patients that are associated with elevated
signaling activity, inflammatory response, and hypoxia. Indeed, these
programs might reflect a disruption of normal core cellular functions
that are shared bymostAMLpatients despite their otherwise profound
clinical and genetic heterogeneity.

Significantly, our gene set overlap analysis allowed us to dis-
criminate AML patients with a high vs low cell cycle activity
compared with their normal counterpart. Whereas the majority
of AK- and NK-AML patients demonstrated a low cell cycle activ-
ity combined with elevated activities of inflammatory response,
hypoxia, and signaling, a minor number of patients demonstrated
a program of high cell cycle activity. The latter included a significant
number of AK-AML patients with inv16/t(16;16) and t(11q23) as
well as all cluster_2 and cluster_4 NK-AML patients. Surprisingly,
cluster_2 and cluster_4 demonstrated poor and favorable outcomes,
respectively, despite comparable high cell cycle activity combined
with a similar activity of inflammatory response, hypoxia, and sig-
naling. Consistently, they shared a high number of aberrantly ex-
pressed genes compared with normal but also demonstrated a limited
number of differentially expressed genes that formed the basis for
a powerful NK-AML survival signature. These findings suggest that
resistance to chemotherapy in NK-AML patients with poor vs
favorable outcome is primarily driven by a minor number of prog-
nostic relevant genes and not by the differential activity of common
transcriptional programs. Importantly, as these common transcrip-
tional programs likely represent disrupted core cellular functions,
some of them may be relevant for future targeting.

TheCvNmethodmay, in principle, be improved by several means.
As an example, the data used in the present work originate from AML
data sets derived from bulk tumor material. Hence, an obvious im-
provement of the precision of the CvN method would be to perform
the analysis on purified AML subpopulations and compare those with
their respective normal counterparts. Furthermore, our method is
dependent on the availability of GEPs from normal cells to construct
a gene expression landscape of the hematopoietic hierarchy onto
which we can map AML samples. Obviously, the precision of the
mapping and the subsequent deduction of gene expression changes
between cancer cells, and their corresponding normal counterpart is
dependent on the number and quality of normal reference populations.
Given the high density of functionally defined intermediate HPCs on
the path from HSCs to mature blood cells within the hematopoietic
hierarchy, its associated malignancies are ideally suited for the CvN
method. However, by combining multiparameter cell sorting with
highly innovative methods for the analysis of flow cytometry data,

such as the recently published Cyto-Spanning Tree Progression of
Density Normalized Events (CytoSPADE) method, it should be
possible to isolate novel intermediate HPCs for subsequent GEP,
thereby further refining the resolution of the gene expression
landscape of the normal hematopoietic hierarchy.46,47 This will in
turn improve the extent to which transcriptional changes between
normal and cancer cells can be detected. Importantly, as no functionally
characterization is required, implementation of SPADE or similar
protocols may be used to isolate a suitable number of stem/progenitor
cells from other organs, thereby making the CvNmethod amenable for
analysis of solid tumors. Thus, our approach has the potential to be
widely applicable to a substantial number of cancer types and promises
to expand the clinical use of GEP.
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in Sjögren’s syndrome: a putative role for
plasmacytoid dendritic cells. Eur J Immunol. 2008;
38(7):2024-2033.

23. de Hoon MJL, Imoto S, Nolan J, Miyano S. Open
source clustering software. Bioinformatics. 2004;
20(9):1453-1454.

24. Smyth GK. Linear models and empirical bayes
methods for assessing differential expression in
microarray experiments [published ahead of print
February 12, 2004]. Stat Appl Genet Mol Biol.

25. Zuber J, Shi J, Wang E, et al. RNAi screen
identifies Brd4 as a therapeutic target in acute
myeloid leukaemia. Nature. 2011;478(7370):
524-528.

26. Lugthart S, van Drunen E, van Norden Y, et al.
High EVI1 levels predict adverse outcome in
acute myeloid leukemia: prevalence of EVI1
overexpression and chromosome 3q26
abnormalities underestimated. Blood. 2008;
111(8):4329-4337.

27. Bacher U, Schnittger S, Haferlach T. Molecular
genetics in acute myeloid leukemia. Curr Opin
Oncol. 2010;22(6):646-655.

28. Shih AH, Abdel-Wahab O, Patel JP, Levine RL.
The role of mutations in epigenetic regulators in
myeloid malignancies. Nat Rev Cancer. 2012;
12(9):599-612.
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