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TAMreceptors (Tyro3,Axl,andMer)belong

to a family of receptor tyrosine kinases

that have important effects on hemostasis

and inflammation. Also, they affect cell

proliferation, survival, adhesion, and mi-

gration. TAM receptors can be activated

by the vitamin K–dependent proteins Gas6

and protein S. Protein S ismore commonly

known as an important cofactor for protein

C as well as a direct inhibitor of multiple

coagulation factors. Toour knowledge, the

functions of Gas6 are limited to TAM

receptor activation. When activated, the

TAM receptors have effects on primary

hemostasis and coagulation and display

an anti-inflammatory or a proinflammatory

effect, depending on cell type. To com-

prehend the effects that the TAM recep-

tors and their ligands have on hemostasis

and inflammation,wecomparestudies that

report the different phenotypes displayed

by mice with deficiencies in the genes of

this receptor family and its ligands (pro-

teinS1/2,Gas62/2, TAM2/2, andvariations

of these). In thismanner,weaim todisplay

which features are attributable to the differ-

ent ligands. Because of the effects TAM

receptors have on hemostasis, inflamma-

tion, and cancer growth, their modulation

could make interesting therapeutic targets

in thromboembolic disease, atherosclero-

sis, sepsis, autoimmune disease, and can-

cer. (Blood. 2014;123(16):2460-2469)

Introduction

In recent years, views on hemostasis and inflammation have shifted
from a concept of 2 independent areas of biology toward 2 closely
related processes. It is now appreciated that molecules that affect
hemostasis often have an effect on inflammation and vice versa. In
this review, we explore this dual roles of Gas6, protein S, and TAM
receptors. TAM receptors are 1 of 20 subfamilies of receptor tyrosine
kinases.1 First cloned in 1991, theywere considered orphan receptors
until 1995.2 In that year, their ligands, protein S and growth
arrest–specific gene 6 (Gas6), were identified.3-5 Members of the
TAM receptor family are Tyro3 (also called Brt, Dtk, Etk-2, Rek,
Rse, Sky, and Tif), Axl (also called Ark, Tyro7, and Ufo), and Mer
(also called c-Eyk, Mertk, Nyk, and Tyro12). TAM receptors
comprise 2 immunoglobulin-like and 2 fibronectin type III repeats
in their extracellular domains in tandem. This is connected to a
single-pass transmembrane domain and a cytoplasmic protein tyrosine
kinase (Figure 1A). Upon ligand binding, the receptor dimerizes
and the tyrosine kinase becomes activated.6 In recent years, several
signaling functions of TAM receptors have been described, such as
stimulation of cell growth and proliferation, inhibition of apoptosis,7,8

mediation of efferocytosis,9 stimulation of hemostasis,10 and modu-
lation of inflammation.11 In this review, we will focus on the
functions of the TAM receptors pertaining to hemostasis and
inflammation. When activated by Gas6, TAM receptors stimulate
hemostasis by facilitating platelet stabilization.10 The other ligand,
protein S, has a TAM-independent inhibitory effect on hemostasis.12-14

Activation of the TAM receptors was found to inhibit Toll-like
receptor (TLR) signaling, to induce phagocytosis, and to stimulate
natural killer cell development, leading to speculations about a role
in preventing autoimmunity.

This review delineates the known functional similarities and
differences between protein S, Gas6, and the TAM receptors. The
recently described knockout mice for protein S, Gas6, and the
individual TAM receptors have strongly contributed to the new

insights in this field. By comparing the phenotypes of the different
knockout mice, we discuss the functions of protein S that are
attributable to TAM receptor activation and those functions that
are the effect of protein S alone.

Protein S

Protein S is a vitamin K–dependent protein encoded by the PROS1
gene in humans and by Pros1 in mice. Unlike genes encoding for
most vitamin K–dependent factors, the PROS1 gene is also expressed
in other tissues than the liver: transcription of PROS1 can be found
in the kidney, lungs, or gonads. Protein S is produced by a variety
of cell types (eg, hepatocytes, endothelial cells, megakaryocytes,
osteoblasts).15 It contains an amino terminal g carboxyglutamic acid
(GLA) domain, followed by a thrombin-sensitive loop region and
4 epidermal growth factor–like domains ending with the carboxy-
terminal (C-terminal), consisting of 2 laminin G repeats that together
comprise the sex hormone–binding globulin domain (Figure 1B).16

The C-terminal region is sufficient for TAM receptor binding and
phosphorylation.17

Protein S circulates in plasma at a concentration of 346 nmol/L18

and serves as an anticoagulant by working as a nonenzymatic cofactor
for activated protein C in the breakdown of coagulation factors (F)
Va and FVIIIa.12 It is further capable of binding FXa and FVa
directly in that it can autonomously inhibit coagulation.13,14,19-21

Factor Xa is also inhibited by protein S through acting as a cofactor
for tissue factor pathway inhibitor.22 In humans, it exists in a free
active form (30% to 40%) and in an (almost) inactive form bound to
C4b-binding protein (60% to 70%).23 It is therefore plausible that in
human protein S is apt to affect the complement system.24 In mice,
however, protein S exists only in its free form because the murine
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C4b–binding protein lacks the b-chain that is essential for binding
protein S.25 The functional consequences of this difference remain
unknown.

Heterozygous deficiency of PROS1 is associatedwith an elevated
risk for developing thrombosis,26,27 whereas homozygous deficiency
is incompatible with life or leads to neonatal purpura fulminans in rare
cases.28

Last, protein S has been identified as a ligand for the TAM
receptors in addition to Gas6. It has been shown capable of binding
Tyro3 (eg, in osteoclasts).29 In retinal pigment, epithelium protein S
has been described to be equally important and interchangeable with
Gas6 in vivo as a Mer ligand.30 Affinity between protein S and Axl,
however, has never been shown. Protein S binding to Tyro3 andMer
shows a high degree of species specificity. Peculiar is that human
protein S shows only weak or no affinity for the different human
TAM receptors, whereas bovine protein S displays good affinity to
human Tyro3 (reviewed by Hafizi31).

Gas6

Gas6 is a 75-kDa vitamin K–dependent protein first discovered
under conditions of growth arrest in embryonic mouse NIH 3T3
fibroblasts.32,33 It has high structural homology (;42%)with protein
S and the modular composition is the same (as described previously
and shown in Figure 1B). Unlike in protein S, the thrombin-sensitive
region in Gas6 (a disulfide-bridged thumb loop) does not seem to
be susceptible to cleavage by the action of serine proteases. The
concentrationofGas6 is around20-50ng/mL (0.25nmol/L) inplasma,
and elevated to about 110 ng/mL in severe sepsis patients.34,35 These
levels are much lower than those of the other vitamin K–dependent
proteins of plasma.Another differencewith other vitaminK–dependent
proteins is that Gas6 is barely produced in the liver, but instead in
the heart, kidneys, and lungs. Important tissues where Gas6 is
expressed are endothelial cells,33 vascular smooth muscle cells,7

and bone marrow.36 Gas6 has been shown to be present in murine
platelets,37,38 but this presence in humans has been debated.
Evidence does suggest that human platelets will aggregate upon
TAM activation by Gas6.39

There have been no reports in literature of cases with homo- or
heterozygous deficiency of theGAS6gene. Certain haplotypes of the
GAS6 gene seem to have a protective role in the development of
stroke.40

Gas6 binds the TAM receptors with different affinities: Axl $
Tyro3 .. Mer.5 Functions of Gas6 seem to be limited to those
caused by activation of the TAM receptors. These functions are dealt
with in the next paragraphs.

TAM receptors

Expression of the individual TAM receptors can be found in many
cell types, but the patterns vary. Tyro3 is mostly found in the central
nervous system, kidneys, ovaries, and testes.41,42 Axl is nearly
ubiquitously expressed in most human cells originating from
hematopoietic, epithelial, and mesenchymal sources.43 Mer is pre-
dominantly expressed in ovaries, testes, prostate, lungs, and kidneys
and to a lesser extent in the thymus, spleen, liver, small intestine,
colon, and placenta.44,45

Important cell types in which TAM receptors are active are, for
example, antigen-presenting cells,46 monocytes, and natural killer
cells in the immune system 44; osteoclasts in bone28; Sertoli cells in
the testis 47; endothelial cells and vascular smooth muscle cells in the
vasculature 48; and pigmental epitheliumcells in the retina.49 In contrast,
they are not expressed in granulocytes or blood lymphocytes.50 In tumor
cells, TAM receptors are often upregulated (reviewed by Linger51).

Along with this wide expression of TAM receptors, many
functions can be described. This review will not discuss all of these
functions, but will focus on hemostasis and inflammation.

With respect to hemostasis, all 3 TAM receptors are located on
platelets and mediate thrombogenesis and platelet stabilization. Platelet
stabilization occurs after integrin activation, granule secretion, and
platelet aggregation through platelet-to-platelet contact.Without this
mechanism, platelet plugs disaggregate prematurely (reviewed by
Prevost52). Important downstream mechanisms in platelets include
increased granule secretion, activation of PI3K, and phosphorylation
of b3 integrin, leading to an increase in outside-in signaling via the
aIIbb3 integrin (Figure 2).10,39 Also, vascular Gas6 upregulates
tissue factor in vascular cells when vessel injury occurs, leading to
activation of the extrinsic coagulation pathway and thrombus
formation.53 Gas6 is released from mouse platelets,37,38 but human
platelets do not seem to contain Gas6.34,35 Besides, only expression
of theMer receptor on human platelets has been shown.54 Still, Gas6
levels in plasmawere higher in patientswith venous thromboembolic
disease as comparedwith healthy volunteers.55Also, genetic evidence
shows an association between certain single nucleotide polymor-
phisms in the GAS6 gene and stroke,56 making involvement of TAM
receptor in human, and not only murine, hemostasis likely.

Activation of the TAM receptors by Gas6 amplifies pro-
inflammatory endothelial cell (EC) activation, leading to expression
of vascular cell adhesion molecule-1 (VCAM-1) and intercellular
adhesion molecule-1 (ICAM-1). In platelets and ECs, TAM recep-
tor phosphorylation leads to increased expression of P-selectin.
P-selectin glycoprotein ligand-1 on leukocytes binds to P-selectin.
The enhanced expression of adhesion molecules induces sequestra-
tion of platelets and leukocytes to ECs and each other. Hereby, the
TAM receptors support leukocyte extravasation and inflammation
and adhesion of platelets to endothelial cells.57 Protein S levels
are increased in atherosclerotic vessels. By activation ofMer, protein
S inhibits macrophage scavenger receptor A–mediated acetylated

Figure 1. The structure of the Tyro3/Axl/Mer receptor. (A) The N-terminal starts

with 2 Ig-like domains, followed by 2 fibronectin type 3 domains, followed by a single-pass

transmembrane domain and a protein tyrosine kinase at the C-terminal. (B) The structure

of the TAM ligands protein S and Gas6. The N-terminal contains a GLA domain, followed

by a thrombin-sensitive region (TSR), followed by 4 EGF-like domains, followed by

a C-terminal (SHBG-like domain, consisting of 2 LG repeats. EGF, epidermal growth

factor; Ig, immunoglobulin; LG, laminin G; SHBG, sex hormone–binding globulin.

BLOOD, 17 APRIL 2014 x VOLUME 123, NUMBER 16 TAM RECEPTORS, Gas6 AND PROTEIN S 2461

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/123/16/2460/1375952/2460.pdf by guest on 08 June 2024



low-density lipoprotein uptake inmacrophages, thereby reducing the
formation of foam cells.58 These mechanisms can possibly explain
part of the recent findings that SNPmutations in TAM receptor genes
are correlated with the formation of atherosclerotic plaques.59,60

Protein S is upregulated by interleukin-4 (IL-4) in primary
T cells.61Natural killer T cells requireMer to induce the transcription
of IL-4 and interferon-g (IFN-g).62 Whether this results in a feed-
back loop in vivo is unknown. A cell-proliferative function of
TAM signaling aids inflammation by stimulating maturation of
natural killer cells.63 Similarly, in the kidney, activation of Axl
promotes inflammation through increased proliferation of mesangial
cells.64

In contrast to supporting the inflammatory response described
previously, TAM receptor signaling inhibits inflammation bymultiple
mechanisms. Activation ofMer, in contrast toAxl, inhibits glomerular
inflammation during glomerulonephritis.65 In antigen-presenting
cells, TAM receptor signaling inhibits lipopolysaccharide (LPS)-
induced cytokine production (eg, tumor necrosis factor-a [TNF-a]).11

Activation of cytokine receptors leads to an IFN-a/b receptor
(IFNAR)/signal transducer and activator of transcription 1 (STAT1)
upregulation of Axl (Figure 3). Together with the IFNAR/STAT1
signaling cassette, the TAM receptors induce the transcription of
the anti-inflammatory suppressor of cytokine signaling protein 1
(SOCS1) and SOCS3 and inhibit both cytokine receptors and TLR
signaling pathways.66,67 The decreased expression of these anti-
inflammatorymediators in TAM2/2 cells seems to point to a crucial
role of SOCS proteins in the anti-inflammatory action of TAM
receptors. However, a direct dependence of TAM anti-inflammatory
function on SOCS has not yet been proven. TAM activation also

induces Twist transcriptional repressors that suppress nuclear factor-
kB (NF-kB)-dependent transcription.68 TLR signaling in its turn
suppressesGas6 and protein S expression viaNF-kB inmacrophages.69

Administration of recombinant Gas6 in amurine sepsis model results in
less mortality because of reduced neutrophil migration.70

Another important anti-inflammatory mechanism is that TAM
receptors enhance phagocytosis of apoptotic cells, also known as
efferocytosis (Figure4).71Gas6andproteinSbind tophosphatidylserine-
positivemoietieswith theirN-terminalGLAdomain (g-carboxyglutamic
domain).9,72,73 The C-terminal binds to Mer on macrophages and
Axl and Tyro3 on dendritic cells,46 causing the intracellular kinase to
phosphorylate.74-77 Although the exact signaling cascades remain
unknown, a variety of signaling molecules has been shown to be
relevant, such as PI3K, phospholipase Cg2, Src family kinases, and
interactions with the avb5 integrin. Rac1 is responsible for cyto-
skeletal rearrangement.77,78 Protection of the blood–brain barrier
integrity also occurs through cytoskeletal rearrangement of brain
endothelium by Rac1. It has been shown that this can bemediated by
ligation of protein S to Tyro3, after which the protective sphingosine
1–phosphate receptor is activated.79

Accumulated apoptotic cell debris that exists when efferocytosis
is impaired contains a variety of autoantigens that may cause lupus-
like autoimmunity. Whether TAM receptors are involved in the
etiology of lupus erythematosus (SLE) remains unknown. An
association between decreased protein S levels and SLE has been
described,80 whereas elevated Gas6 levels are associated with
disease activity in SLE.81 Mutations in the murine and human genes
coding for Mer lead to impaired phagocytosis by retinal pigment
epithelial cells. This leads to cumulation of photoreceptor outer

Figure 2. TAM-mediated platelet stabilization and

leukocyte adhesion. ADP and Gas6 increase ex-

pression of aIIbb3 integrin via PI3K/Akt. After binding to

fibrinogen, granule secretion is elevated by outside-in

signaling. TAM receptor phosphorylation also leads to

increased expression of P-selectin, which binds to

PSGL-1 on leukocytes, and increased expression of

adhesion molecules ICAM-1 and VCAM-1 by endothelial

cells, also stimulating sequestration of leukocytes. Gas6

upregulates tissue factor in endothelial cells upon vessel

injury (not depicted), leading to activation of the extrinsic

coagulation pathway. ADP, adenosine diphosphate;

PI3K, phosphatidylinositol 3-kinases; PSGL-1, P-selectin

glycoprotein ligand-1.
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segments and retinal degeneration, causing retinitis pigmentosa in
humans.82 This Mer-dependent signaling is mediated by both Gas6
and protein S as equally important ligands.30

TAM receptors do not mediate phagocytosis of bacteria, yeast, or
latex particles.74,83 However, viral entry into target cells is facilitated
by Axl by apoptotic mimicry of the viral envelope.84

Recently, new ligands for TAM receptor–mediated efferocytosis
have been described: Tubby, tubby-like protein 1 (Tulp1),85 and
galectin-3.86 Tubby and galectin-3 specifically bind toMer, whereas
Tulp1 can activate all 3 of the TAM receptors. Whether these new

ligands can affect other mechanisms besides phagocytosis through
TAM activation remains to be elucidated.

Knockout mice

Single, dual, and triple knockout mice for the Tyro3/Axl/Mer
receptors have been described extensively, as have Gas6-deficient
mice. Protein S knockout mice, however, had not been described

Figure 3. Effects of TAM receptors on inflamma-

tion. IFN-a induces TAM receptor expression. TAM

signaling usurps the IFNAR/STAT1 cassette to inhibit

TLR and JAK signaling via SOCS1 and SOCS3. TAM

activation induces Twist, which suppresses NF-kB–

dependent transcription reducing pro-inflammatory

cytokine production. NF-kB inhibits GAS6 and protein

S expression. ASK, apoptosis signal-regulating kinase;

IFN-a, interferon-a; IRAK, interleukin-1 receptor–

associated kinase; IRF, interferon regulatory factor;

JAK, Janus kinase; MyD88, myeloid differentiation primary

response gene 88; TRAF, TNF receptor–associated

factor; TRIF, TIR domain–containing adapter-inducing

IFN-b.

Figure 4. Putative model for TAM-mediated effer-

ocytosis. The GLA domains of protein S and Gas6

bind to the phosphatidylserine-positive cell membrane

of an apoptotic moiety. The SHBG domains bind to

TAM receptors, which causes phosphorylation of the

intracellular protein tyrosine kinase. Phosphorylated by

the kinase, PI3K induces phosphorylation of PIP2 to

PIP3, which facilitates phagocytosis. TAM receptor

activation stimulates phospholipase Cg2, leading to

enhanced PKC activity. It has also been suggested that

a Src family kinase is activated, resulting in recruitment

of FAK, functionally cross-talking with avb5 integrin. It

has also been suggested that a complex consisting

of c-Src, PI3K, and STAT3 is established by Mer

phosphorylation. This complex then inhibits inflamma-

tion in DCs. DAG, diacylglycerol; DC, dendritic cell;

FAK, focal adhesion kinase; IP3, inositol trisphosphate;

MFGE8, milk fat globule-EGF factor 8; PIP2, phos-

phatidylinositol (4,5)-bisphosphate; PIP3, phosphatidy-

linositol (3,4,5)-triphosphate; PKC, protein kinase C;

PLC, phospholipase C.
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Table 1. Summary of phenotypical effects on hemostasis, inflammation, and other systems as seen in various knockout mice

Knockout type

Effects on

Hemostasis Inflammation Other

Protein S2/2 • Death by coagulopathy with

macroscopic blood clots and extensive

hemorrhages between E15.5 and

E17.5.

Not described • Vascular development is defective

(caused by thrombosis and reduced

protein S–dependent Axl signaling).88

• Intravascular and interstitial fibrin

depositions.

• Increased amounts of megakaryocytes

in the liver, suggesting peripheral

thrombocytopenia.88,93

Protein S1/2 • 44% decrease in protein S levels. Not described • Defects in vascular development.88

• 53% decrease in APC cofactor activity.

• FVa-based clotting time is shortened,

thrombin generation is elevated, the lag

time for thrombin generation is

shortened.88,93

Protein S2/2 in

hepatocytes

(Alb-Cre/protein Sfl/fl)

• 15% show fibrin depositions in blood

vessels.

Not described Not described

• 55% decrease in protein S levels.

• 47% decrease in APC cofactor activity.88

Protein S2/2 in

endothelial

and hematopoietic cells

(tie2-Cre/protein Sfl/fl)

• Fibrin depositions in blood vessels (but

less severe than in Alb-Cre/protein S1fl/fl).

Not described Not described

• 43% decrease in protein S levels.

• 49% decrease in APC cofactor activity.88

Protein S2/2 in vascular

smooth muscle cells

(Sm22-Cre/protein

Sfl/fl/Gas62/2)

Not described Not described • Vascular defects leading to permeation into

liver parenchyma.88

Gas62/2 • The mice are protected against venous

and arterial thrombosis but do not display

spontaneous bleeding (caused by platelet

dysfunction).38

• Reduced inflammation and reduced

myofibroblast activation in the steatotic liver,

reducing liver fibrosis.94

• Elevated vascular permeability.38

• Reduced sequestration of platelets onto

endothelium.

• Endothelial cells express less VCAM-1

and ICAM-1 when stimulated with

TNF-a than WT.

• Less oligodendrocytes and microglial

activation after demyelination.98

• Reduced thrombosis in models of

endotoxinemia and vasculitis.57
• Reduced sequestration of platelets onto

endothelium, of leukocytes onto

endothelium, and of platelets to leukocytes.

• Reduced expression and activity of tissue

factor in vascular cells.53
• Reduced leukocyte extravasation and

inflammation in endotoxinemia, vasculitis,

and heart transplantation.57

• More hypoxia-induced cell death and higher

IL-1b and TNF-a expression in murine

macrophages.95

• More graft-versus-host disease when

receiving liver transplantation.96

• Less mortality and proteinuria in accelerated

nephrotoxic nephritis than in WT mice.64

• More stable atherosclerotic plaques by

increased fibrosis and fewer

macrophages.97

Gas62/2, protein S2/2

in retinal cells

Prosfl/-/Nes-Cre/

Gas62/2)

Not described Not described • Blindness from impaired phagocytosis of

photoreceptor outer segments by retinal

pigment epithelial cells.31

Tyro3/Axl/Mer2/2 • Recurrent thrombosis and hemorrhages in

several tissues (including the brain),

associated with the presence of

antibodies to phospholipids as seen in

autoimmune syndromes.50

• After ;4 weeks, spleens and lymph nodes

enlarge.

• Spermatogenesis in males defected.

• Impaired hemostasis, thrombocytopenia

resulting from platelet dysfunction and

megakaryocytopoiesis.99

• After 1 year, the spleens are about 10 times

the normal size.

• Testes one third of WT size.

APC, antigen-presenting cell; CNS, central nervous system; MHC, major histocompatibility complex; NK, natural killer; VSMC, vascular smooth muscle cell; WT, wild-type.
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Table 1. (continued)

Knockout type

Effects on

Hemostasis Inflammation Other

• Hyperproliferation of constitutively

activated B and T cells (the latter

slightly more).

• Blindness from impaired phagocytosis of

photoreceptor outer segments by retinal

pigment epithelial cells.

• Ectopic lymphocytes in every researched

organ.

• Young adults: diminished hippocampal

long-term potential.

• Clinical manifestations mimic autoimmune

diseases similar to rheumatoid arthritis,

pemphigus vulgaris, and SLE.

• Aged: neural degeneration with seizures

and paralysis.47

• T cells express elevated amounts of IL-2

receptor and lectin CD69.

• B cells express Fas, CD44, and IFN-g.

• Vascular endothelia express ICAM-I.

Increased antibody titers can be found on

double-stranded DNA, collagen,

cardiolipin, phosphatidytidylserine,

phosphatidylethanolamine, and

phosphatidylinositol.

• Macrophages produce high levels of IL-12

and MHCII is strongly increased.

• When given LPS intraperitoneally, LPS-

induced TNF-a response doubles in

comparison with WT.

• Inactivation of Mer contributes the most to

the previously mentioned scenario.50

• Immature NK cell development.63

Tyro32/2 • Reduced thrombus formation. Not described • Young adults: diminished hippocampal

long-term potential.

• Initial platelet aggregation is not reduced,

but stabilization of the aggregates is,

because of a decrease in outside-in

signaling and platelet granule secretion.10

• Aged: neural degeneration with seizures

and paralysis.47

Axl2/2 • Reduced thrombus formation. • Increase in apoptosis in response to flow

reduction in carotid artery.

• Elevated vascular permeability.

• Initial platelet aggregation is not reduced,

but stabilization of the aggregates is,

because of a decrease in outside-in

signaling and platelet granule secretion.10

• Impaired vascular remodeling: Increase in

CD451 cells and decrease in VSMC,

macrophages, and neutrophils.100

• Impaired vascular remodeling.100

• Enhanced inflammation in the CNS

because of delayed removal of myelin

debris during experimental autoimmune

encephalomyelitis.101

Merkd or Mer2/2 • Reduced thrombus formation. • Delayed cell clearance of infused

apoptotic cells.

• Blindness from impaired phagocytosis of

photoreceptor outer segments by retinal

pigment epithelial cells.30,49,82• Initial platelet aggregation is not reduced,

but stabilization of the aggregates is,

because of a decrease in outside-in

signaling and platelet granule

secretion.10,54

• Animals develop a SLE-like autoimmunity

with antibodies to chromatin, DNA, and

IgG.74-102

• Mice show increased susceptibility and

death in response to endotoxic shock.

• Monocytes stimulated with LPS express

more NF-kB and produce more TNF-a.11

• NK T cells have a defect in in vivo

GC-a–stimulated production of IL-4 and

IFN-g.62

• Enhanced B-cell responses in splenic

marginal zone.103

• Increased migration of macrophages,

DCs, plasmacytoid DCs, T cells, and B cells

into the peritoneal cavity.104

• Increased renal inflammation in

nephrotoxic serum–induced nephritis.65

• Decreased induction of c-Src and STAT3.105

APC, antigen-presenting cell; CNS, central nervous system; MHC, major histocompatibility complex; NK, natural killer; VSMC, vascular smooth muscle cell; WT, wild-type.
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until recently. The various phenotypes exhibited by the different
knockout mice, with effects on hemostasis, inflammation, and other
systems, are summarized in Table 1. As can be seen in this table,
knockout mice for protein S, Gas6, and TAM receptors show a large
variety of phenotypes. Protein S2/2mice have a lethal coagulopathy
and vascular malformation. The latter is most probably the result of
impaired blood flow caused by thrombi and—because the malfor-
mation ismore severe than onewould expect caused just by impaired
blood flow—it could speculated to be due to insufficient Axl
signaling.However, protein S/Axl binding has never been determined.
Meanwhile, protein S has been shown to induce proliferation of
vascular smoothmuscle cells by receptor activation, a function known
to be attributed to Axl when activated by Gas6.87

Protein S knockouts with cell-specific Cre drivers give new
insights into protein S production: endothelial and hematopoietic
cells produce 43% of the circulating protein S, and local production
of protein S in vascular smooth muscle cells is important for the
vascular formation because Sm22-Cre/protein Sfl/fl knockout mice
show increased vascular permeability.

Gas6 knockout mice exhibit a reduction of thrombus formation,
improved survival when challenged with a thrombotic stimulus,
vascular defects, and reduced liver inflammation. Knocking out any
of theTAMreceptors separately alsoprotectsmice against thrombosis.

When only Tyro3 is knocked out, the mice develop neurological
disorders. Axl2/2 mice have vascular defects (such as protein S and
Gas6 knockouts), impaired vascular remodeling after hemodynamic
stress, and an increased inflammatory response in the central nervous
system caused by reduced debris removal. Mer knockout mice show
many autoimmune-like features. This is probably from the loss of the
inhibitory effect of Mer on the NF-kB pathway, leading to excessive
amounts of pro-inflammatory cytokines, and because of the loss of
efferocytosis. Triple TAM knockout mice seem to combine all
individual phenotypes (Tyro32/2, Axl2/2, and Mer2/2) and show
a more severe phenotype (especially regarding inflammation).

Discussion

In this review of the literature, we have systematically explored the
phenotypes of TAM/protein S/Gas6-deficient mice. Gas6, protein S,
and the TAM receptors have effects on primary hemostasis and
coagulation and display an anti-inflammatory or a pro-inflammatory
effect, depending on cell type and even on the receptor. Besides
describing these effects and their underlying mechanisms, the other
goal of this review is to hypothesize about which functions of TAM
receptors are attributable to protein S. Because of the severe im-
pairment of the hemostatic function in protein S knockouts, it is
difficult to assess the TAM-mediated effects in these mice. The
disorders in vascular development seen are too severe to only be
caused by coagulopathy. Although functional phenotypes in protein
S–deficient mice may be hidden by redundant actions of Gas6,30

the local synthesis of protein S seems to have a role in the vascular
development.88 Because mice lacking Axl suffer from similar
underdeveloped blood vessels, this could imply locally produced
protein S is required for activating Axl.

Because affinity between protein S and Axl has never been
shown, it might be caused by protein S via a different mechanism
thanAxl activation. A recent study describes how protein S can inhibit
vascular endothelial growth factor receptor-A–dependent EC migra-
tion, mitosis, and signaling via activation of Mer.89 Although by this
mechanism, protein S–deficient mice would have increased vascular

proliferation, one could hypothesize that an imbalance of pro-
liferative and antiproliferative mechanisms could result in vascular
malformation—especially because the Gas6/Axl stimulatory effect
and the protein S/Mer inhibitory effect on vascular proliferation are
both mediated by phosphorylation of SHP2. Apart from the vascular
malformation, no other potential TAM receptor–mediated effects
could be identified based on the experiments with protein S knockout
mice.

ComparingGas6 knockoutmicewith TAMreceptor knockouts is
another way to analyze the effects of Gas6-independent TAM ac-
tivation. Specifically, the lupus-like autoimmune syndrome present
in triple TAM knockout mice is less pronounced in Gas62/2 mice.
This indicates that, in Gas6 knockout mice, another ligand fulfills the
inhibitory task within the immune system, possibly protein S. This
concurs with the findings that protein S plays an equivalent role to
Gas6 in the efferocytosis stimulated by the TAM receptors74 and that
SLE patients may show lower protein S levels and/or anti-protein S
antibodies.87,90 However, the newly described ligands Tubby, Tulp1,
and Galectin-3 are also likely candidates that could explain this
difference between the phenotypes.

The physiological role of Gas6 has been deducted mainly in
GAS62/2 mice, which are viable and able to reproduce. Until now,
nohumans have been identifiedwith a totalGas6 deficiency, so either
Gas6 deficiency has no major clinical consequences in man,
or—although less probable—total Gas6 deficiency is not compatible
with life in humans. Unlike human protein S, human Gas6 is a high-
affinity ligand for all humanTAMreceptorswithKd in the nanomolar
range (reviewed byHafizi31). Redundancywith protein S in its function
to activate Mer may actually mask important functions of Gas6, as
has been demonstrated in the retina, in which locally produced
protein S is as potent as Gas6 in activating Mer.30 Therefore, much
remains to be elucidated on protein S–mediated TAM receptor
activation.

Furthermore, certain molecular properties of the ligands require
attention. The effect of multimerization of Gas6 and protein S on
TAM receptor binding and activation is not completely clear. Upon
purification, a major part of protein S is in a multimerized form with
increased phospholipid-binding properties.91 Similar high-molecular-
weight multimeres of protein S have been observed in plasma and
reported to possess equal anticoagulant properties as the monomers.92

Membranes that contain phosphatidylserine serve as a scaffold for
the auto-oxidation of Cys residues in protein S, which promotes the
oligomerization of protein S required forMer-dependent apoptotic cell
clearance.73 This oligomerization may also provide a mechanism that
allows the abundant protein S to activate Mer when necessary and
not constitutively. Whether oligomerization of protein S increases
the affinity (single bond interaction) or the avidity (combined strength
of multiple bond interactions) with TAM receptors is still to be
determined aswell aswhethermurine proteinSoligomerizes as human
proteinSdoes. Further research shouldbeperformed toelucidatewhen
and how oligomerization is required for TAM-mediated functions of
protein S and Gas6.

The importance of systemic circulating protein S to TAM receptor
activation is unclear. Complete deletion of protein S results in em-
bryonic malformation and thrombosis in protein S knockout mice.
Furthermore, deletion of either hepatic or endothelial/hematopoietic
production of protein S leads to ;50% reduction in systemic levels
and fibrin formation in blood vessels.89 Thus, it seems that to clarify
the role of circulatory protein S as a TAM receptor ligand, it will be
necessary to generate an animal with mutant protein S, which only
displays anticoagulant activity and no TAM receptor–activating
activity. This could potentially be obtained by the introduction of
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sequences in the PROS1 gene that would delete ormutate the SHBG-
like region of protein S. Another way to generate an animal devoid of
systemic TAM-activating protein S would be to silence the residual
hepatic protein S production by small interfering RNA in tie2-Cre/
protein Sfl/fl animals, which would then have to be supplemented
pharmacologically with protein S that lacks the SHBG domain or
protein S with an inactive SHBG domain to adequate anticoagulant
levels. To generate suchmice would be a major task and the relevance
with regard to human disease could be questioned. However, such an
approach may provide proof-of-principle data regarding the overall
importance of nonredundant TAM-related protein S functions. A
similar approach would be needed with a Gas62/2 background to
investigate the TAM-related functions of protein S that are redundant
with Gas6.

From a clinical perspective, further research in this field could
provide therapeutic options for important diseases. A TAM receptor
antagonist or a Gas6 antagonist could provide protection against
thrombosis without a bleeding diathesis. Because vitaminK antagonists
also inhibit Gas6 (and protein S), beside FII, FVII, FIX, and FX,
anticoagulant effects of these drugs might partially also be caused
by reduced stimulation of TAM receptors. The recent findings of
a reduction of mortality in septic mice given recombinant Gas6, even
after onset of the disease, brings a new potential supportive therapy

for the critically ill. This also raises the question whether usage of
vitamin K antagonists in septic patients might increase mortality.
Further research could also provide more insight and possible
therapeutic options for autoimmune diseases such as SLE, and,
although not discussed in this review, cancer growth. That the
described receptors and their ligands’ functions lie within 3 general
groups of disease (hemostasis, inflammation, and cancer growth)
should alert researchers to creating possible adverse effects when
developing drugs. However, considering this information, it will be
of great interest to see what the coming 2 decades of TAM receptor
research will bring to medicine.
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