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Key Points

• The CBL syndrome may
predispose to myeloid
neoplasias other than juvenile
myelomonocytic leukemia.

• Whole-exome sequencing
identifies mutations that
possibly cooperate with
mutant CBL in AML
development.

We describe the development of acute myeloid leukemia (AML) in an adult with CBL

syndrome caused by a heterozygous de novo germline mutation in CBL codon D390. In

the AML bone marrow, the mutated CBL allele was homozygous after copy number–

neutral loss-of-heterozygosity and amplified through a chromosomal gain; moreover, an

inv(16)(p13q22) and, as assessed bywhole-exome sequencing, 12 genemutations (eg, in

CAND1, NID2, PTPRT, DOCK6) were additionally acquired. During complete remission of

the AML, in the presence of normal blood counts, the hematopoiesis stably maintained

the homozygousCBLmutation,which is reminiscent of the situation in childrenwithCBL

syndrome and transient juvenile myelomonocytic leukemia. No additional mutations

were identified by whole-exome sequencing in granulocytes during complete remission.

The study highlights the development of AML in an adult with CBL syndrome and, more

generally, in genetically aberrant but clinically inconspicuous hematopoiesis. (Blood.

2014;123(12):1883-1886)

Introduction

Preceding hematologic disorders are documented in one-quarter of
adults with acute myeloid leukemia (AML).1 However, an unknown
proportion of AMLs that apparently arise de novo may have
developed from undiscovered abnormal hematopoiesis.

Mutations in CBL, encoding an E3 ubiquitin ligase, are found
in 10% to 20% of chronic myelomonocytic leukemia (CMML) or
juvenile myelomonocytic leukemia (JMML) patients.2-7 Germline
CBLmutations cause theCBL syndrome that recapitulates features of
other RAS-MAPK pathway disorders and predisposes to JMML.8-10

In AML, CBL mutations are rare but associated with inv(16).11-14

Here we describe the development of AML in an adult with CBL
syndrome and JMML-typical loss of wild-type (WT) CBL in bone
marrow.

Methods

Written informed consent of the patient included in the present study was
obtained for sample storage and analyses before sampling, as approved by the
local ethics committee. This study was conducted in accordance with the
Declaration of Helsinki. Karyotype; mutations in NPM1, FLT3 (tyrosine
kinase domain, internal tandem duplication), CEBPA, and CBL; and CBFB-

MYH11 expression relative toABL1were assessed as described elsewhere.15-18

CBL mutated-to-WT allelic ratios were determined using the PyroMark
Q96MD (Qiagen), and chromosomal copy numbers using CytoScanHD
arrays (Affymetrix).Datawere deposited at http://www.ebi.ac.uk/arrayexpress/
(E-MEXP-3997). Whole-exome sequencing was performed as reported19;
variants were validated by Sanger sequencing. Methods are detailed in the
supplemental data available on the Blood Web site.

Results and discussion

Characteristics of the AML

A 40-year-old man was diagnosed with AML in June 2011. His
preexisting conditions were hereditary spherocytosis (diagnosed in
1996), coagulopathy (low FVII, X, XII, XIII), atrial fibrillation, and
hypocholesterolemia; a splenomegalywas considered a consequence
of the spherocytosis. At AML diagnosis, his white blood cell count
was 19 390/mL, with approximately 30% blasts and 30% dysplastic
monocytes (supplemental Figure 1). The marrow contained 50%
CD1171 blasts and 30% CD141 monocytes; the karyotype was 46,
XY,add(4)(q?31),inv(16)(p13q22)[21]/46,XY,inv(16)(p13q22)[1].
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CBFB-MYH11 (type D) was detected with a ratio of 46.23 in blood.
NPM1, CEBPA, and FLT3 mutations were absent.

The patient received “317” induction followed by dasatinib
(clinicaltrials.gov #NCT00850382). Six weeks after the start of
therapy, complete remission (CR) was documented. The patient
received 4 consolidation courses with high-dose cytarabine. At
last follow-up (September 2013), he was in continuous CR, with
no CBFB-MYH11 detectable.

Identification of a germline CBL mutation

Between the treatment courses, the patient’smonocyte counts rose to
extraordinarily high levels. Althoughmonocyteswere within normal
limits after treatment and in blood counts dating back to 1996
(supplemental Table 1), this observation prompted the question of
whether the patient had an underlying monocytic disorder.

Because monocytosis is a hallmark of JMML and CMML, we
examined the mutation status of CBL exons 8 and 9 in blood collected
at the AML diagnosis.We indeed found a p.D390V-mutation, located
in the frequentlymutatedRINGfinger domain. Assessing the germline
origin of the mutation, we also identified it in buccal mucosa and hair
follicles. We concluded that the patient had a previously undiagnosed
CBL syndrome,with the preexisting coagulopathy andatrialfibrillation
being part of the phenotype (supplemental Table 2).8-10

No CBL mutations were detected in the blood of both of his
parents, indicating de novo occurrence in the patient’s germline. The
patient has no siblings.

Zygosity of the CBL mutation

Copy number–neutral loss-of-heterozygosity (LOH) of the CBL-
containing chromosomal band 11q23.3 is common in children with
CBL syndrome and JMML.8,10 11q-LOH was also detectable in
marrowmononuclear cells from our patient during AML.Moreover,
the 11q-LOH persisted in B lymphocytes, granulocytes, and mono-
cytes collected later during CR (Table 1 and supplemental Figure 2).
This is reminiscent of the situation in children withCBL syndrome and
JMML whose myeloproliferation spontaneously improves.8 Notably,
the AML in our patient exhibited an additional gain of 11q material,
indicating that the LOH had existed before the AML. In skin and
T lymphocytes, 11q retained heterozygosity.

To complement the LOH findings, we determined the allelic burden
of theCBLmutationbypyrosequencing (Table 1). In agreementwith the

LOH data, the mutation was heterozygous in skin and T lymphocytes
but homozygous in AML cells and in granulocytes, monocytes, and
B lymphocytes collected during CR, where it remained homozygous
until last follow-up, underlining the stability of the genetically aberrant
hematopoiesis. Notably, LOH and pyrosequencing data suggested the
presence of a small fraction of T lymphocytes also harboring the
11q-LOH (Table 1 and supplemental Figure 2).

Identification of cooperating mutations by

whole-exome sequencing

Similar to our patient, children with CBL syndrome and transient
JMML feature normal blood counts and persistent homozygous
CBL mutation in their hematopoiesis.8 Little is known about mech-
anisms that could be responsible for normal hematopoiesis despite
oncogenic features characteristic of JMML. We wondered whether
this was associated with the acquisition of mutations that overcome
themyeloproliferative impact of the homozygousCBLmutation.We
therefore subjected granulocytes from CR and skin to whole-exome
sequencing but identified no additional mutations.

We also performed whole-exome sequencing of AML cells to
identify mutations that were acquired during AML development, in
addition to inv(16) and 11q-gain. We detected somatic mutations in
12 genes (Table 2), three of which (CAND1, NID2, PTPRT) were
previously found mutated in AML.20-22 However, no gene has an
established role in leukemogenesis (eg, as cooperating partner of
mutant CBL or CBFB-MYH11).

Biological impact of the CBL mutation

JMML features the formation of colonies at low concentrations of
granulocyte-macrophage colony-stimulating factor (GM-CSF).23

We observed no spontaneous growth or hypersensitivity to GM-CSF
of mononuclear cells collected from our patient during CR (data not
shown), which underlines the lacking or only subtle impact of the
homozygous CBL mutation on hematopoiesis. Moreover, granulo-
cytes showed normal production of reactive oxygen species and
interleukin-8 to stimuli, and adhesion and migration/chemotaxis
were normal (data not shown).

In summary, we diagnosed a CBL syndrome in an adult, who, as
observed in children with CBL syndrome developing JMML,8,10 had
lost theCBLWTallele in the bonemarrow.Whether this leads to overt
JMML only under certain circumstances is not well understood.24

Table 1. Chromosome 11q aberrations assessed by single nucleotide polymorphism array and CBL D390V allele burden determined by
sequencing in different cell populations

Timepoint Cell type 11q-LOH* 11q-gain† CBL D390V allele burden

Diagnosis of AML BM MNCs Yes Yes 92.6%‡§

Complete remission of AML PB granulocytes Yes No 92.8% (90.1%-96.5%)‡||

PB monocytes Yes No 92.2% (88.9%-95.5%)‡||

PB B lymphocytes Yes No 83.3% (75.9%-94.1%)‡||

PB T lymphocytes No{ No 55.4% (52.4%-59.3%)‡||{
Skin biopsy No No 48.6%‡§

Buccal mucosa ND ND Heterozygous#

Hair follicle ND ND Heterozygous#

BM, bone marrow; LOH, loss-of-heterozygosity; MNCs, mononuclear cells; ND, not determined; PB, peripheral blood.

LOH data are also presented in supplemental Figure 2.

*LOH of chromosome 11 position 59764127-134942626.

†Gain of chromosome 11 position 88486678-134938470.

‡CBL D390V allele burden relative to combined D390V and WT alleles assessed by pyrosequencing.

§Average of measurements from one time point.

||Average and range of measurements at 3 time points during CR 5 to 19 months after AML diagnosis.

{The data suggest a small fraction of T lymphocytes with 11q-LOH (purity of T-lymphocytes in pyrosequencing 97%-98%).

#Concluded from Sanger sequencing.
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Because the LOH persisted in the various hematopoietic cell lineages
in our patient, it likely conferred a clonal advantage at one point. Thus,
the patient may have indeed gone through a JMML or related hema-
tologic disorder during infancy, which spontaneously resolved.
However, medical information to support this assumption is unavail-
able. Following the hypothesis that normal blood counts in our patient
could be associatedwith the acquisition ofmutations counterbalancing
the mutant CBL, we performed whole-exome sequencing but
identified no acquired mutations. On the background of the CBL
mutation, the patient developed AML through the acquisition of inv
(16), gain of 11q-material, and at least 12 gene mutations. The AML
was eradicated by chemotherapy, leaving a hematopoiesis with homo-
zygous CBLmutation.

Although the CBL syndrome is known to predispose to JMML,
this is the first description of a different myeloid neoplasia occurring
at adult age. It cannot be determined whether the AML was mere
coincidence or caused by a predisposition conferred by the CBL
mutation. However, the latter is supported by the specific gain of
CBL-encoding 11q-material, and occurrence of inv(16), which
associates withCBLmutations.11-14 If substantiated by future studies,
the association between CBL syndrome and AML should be con-
sidered in clinical practice. CBL would then join other genes (eg,

RUNX1 or CEBPA) with germline mutations that were linked to
a predisposition to AML.25

Overall, the case highlights the possibility of genetically aberrant
hematopoiesis despite normal blood counts and provides insight into
myeloid neoplasias in the CBL syndrome. Because of potential
health problems associated with aCBL syndrome, germline analyses
may be generally warranted in younger adults with CBL-mutated
neoplasias.
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