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Amino acid substitution at peptide-binding pockets of HLA class I
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Key Points

• Amino acid substitution at
peptide-binding residues of
the HLA class I molecule is
associated with graft-versus-
host disease and mortality.

• Avoidance of donor-recipient
combinations that result in
amino acid substitution at
peptide-binding residues may
improve transplant outcomes.

HLA disparity has a negative impact on the outcomesof hematopoietic cell transplantation

(HCT). We studied the independent impact of amino acid substitution (AAS) at peptide-

binding positions 9, 99, 116, and 156, and killer immunoglobulin-like receptor binding

position 77 of HLA-A, B, or C, on the risks for grade 3-4 acute graft-versus-host disease

(GVHD), chronic GVHD, treatment-related mortality (TRM), relapse, and overall survival. In

multivariate analysis, a mismatch at HLA-C position 116 was associated with increased

risk for severe acute GVHD (hazard ratio [HR]5 1.45, 95% confidence interval [CI]5 1.15-1.82,

P 5 .0016). Mismatch at HLA-C position 99 was associated with increased transplant-

related mortality (HR5 1.37, 95% CI5 1.1-1.69, P5 .0038). Mismatch at HLA-B position 9

was associatedwith increasedchronicGVHD (HR5 2.28, 95%CI5 1.36-3.82,P5 .0018). No

AASwere significantly associatedwith outcome at HLA-A. Specific AASpair combinations

with a frequency >30 were tested for association with HCT outcomes. Cysteine to tyrosine

substitution at position 99 of HLA-C was associated with increased TRM (HR 5 1.78,

95% 5 CI 1.27-2.51, P 5 .0009). These results demonstrate that donor-recipient mismatch

for certainpeptide-binding residuesof theHLAclass Imolecule is associatedwith increased risk for acute and chronicGVHDanddeath.

(Blood. 2013;122(22):3651-3658)

Introduction

The majority of allogeneic hematopoietic cell transplantation (HCT)
procedures use adult volunteer unrelated donors, and robust evi-
dence supports the adverse impact of donor-recipient HLA dispar-
ity on important HCT outcomes.1-7 In the largest analysis to date,
Lee et al3 reported that high-resolution DNA matching at HLA-A,
-B, -C, and -DRB1 (8/8match) resulted in optimal outcomes, whereas
single antigen- or allele-level mismatch was associated with in-
creased hazard for acute graft-versus-host disease (GVHD) and an
;10% reduction in 1-year survival; multiple mismatches further

compounded this risk. Unfortunately, an 8/8 match cannot be found
for all patients in need of transplantation. The National Marrow
Donor Program (NMDP) estimates that;30% of Caucasian and up
to 70% of minority patients will not find an 8/8 match.

Insights into the relationship between the nature and position of
HLA mismatch and its functional consequences are needed to
mitigate risk for severe acute GVHD and mortality. Studies have
come to divergent conclusions regarding the impact of mismatch at
individual HLA loci.3,8 Investigators have attempted to estimate
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Table 1. Characteristics of recipients receiving first transplants for AML, ALL, CML, or MDS that are high-resolution typed for HLA-A, -B, -C,
and -DRB1 and are 8/8 allele-matched or 7/8 allele-matched with single mismatch at Class I locus

8/8 Matched 7/8 with Study AAS 7/8 without Study AAS P

N (%) N (%) N (%)

Number of patients 5282 1713 318

Number of centers 166 155 93

Recipient age, median (range), y 41 (,1-74) 36 (,1-74) 37 (,1-68) ,.0001

Age at transplant, y

0-9 377 (7) 166 (10) 33 (10) ,.0001

10-19 523 (10) 234 (14) 40 (13)

20-29 744 (14) 257 (15) 50 (16)

30-39 870 (16) 303 (18) 48 (15)

40-49 1118 (21) 352 (21) 78 (25)

50 and older 1650 (31) 401 (23) 69 (22)

Male sex 3001 (57) 940 (55) 170 (53) .22

Karnofsky prior to transplant .90 3425 (70) 1141 (71) 206 (69) .79

Disease at transplant

AML 2122 (40) 677 (40) 112 (35) ,.0001

ALL 1038 (20) 395 (23) 90 (28)

CML 1146 (22) 380 (22) 71 (22)

MDS 976 (18) 261 (15) 45 (14)

Disease status at transplant

Early 3713 (70) 1186 (69) 219 (69) .43

Intermediate 267 (5) 104 (6) 14 (4)

Advanced 1302 (25) 423 (25) 85 (27)

Graft type

Bone marrow 2902 (55) 1052 (61) 199 (63) ,.0001

PBSC 2380 (45) 661 (39) 119 (37)

Conditioning regimen

Myeloablative 4082 (77) 1412 (82) 268 (84) ,.0001

Reduced intensity 880 (17) 229 (13) 36 (11)

Nonmyeloablative 320 (6) 72 (4) 14 (4)

In vivo T-cell depletion (ATG or Campath)

Yes 1266 (24) 492 (29) 75 (24) .0003

No 4016 (76) 1221 (71) 243 (76)

GVHD prophylaxis

FK506 6 MTX 6 other 2617 (50) 730 (43) 133 (42) ,.0001

CSA 6 MTX 6 other 2303 (44) 813 (47) 162 (51)

T-cell depletion 159 (3) 90 (5) 16 (5)

Other 203 (4) 80 (5) 7 (2)

Interval from diagnosis to TX – CML, mo 13 (1-296) 15 (2-309) 12 (2-112) .13

Interval from diagnosis to TX – MDS, mo 8 (,1-325) 9 (,1-342) 9 (,1-283) .40

HLA matching for HLA-A, -B, -C and -DRB1

8/8 allele matched 5282 (100) 0 0 ,.0001

Single MM at HLA-A 0 631 (37) 67 (21)

Single MM at HLA-B 0 226 (13) 91 (29)

Single MM at HLA-C 0 856 (50) 160 (50)

Donor/recipient sex match

Male/male 2136 (40) 573 (33) 116 (36) ,.0001

Male/female 1349 (26) 411 (24) 80 (25)

Female/male 865 (16) 367 (21) 54 (17)

Female/female 932 (18) 362 (21) 68 (21)

Donor/recipient CMV match

Negative/negative 1688 (32) 526 (31) 96 (30) .0009

Negative/positive 1678 (32) 485 (28) 97 (31)

Positive/negative 696 (13) 253 (15) 49 (15)

Positive/positive 952 (18) 382 (22) 65 (20)

Unknown donor or recipient CMV status 268 (5) 67 (4) 11 (3)

Donor age, median (range), y 34 (18-61) 36 (19-61) 37 (19-58) ,.0001

18-29 1763 (33) 436 (25) 78 (25) ,.0001

30-39 1928 (37) 660 (39) 99 (31)

40-49 1279 (24) 476 (28) 100 (31)

50 and older 312 (6) 141 (8) 41 (13)

ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; CML, chronic myelogenous leukemia; CSA, cyclosporine; FK506, tacrolimus; MDS, myelodysplastic

syndrome; MTX, methotrexate; PBSC, peripheral blood mobilized stem cell.

*Log-rank P value.
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allogenicity of individual HLA class I or II donor-recipient mis-
matches.9-11 Others have attempted to identify specific nonper-
missive donor-recipient allele combinations or specific amino acid
substitutions (AAS) associated with increased risk for severe acute
GVHD and treatment-related mortality (TRM),12-15 primary ma-
lignancy relapse,16 or 100-day mortality post-HCT.17

We proposed that AAS at peptide-binding pockets or killer
immunoglobulin-like receptor (KIR) binding domains would have
greater impact on GVHD and mortality. We anticipated that AAS at
peptide-binding sites would alter antigen presentation and therefore
confer greater risk for serious acute GVHD compared with AAS at
other sites. In a large analysis facilitated by the Center for Inter-
national Blood and Marrow Transplant Research, we aimed to:
(1) establish the impact of AAS at peptide-binding positions 9,
99, 116, and 156, and KIR binding position 77,18,19 of the HLA
class I molecule on HCT outcome; (2) determine whether this
effect is restricted to particular HLA class I loci; and (3) examine the
impact of specific AAS residue pairs on HCT outcome.

Patients and methods

Study population

The study population included adult and pediatric patients who underwent
a myeloablative or reduced intensity/nonmyeloablative first unrelated bone
marrow or peripheral blood stem cell HCT for AML, ALL, CML, or MDS
between 1988 and 2009. Patients and donors had complete high-resolution
typing for HLA-A, B, C, and DRB1 validated through the ongoing NMDP
retrospective high-resolution typing program.20 Donor-recipient pairs were
categorized as fully high resolution matched for HLA-A, B, C, and DRB1
(8/8) or had a single mismatch at HLA-A, B, or C (7/8). The 7/8 class I
mismatched pairs were categorized according to the presence or absence of
AAS at peptide-binding sites (positions 9, 99, 116, or 156) and KIR binding

position 77. Position 80 was not included in this analysis, because it is in
strong linkage disequilibrium with position 77 of HLA-C. Pairs with 2 or
more mismatched class I loci were excluded. Available DPB1 high-resolution
typing information was used in secondary analyses, given previously reported
association of HLA-DP mismatch and acute GVHD3,21; HLA-DQ mismatch
was not considered, given insufficient evidence of such an effect. All partic-
ipants provided informed consent for inclusion of clinical data and bio-
specimens. Research was approved and conducted under supervision of the
NMDP Institutional Review Board. This study was conducted in accordance
with the Declaration of Helsinki.

Outcomes

Overall survival (OS) summarized time from HCT to death from any cause.
TRM included death in continuous remission from primary disease; events
were summarized by the cumulative incidence estimate with relapse as a
competing risk. Severe acute GVHD included development of grade III-IV
acute GVHD according to consensus grading.22 Chronic GVHD was re-
ported as the cumulative incidence of limited or extensive chronic GVHD.23

Primary malignancy relapse was summarized by cumulative incidence esti-
mate, with death as a competing risk.

Variables tested

The main effect tested was the presence of AAS at positions 9, 77, 99, 116, and
156 among 7/8 matched donor-recipient pairs on HCT outcomes. The frequency
of donor-recipient allele mismatch combinations, as well as discrepant amino
acid pairs, was summarized. Those AAS pairs with frequency of .30 were
tested for association with HCT outcomes. In secondary analyses, we examined
the impact of specific combinations of AAS at positions 9, 77, 99, 116, and 156,
and also the impact of the sum of AAS on HCT outcomes. Analyses examining
the relationship between AAS and outcomes of acute or chronic GVHD only
considered donor-recipient mismatching in the GVH vector.

Additional patient, disease, and transplantation variables were consid-
ered in all multivariate models. Patient variables at the time of HCT included:
age, race/ethnicity, and Karnofsky performance status (KPS). Disease
variables included: disease, disease stage at time of HCT, and time from

Table 1. (continued)

8/8 Matched 7/8 with Study AAS 7/8 without Study AAS P

Year of transplant

1988 11 (,1) 2 (,1) 0 ,.0001

1989 37 (1) 11 (1) 2 (1)

1990 48 (1) 16 (1) 3 (1)

1991 73 (1) 20 (1) 7 (2)

1992 91 (2) 37 (2) 6 (2)

1993 94 (2) 44 (3) 10 (3)

1994 147 (3) 54 (3) 6 (2)

1995 143 (3) 75 (4) 17 (5)

1996 159 (3) 64 (4) 15 (5)

1997 193 (4) 69 (4) 14 (4)

1998 184 (3) 74 (4) 19 (6)

1999 210 (4) 96 (6) 23 (7)

2000 260 (5) 99 (6) 26 (8)

2001 255 (5) 119 (7) 26 (8)

2002 261 (5) 74 (4) 12 (4)

2003 321 (6) 124 (7) 19 (6)

2004 466 (9) 148 (9) 34 (11)

2005 562 (11) 161 (9) 24 (8)

2006 639 (12) 153 (9) 23 (7)

2007 630 (12) 147 (9) 18 (6)

2008 309 (6) 93 (5) 8 (3)

2009 189 (4) 33 (2) 6 (2)

Median follow-up of recipients, mo (range) 67 (3-264) 74 (3-240) 96 (3-234) .0003*

ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; CML, chronic myelogenous leukemia; CSA, cyclosporine; FK506, tacrolimus; MDS, myelodysplastic

syndrome; MTX, methotrexate; PBSC, peripheral blood mobilized stem cell.

*Log-rank P value.
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diagnosis to HCT. Transplant variables included: stem cell source, donor age,
year of HCT, donor-recipient gender match, cytomegalovirus (CMV) serostatus,
and ABO matching, conditioning regimen intensity, GVHD prophylaxis, use of
in vivo T-cell depletion (ATG or Campath), and transplantation center.

Statistical methods

Descriptive statistics were used to summarize the characteristics of the data
set. The x-square test was used to compare discrete factors between groups.
The Kruskal-Wallis test was used to compare continuous factors between
groups. Probabilities for OS and disease-free survival were calculated using
the Kaplan-Meier estimator with variance estimated by Greenwood’s formula.
Comparison of survival curves was made using the log-rank test. Relapse and
TRM were calculated as cumulative incidence using a linear approximation to
estimate the variance.

Multivariate analyses were performed using the proportional hazards
model. All clinical variables were tested for the affirmation of the pro-
portional hazards assumption, and factors violating the proportional hazards
assumption were adjusted through stratification. A stepwise model building
approach was used for the primary outcomes. Interactions among the sig-
nificant AAS variables and clinical variables were tested. Multivariate
analysis for the amino acid mismatches was performed by treating the AAS
at each position as an independent variable. A stepwise model selection
procedure was adopted to identify AAS sites most associated with the out-
comes, controlling for other mismatches present. Adjusted cumulative inci-
dence curves were also generated to illustrate major study findings.24

In the primary analysis, 7/8 mismatched donor-recipient pairs with AAS
at the residue of interest (separately tested 9, 77, 99, 116, and 156) were
compared with 7/8 pairs without AAS at the residue of interest. In all
analyses, the comparator group without AAS of interest did not include 8/8
pairs. The 8/8 pairs were used only in multivariate models to estimate the
impact of non-HLA variables on outcome. Separate models were also
constructed to examine the impact of AAS at these residues when limited to
particular HLA class I locus (HLA-A, B, C) mismatches. For selecting the
adjusted covariates, a significance level of 0.05 was used. The frequency of
discrepant donor-recipient allele and amino acid residue combinations was
summarized. For amino acid residue combinations with a frequency .30
(assumed minimum frequency for this analysis), we examined association
with HCT outcomes. To account for multiple testing, based on the Bonferroni
criterion, a significance level of 0.01 was used for testing the 5 AAS mis-
matches, and the significance level of 0.00125 was used for testing specific
residue pairs. Given the extent of missing high-resolution typing data for
DPB1 (42% of sample), we included the DPB1 match variable in the above
multivariate models as a secondary approach. In additional analyses, we
examined the relationship between combinations of AAS of interest as
well as the sum of total AAS and HCT outcomes. SAS software version 9.2
(SAS Institute, Cary, NC) was used in all analyses.

Results

Included patients

There were 1713 pairs mismatched for HLA-A, -B, or -C at peptide-
binding residue 9, 99, 116, or 156, or KIR binding residue 77, either

alone or in combination, and 318 pairs mismatched at one HLA class
I molecule without these AAS of interest. Patient characteristics are
summarized in Table 1. The observed frequency of AAS at residues
9, 77, 99, 116, and 156 alone or in combination are presented in
Table 2. The physical location of these amino acid residues in the
HLA class I molecule is presented in Figure 1.

Impact of type and number of AAS on outcome, irrespective

of HLA-locus

In the primary analysis, only AAS at position 116 was associated with
a significant increase in grade III-IV acute GVHD (hazard ratio
[HR] 5 1.3, 95% confidence interval [CI] 5 1.1-1.6, P5 .0012)
after adjustment for significant covariates, including recipient age.
Similar findings were observed (HR 5 1.3, 95% CI 5 1.1-1.5,
P 5 .0006) when DPB1 mismatch was considered. No other sig-
nificant association was detected between theAAS studied (9, 77, 99,
116, 156) and clinical outcomes.

In a separate analysis, we examined the impact of specific AAS
in combination as well as the total sum of AAS. The sum of AAS
was associated with increasing hazard for TRM, with a sum of 5
AAS (HR 5 1.7, 95% CI 5 1.2-2.5, P 5 .006). Additionally, the
sum of AAS among 7/8 matched pairs was associated with grade
III-IV acute GVHD (P, .0001). This effect was significant among
those with mismatch at HLA-C (P 5 .0003), but not those with
a mismatch at HLA-A (P 5 .03) or -B (P 5 .09). We could not
demonstrate a consistent association of combinations of AAS and
any of the studied HCT outcomes.

AAS restricted to each class I HLA locus

When restricting AAS comparisons within each class I HLA locus,
most significant findings were amongHLA-Cmismatches (Table 3).
AAS at position 116 was associated with significantly increased risk
for grade III-IV acute GVHD (HR 5 1.45, 95% CI 5 1.15-1.82,
P 5 .0016), adjusting for disease stage, stem cell source, KPS,
recipient age, donor-recipient sex match, disease, GVHD pro-
phylaxis, conditioning regimen, in vivo T-cell depletion, and year
of transplant. AAS at position 116 was associated with worse OS
(HR5 1.2, 95%CI5 1.01-1.4, P5 .03); however, this did not reach
our prespecified significance level. AAS at position 99 was associated
with significantly worse TRM (HR 5 1.37, 95% 5 CI 1.1-1.69,
P 5 .0038), adjusting for CMV match, donor age, disease category,
disease stage, donor race, recipient age, graft type, KPS, GVHD
prophylaxis, conditioning regimen, interval from diagnosis to trans-
plant, and year of transplant. These findings were not changed when
the DPB1 match variable was included in multivariate analysis.
Adjusted cumulative incidence plots are presented in Figure 2.

Further analyses were performed to discern the relative impor-
tance of AAS 99 and 116 at HLA-C on grade III-IV acute GHVD
and TRM. Among pairs with HLA-C mismatch, AAS 99 alone
occurred in 120, AAS 116 alone in 201, and AAS 991116 together
in 362. In the subset analysis restricted to only pairs with HLA-C
mismatch, AAS 116 increased risk for grade III-IV acute GVHD
(HR 5 1.46, 95% CI 5 1.03-2.06, P 5 .03), whereas AAS 99
did not (HR 5 0.96, 95% CI 50.61-1.5, P 5 .85). In multivari-
ate analysis for TRM, both AAS 99 and 116 increased hazard
and exerted an additive effect in combination (HR 5 1.88, 95%
CI 5 1.33-2.66, P 5 .0004).

Among those with mismatch at HLA-B, AAS at position 9 was
associated with significantly increased risk for chronic GVHD
(HR5 2.28, 95% 5 CI 1.36-3.82, P5 .0018), adjusting for in vivo
T-cell depletion, recipient age, donor-recipient sex match, disease

Table 2. Frequency of AAS at residues of interest in peptide-binding
region of HLA molecule

Single AAS Frequency % Total AAS Frequency %

9 59 15 Zero 318 16

77 70 18 One 400 20

99 42 11 Two 403 20

116 137 34 Three 404 20

156 92 23 Four 230 11

Five 276 14

Single AAS, observed frequency of single AAS of interest in isolation; total AAS,

observed frequency of total number of AAS.
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category, graft type, GVHD prophylaxis, CMV match, conditioning
regimen, and year of transplant. These findings were not changed
when the DPB1 match variable was included. Adjusted cumulative
incidence plots are presented in Figure 2.

No significant association was found between any of the other
studied AAS and relapse. In addition, no significant associations
were detected among those with HLA-A mismatches.

AAS pair frequency and outcome

In multivariate analysis, cysteine (C) to tyrosine (Y) substitution
at position 99 at HLA-C was associated with increased TRM
(HR5 1.78, 95% CI5 1.27-2.51, P5 .0009) adjusted for significant
covariates, including disease status and recipient age. This finding
was not observed when DPB1 match was included in the model.
Otherwise, we did not detect significant relationships between the
tested specific AAS pairs and any of the studied HCT outcomes.
We were not able to confirm the previously reported findings per
Kawase et al12,16 regarding acute GVHD or malignancy relapse,
although the number of pairs mismatched in these particular com-
binations was limited. Comparison of the Japan Marrow Donor
Program and CIBMTR/NMDP data are presented in supplemental

Table 1 (available on the BloodWeb site), and donor-recipient allele
combinations resulting in AAS significantly associated with adverse
outcomes in our analysis are presented in supplemental Table 2.

Discussion

Enormous diversity exists in the human HLA system, and thus many
potential HCT candidates will not find a suitably matched unrelated
donor. However, current knowledge does not readily help identify
the donor that poses minimal risk for acute GVHD and mortality.
Structural studies have characterized the peptide-binding groove of
the HLA class I molecule25,26 and have highlighted the importance
of peptide-binding pockets in binding and presentation of specific
peptides.27,28 Emerging clinical outcome data suggests that AAS at
key peptide-binding residues of the HLA class I molecule may result
in increased risk for severe acute GVHD12 andmortality.17 In a large
analysis, strengthened by a priori hypothesis and rigorous statistical
methods focused on the impact of AAS among 7/8 mismatched
unrelated donor-recipient pairs, we aimed to determine the impact of
AAS at peptide-binding positions 9, 99, 116, and 156 and KIR
binding position 77 of HLA-A, -B, or -C on HCT outcomes.

The major finding from this study is that AAS at position 116
among HLA-C mismatches is associated with significantly increased
risk for severe acute GVHD. This finding advances our understanding
beyond a prior report from Ferrara et al,14 as we have demonstrated
that AAS at 116 confers increased risk for severe acute GVHD above
the risk imposed by other mismatches and that this effect is limited to
the HLA-C locus. These clinical findings recapitulate prior structural
biologic and functional studies highlighting the importance of position
116 in the class I HLA molecule. The 116 residue of the class I
HLA molecule has been demonstrated to form the floor of the
peptide-binding F pocket and interact with bound peptide.28-30 AAS

Figure 1. Position of studied amino acid residues within the class I HLA molecule.

Table 3. Results of HLA class I restricted multivariate analyses

HLA class I locus AAS considered Outcome N HR 95% CI P

HLA-A AAS 116 absent OS 433 1.00 —

HLA-A AAS 116 present OS 265 0.96 (0.78-1.18) .70

HLA-B AAS 116 absent OS 153 1.00 —

HLA-B AAS 116 present OS 164 0.98 (0.72-1.32) .88

HLA-C AAS 116 absent OS 453 1.00 —

HLA-C AAS 116 present OS 563 1.20 (1.01-1.41) .03

HLA-A AAS 99 absent TRM 612 1.00 —

HLA-A AAS 99 present TRM 85 0.86 (0.58-1.30) .48

HLA-B AAS 99 absent TRM 308 1.00 —

HLA-B AAS 99 present TRM 9 0.53 (0.13-2.24) .39

HLA-C AAS 99 absent TRM 534 1.00 —

HLA-C AAS 99 present TRM 482 1.37 (1.11-1.69) .0038

HLA-A AAS 116 absent Grades III-IV acute GVHD 450 1.00 —

HLA-A AAS 116 present Grades III-IV acute GVHD 247 1.18 (0.90-1.56) .23

HLA-B AAS 116 absent Grades III-IV acute GVHD 159 1.00 —

HLA-B AAS 116 present Grades III-IV acute GVHD 157 1.20 (0.82-1.75) .35

HLA-C AAS 116 absent Grades III-IV acute GVHD 484 1.00 —

HLA-C AAS 116 present Grades III-IV acute GVHD 531 1.45 (1.15-1.82) .0016

HLA-A AAS 9 absent Chronic GVHD 291 1.00 —

HLA-A AAS 9 present Chronic GVHD 374 1.18 (0.91-1.53) .20

HLA-B AAS 9 absent Chronic GVHD 269 1.00 —

HLA-B AAS 9 present Chronic GVHD 40 2.28 (1.36-3.82) .0018

HLA-C AAS 9 absent Chronic GVHD 434 1.00 —

HLA-C AAS 9 present Chronic GVHD 552 1.12 (0.91-1.39) .28
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at position 116 affects the steric conformation of the F pocket,29 altering
peptide binding and allorecognition.31,32 Thus, our HCT outcome
data support the functional implications of AAS at this key residue.

We have also identified that AAS at position 99 and 116 among
7/8 pairs mismatched at HLA-C are associated with significantly

increased risk for TRM. In our analysis of specific amino acid pairs
and HCT outcomes, we demonstrated that the cysteine (C) to
tyrosine (Y) substitution at position 99 at HLA-C was associated
with increased TRM. We could not detect significant association
between other amino acid pairs and outcome. AAS previously
reported by Kawase et al12,16 as important for severe acute GVHD
and malignancy relapse, respectively, were not substantiated by our
analysis. The frequency of these AAS pairs is generally lower in
the NMDP/CIBMTR data set (supplemental Table 1). A notable
exception is asparagine-serine at position 77 of HLA-C; whereas
the observed frequency is greater in our sample, we could not dem-
onstrate the previously reported increased risk for severe acute
GVHD. The effects reported by Kawase et al12,16 may be more
apparent in a more homogenous population.

A novel finding of our analysis was the association of AAS at
position 9 among 7/8 pairs mismatched at HLA-B with risk for
chronic GVHD. Providing potential mechanistic support for this
finding, previous biological studies have demonstrated that AAS at
position 9 alters peptide binding and allorecognition.33-35 In addition,
although this association has not been previously reported at the AAS
level, prior clinical outcome data have suggested the association of
class I HLA,36,37 or specifically HLA-B allelic mismatch,4 with risk
for chronic GVHD. In contrast, other investigators have not detected
an impact of HLA-B allelic disparity on risk for chronic GVHD
development following HCT.3,11,13

We acknowledge the following limitations of our analysis. Low
numbers of observations in certain subgroups may limit the power to
detect significant differences; for example, HLA-C mismatch and
AAS 116 have greater representation in this sample than mismatch
at other HLA class I loci and other AAS positions. The overall
diversity of this sample limited our analysis to only a subset of AAS
pairs of sufficient frequency. Our analysis is limited to only adult
volunteer unrelated donor transplantation, and we cannot comment
on alternative donor sources. Low numbers of observed events
precluded study of the impact of AAS on engraftment failure.
Finally, we acknowledge that differences in patient, disease, and
transplantation characteristics may impact our results. The ob-
served differences suggest that clinicians take patient factors such
as age and disease into account when electing to use mismatched
donors andmodify transplant practices in this setting.We have tried to
address these concerns through the conduct of multivariate analyses
controlling for any significant covariates, but this may not fully
account for such factors.

In summary, these data support that AAS at key peptide-binding
residues of the HLA class I molecule is associated with severe acute
GVHD and death. Donor-recipient pairs with such AAS should be
avoided to optimize HCT outcomes.
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