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Key Points

• MDS is characterized by
mutations in .40 genes,
a complex structure of
gene-gene interactions and
extensive subclonal
diversification.

• The total number of
oncogenic mutations and
early detection of subclonal
mutations are significant
prognostic variables in MDS.

Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological

malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk

of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified

mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation,

and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related

neoplasms (including chronic myelomonocytic leukemia and MDS–myeloproliferative

neoplasms) to explore the role of acquired mutations in MDS biology and clinical

phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We

identify complex patterns of pairwise association between genes, indicative of epistatic

interactions involving components of the spliceosome machinery and epigenetic modi-

fiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of

genetic “predestination,” in which early driver mutations, typically affecting genes in-

volved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical

phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or

subclonal, and leukemia-free survival deteriorated steadily as numbers of drivermutations

increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections

between the cancer genome and disease biology, with considerable potential for clinical application. (Blood. 2013;122(22):3616-3627)
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Introduction

Large-scale sequencing of cancer genomes has now been com-
pleted for thousands of cancer samples. This initial discovery
phase has uncovered many novel genes, pathways, and mutational
processes implicated in cancer development.1 Now, attention is
increasingly turning to understanding how these cancer genes knit
together, how they influence disease evolution, how they dictate
clinical phenotype, and whether they can be used in a diagnostic
setting to personalize clinical care.2 The considerable complexity
observed in cancer genomes suggests that such aspirations will
only be achieved through comprehensive analysis of large cohorts
of well-characterized patients. Although initiation of prospective
sample ascertainment is underway, there is considerable potential
to address at least in part some of these questions with established
cohorts.

Myelodysplastic syndromes (MDS) are hematological malig-
nancies that present with abnormal blood counts and a risk of
progression to acute myeloid leukemia (AML).3 Diagnosis depends
on findings in peripheral blood and bone marrow examination,
which can show poor interobserver reliability.4 An increasing
number of cancer genes have been found to carry recurrent
somatic mutations in MDS, including genes involved in signal
transduction (JAK2, KRAS, CBL); DNA methylation (DNMT3A,
TET2, IDH1/2); transcriptional regulation (EVI1, RUNX1, GATA2);
chromatin modification (EZH2, ASXL1); and most recently, RNA
splicing (SF3B1, U2AF1, SRSF2 and ZRSR2).5-16 Among these
mutations, many are shared across the spectrum of myeloid neo-
plasms (myeloproliferative neoplasms [MPN], MDS/MPN, chronic
myelomonocytic leukemia [CMML], and AML) and are likely to
dictate morphological and clinical phenotypes.

To explore the interlocking genomic, biological, and clinical fea-
tures of MDS, we performed a focused screen of 111 cancer genes in
a large cohort of MDS patients and closely related neoplasms. Con-
trary to gene discovery studies that routinely screen matched tumor
and constitutional DNA, large-scale gene resequencing is applied to
tumor samples only. We developed new computational approaches
for analysis, variant detection, determination of clonal phylogenies
from limited number of mutations, and evaluation of combined
prognostic accuracy of mutations in .100 genes. This unravels a
network of complex genetic interactions that define critical steps in
disease progression and identify potential diagnostic and prog-
nostic biomarkers.

Methods

Patient samples and targeted DNA sequencing

Samples were obtained with written informed consent in accordance with the
Declaration of Helsinki and appropriate Ethics Committee approvals from
738 patients (Table 1). Of these, 603 had MDS as subclassified by the World
Health Organization in 200817 (with the exception of refractory cytopenia
with multilineage dysplasia and ringed sideroblasts [RCMD-RS], which we
maintain from the World Health Organization, 2002,18 as a separate cate-
gory), 70 had CMML, 35 had progressive disease (MDS-AML), and 13 were
of undefined MDS category or classified as MDS-MPN (including refractory
anemia with ringed sideroblasts associated with marked thrombocytosis
[RARS-T]). Where disease-modifying treatment was administered, duration
of follow-up was considered complete without reaching the end-point
(“censored”) at the time of starting disease-modifying treatment (specif-
ically, allogeneic stem cell transplantation, aggressive chemotherapy, or
hypomethylating agents). Genomic DNA was obtained from peripheral blood
granulocytes (n 5 431) or bone marrow mononuclear cells (n 5 307).
Germline DNA was not generally available.

Genomic DNA samples underwentwholegenome amplification. RNAbaits
were designed to capture a panel of 111 genes (supplemental Table 1, found on
theBloodWeb site) selected on the basis of prior implication in the pathogenesis
of myeloid disease by recurrent somatic mutation19; recurrent mutation or
aberrations in common cancers20; candidates genes from in-house data; or
candidate genes mapping within regions of common copy number altera-
tions.19 Sequencing libraries were generated 96-well format, each carrying
a unique DNA barcode (supplemental Figure 1) and sequenced on 2 lanes of
an Illumina HiSeq.

To identify base substitutions and small insertions or deletions, we
analyzed each sample using in-house algorithms11,21 but against an unrelated
reference sample. In the absence of a matched control sample, it is challenging
to distinguish with perfect accuracy between somatic and germline variants.
However, the landscape of truly somatic mutations in these cancer genes has
been well established from large-scale genomics studies,10,22,23 allowing
confident predictions to be made. To account for the absence of matched
control, we developed a bespoke variant selection pipeline applying stringent
criteria (see supplemental Methods).

Potential caveats of our protocol could be (1) that whole genome ampli-
fication may result in nonuniform representation of the mutations in the
diagnostic sample; (2) that artifacts may be introduced during the ampli-
fication; or (3) that the proportion of DNA molecules representing a variant
may not be reflective of the true allele burden in the diagnostic sample. To
test these caveats, we used 6 control datasets: (1) exome sequencing of
genomic and constitutional DNA for 10 samples that underwent whole
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genome amplification (WGA) and targeted resequencing; (2) 18 technical
replicates using genomic and WGA DNA; (3) comparison of targeted
resequencing results for SF3B1 and TET2 with those obtained previously11;
(4) WGA and targeted gene screen of 22 normal DNA samples; (5) analysis of
the 111 genes from 56 normal blood exomes using the identical bioinformatics
pipeline; and (6) exome or whole-genome sequencing data from 317 con-
stitutional DNA samples.

Statistical analysis

Pairwise associations between genes were evaluated by Fisher tests corrected
for multiple hypothesis testing. For the 595 patients with available outcome
data, leukemia-free survival was the end-point, and log-rank tests were used
for univariate hypothesis tests. For multivariate survival analyses, missing
data were estimated by multiple imputation,24 and Cox proportional hazards
models were built from 3 sets of predictor variables using stability selection.2

Accuracy of outcome predictions was averaged across 5 cross-validation
samples from models built on the remaining 4 out of 5 patients. We use the
least absolute shrinkage and selection operator27 variable selection in Cox’s
proportional hazards method27 and receiver operating characteristic curves to
illustrate predictive accuracy.

Variant allele fraction estimates were used to evaluate clonal and subclonal
variant relationships within each sample. To adjust for the lower mapping
qualities associated with indels, we constructed reference genome alignments
for each variant to retrieve all reads supporting the variant and produce accurate

estimates. We constructed 95% confidence intervals (CI) intervals, taking into
account total depth and local copy number state at the variant position. Clonal
relationships were tested using Pearson goodness-of-fit tests.

Results

Targeted gene sequencing in MDS

We sequenced 111 genes across 738 patients, resulting in 2260
high-confidence variants (supplemental Table 2). Coverage across
the targeted regions was excellent (supplemental Figure 2).

The aim was to define for each patient the potential driver muta-
tions implicated in their disease. In keeping with widely accepted
conventions in the genomics literature, we used a pragmatic, purely
genetic definition of driver mutations,1,28,29 defined on the basis of
published studies describing a statistically significant excess of
somatic mutations in a given cancer gene. The expected pattern
of somatic mutations in the given gene was defined from the lit-
erature, typically inactivating mutations for tumor suppressor genes
and hot-spot mutations for oncogenes. Every variant identified in this
study was then compared against these expected patterns and triaged
into “driver mutations,” “possible oncogenic variants,” or “unknown
significance” (see supplemental Methods for further details). This
definition of driver mutation is not dependent on whether there is
functional evidence of oncogenic potential.

Study controls

To assess whether absence of germline DNA would annotate rare
germline polymorphisms as driver mutations, we evaluated calls
identified by gene resequencing to those identified by exome
analysis from matched tumor and constitutional samples in 10
patients. Of 21 somatic variants found in the 111 genes in the
current panel, all were identified, and 20 out of 21 (supplemental
Table 3) passed the stringent filtering criteria applied (95.2%
sensitivity). We analyzed the exomes through our unmatched
pipeline; all mutations annotated as drivers were indeed somatic in
the exome data. No oncogenic variants were called in any of the 78
(22 1 56) constitutional samples.

We tested sensitivity and specificity of the protocol in compa-
rison with orthogonal sequencing approaches. Of 147 known SF3B1
mutations in the cohort, all were identified, and we called an addi-
tional 11 missed originally because of poor coverage. Similarly, for
the cohort of 184 patients with known TET2 status, we recaptured 20
out of 21 mutations (95%) and called an additional 3.

To test whether WGA biased allele representation, we analyzed
sequencing data from a subset of patients in whom native and
amplified DNA had been studied. Variant allele fractions from
WGA samples were not significantly different from those from the
same patients’ genomic DNA (supplemental Tables 3-4), consis-
tent with published findings.30 The overall distribution of variant
allele fractions for variants classified as oncogenic or possible on-
cogenic had the same distribution as reported for validated mutations
identified by exome sequencing11,23 (supplemental Figure 3A-B) and
was clearly distinct from that for variants known to be germline
polymorphisms (supplemental Figure 3C).

These control data show that our design does not lead to sig-
nificant over- or undercalling of driver mutations, systematic biases
in allele fraction estimates, or excessive numbers of germline variants
miscalled as driver mutations.

Table 1. Baseline characteristics of patients in the study

Variable Baseline distribution in cohort

Sample

Sample size for sequencing 738

Sample size with outcome data 595

Median (range) follow-up 12 (0-155) months

Demographics

Sex

Male 415 (56%)

Female 323 (44%)

Age, mean 6 SD 68 6 13 years

MDS classification Total With outcome data

RA 139 (19%) 109

RARS 92 (12%) 75

RARS-T 17 (2%) 17

RCMD 126 (17%) 99

RCMD-RS 59 (8%) 58

RAEB 167 (23%) 138

5q- 20 (3%) 16

CMML 70 (9%) 61

MDS-MPN 3 (0.4%) 1

MDS-U 10 (1%) 1

MDS-AML 35 (5%) 20

Blood counts at diagnosis

Hemoglobin level, mean 6 SD 9.9 6 2.0 g/dL

Neutrophil count, mean 6 SD 3.0 6 3.4 3 109 per liter

Platelet count, mean 6 SD 191 6 181 3 109 per liter

Bone marrow features

Ring sideroblasts . 15% 173/529 (33%); missing for 209 patients

Bone marrow blasts . 5% 202 (27%)

Karyotype

Normal 425

Abnormal 213

Failed/not done 100

Outcome

Leukemic transformation 66/595 (11%)

Died 234/595 (39%)

MDS-U, undefined MDS category; RAEB, refractory anemia with excess blasts;

SD, standard deviation.
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Figure 1. Genomic architecture of MDS. (A) Frequency of driver mutations identified in the sequencing screen or by cytogenetics in the cohort of 738 patients, broken down

by MDS subtype. (B) Example of a copy number plot from a patient with a cytogenetically proven deletion on chromosome 5q. The upper panel depicts the normalized

sequencing yields per exon; the lower panel depicts the variant allele fraction for germline SNPs. “AB” indicates the expected B-allele fractions for heterozygous SNPs; “AA”

and “BB” indicate the position of the expected B-allele fractions for the homozygous SNPs AA and BB. (C) Associations among genes and cytogenetic abnormalities with

disease subtypes in the study. Only associations with a q value (P value corrected for multiple hypothesis testing),.1 are shown. Associations are colored by odds ratio. Blue-

green colors depict gene-subtype associations that are observed together more than expected by chance, with brown colors depicting gene-subtype associations observed

together less frequently than expected by chance.
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Gene mutations in MDS and related neoplasms

Oncogenic mutations were identified in 43 genes (Figure 1A). The
splicing factor SF3B1 was the most frequently mutated in the cohort
(24%), followed by TET2 (22%) and SRSF2 (14%). Only 4 genes were
mutated in more than 10% of patients, with a further 3 genes carrying
driver mutations in 5% to 10% patients. Notably, 36 genes were
mutated in ,5% of the patients, and in aggregate, mutations in these
genes contribute 33.5% of all mutations identified. Among these,
we found oncogenic mutations in IRF1, which we previously
identified in 1 patient with RARS11 as well as the recently reported
gene in AML, CUX1.31 Mutations in well-known cancer genes not
previously implicated in MDS (EP300, CREBBP, and PTEN) were
also observed. These variants are rare (,2%) but follow the same
distribution of nonsense, splice, and frameshift mutations as seen in
other cancers.

The overall distribution of gene mutations observed in the entire
study set was mirrored within the disease categories (Figure 1A, sup-
plemental Figure 4). To account for effects associated with each
subtype, classification is considered as an independent variable in all
analyses.

Detection of copy number changes from sequencing data

With cytogenetic abnormalities found in up to 40% of MDS patients,
we assessed whether counts of sequencing reads could distinguish
copy number aberrations (Figure 1B). Of 738 patients sequenced,
credible copy number profiles were generated from 629 (85%).
Abnormalities were seen in 101 (13%) patients, including deletions
of 5q, 11q, 20q, and 17p; monosomy 7; trisomies of 8 and 21; and
isochromosome X (supplemental Figure 5, supplemental Table 5).
Importantly, in addition to common copy number alterations, lesions

Figure 2. Oncogenic mutations identified in MDS.

(A) Fraction of patients with at least 1 driver mutation,

identified by cytogenetics, targeted gene sequencing,

or sequencing combined with bone marrow cytogenet-

ics. The fraction reported for targeted gene sequencing

includes both oncogenic point mutations and copy

number changes identified from the sequencing data

alone. (B) Distribution of number of driver mutations (in-

cluding point mutations, indels, and cytogenetic lesions)

per patient broken down by MDS subtype. (C) Pairwise

associations among genes and cytogenetic abnormal-

ities found in at least 10 patients. Only associationswith

a q value (false discovery rate adjusted P value) ,.1

are shown. Associations are colored by odds ratio.

Brown colors depict mutually exclusive gene pairs (one

or the other mutated, but rarely both together), and

blue-green colors depict gene pairs that are comutated

more than expected by chance. Gene names are color

coded as per index on right side panel of the figure.
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invisible to cytogenetics, such as uniparental disomy, were identified
(supplemental Figure 5). Our findings suggest that with further
optimization of this preliminary design, potentially by targeting
germline single nucleotide polymorphism (SNPs), the sensitivity
to detect clinically relevant copy number alterations32-33 could be
increased. This would enable the simultaneous detection of both
gene mutations and cytogenetic abnormalities in a single assay
but requires further evaluation.

Oncogenic mutations identified in 78% patients with MDS

In total, 549 of 738 (74%; 95% CI, 71% to 77%) patients had at least
1 oncogenic point mutation or MDS-related copy number change
detectable by sequencing (Figure 2A), whereas cytogenetic studies
identified abnormalities in 33%. When sequencing and cytogenetics

were combined, the fraction of patients with MDS-related onco-
genic lesions increased to 78%. Indeed, 43% patients had 2 or 3
oncogenic point mutations or cytogenetic abnormalities, and 10%
had 4 to 8 (Figure 2B).

We searched for pairwise gene associations, recognizing that pairs
of genes could show a tendency to either cooccurrence or mutually
exclusivity. Forty-six pairs were significant with false discovery rate
,10% (Figure 2C; supplemental Table 6). Several of these have been
reported previously.5,10,34-36 Mutually exclusive gene pairs often
imply functional redundancy, especially if such genes are in the same
biological pathway. Indeed, mutations in genes involved in the RNA
splicing machinery were mutually exclusive, as in other studies.10,35

This implies that any one of these mutations is sufficient by itself,
with no additional advantage accruing from more than 1 mutation in
this pathway. Similarly, we confirm previous studies showing mutual

Figure 3. Clonal and subclonal driver mutations

in MDS. (A) Variant allele fractions (y-axis) for driver

mutations identified in 4 illustrative patients. The points

show the observed allele fraction, with the vertical bars

denoting 95% CIs in this fraction. The leftmost patient

shows 4 driver mutations all at the same allele fraction.

The second patient from the left shows statistical

evidence for clonal heterogeneity, but the variant allele

fractions are too low to establish phylogenetic relation-

ships among mutations unambiguously. The rightmost

2 patients have statistically significant differences in

observed allele fractions among driver mutations with

some definitive phylogenetic structure. The phyloge-

netic tree cannot always be fully resolved (see possible

trees for the 4th patient), but even with this uncertainty,

4 informative pairwise precedences can be unambigu-

ously stated. (B) Pie chart showing the distribution of

clonality and subclonality among 313 patients with 2 or

more driver mutations. (C) Results of a Bradley-Terry

model showing the relative temporal order of genes

involved in at least 5 pairwise precedences. The

estimates are calculated in relation to ASXL1 as the

reference point, and standard errors are shown as

horizontal bars. Genes are colored by their general

biological function. A total of 107 patients contrib-

uted informative precedences.
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Figure 4. Outcome by whether driver mutations are clonal or subclonal. Leukemia-free survival for patients showing no mutation (gray), clonal driver mutations (blue), or

subclonal driver mutations (red) for (A) TET2, (B) ASXL1, (C) SRSF2, (D) EZH2, (E) CBL, and (F) RUNX1. The P values denote the hypothesis test of whether splitting driver

mutations into clonal or subclonal categories improves fit in a Cox proportional hazards model.
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exclusivity between mutations in TET2 and IDH2, both linked to
disordered DNA hydroxymethylation.34

Functional redundancy, however, does not explain all the ob-
served mutually exclusive associations. For example, EZH2 and
SRSF2 mutations were never found together (q 5 0.04), although
they seemingly operate in different pathways. Similarly, we observe
mutually exclusive associations between some genes and cytoge-
netic lesions as well as between IDH2 and SF3B1 (Figure 2C).
In the latter case, it is striking that IDH2 shows a clear procliv-
ity for comutation with SRSF2 (odds ratio, 6.7; 95% CI, 4.9–9.3;
q 5 0.0004), whereas SRSF2 is mutually exclusive with SF3B1.
Thus, apart from functional redundancy, another explanation for
mutually exclusivity is that some genes may only be transforming in
specific genomic contexts.

In fact, SF3B1 and SRSF2 show striking differences in their sets
of comutated genes. Thus, despite both genes being involved in the
same pathway, the sets of comutated genes are different, implying
that the functional consequences on RNA splicing cannot be iden-
tical. Furthermore, the fact that SF3B1 is linked to myelodysplasia
with ring sideroblasts,10,11,37 whereas SRSF2 is particularly en-
riched in CMML10 (Figure 1C), indicates that major differences
in disease phenotype can be driven by different combinations of
comutated genes. Such relationships appear to underlie patterns
of comutation in the study (supplemental Figure 6). These net-
works of interacting genes provide important clues to the biology
of MDS. For example, a mouse model combining Asxl1 loss and
Nras, which are comutated, showed a more aggressive, penetrant
disease than did either lesion alone,38 confirming a biologically
relevant interaction.

Clonal architecture in MDS describes preferred trajectories of

disease evolution

During cancer development, functional mutations drive sequential
waves of clonal expansion, and parallel sequencing has enabled this
process to be characterized in some detail.39-41 Clonal evolution has
been documented as MDS transforms to AML,42 and when de novo
AML relapses after chemotherapy.43 Variant allele fractions can be
used to estimate the proportion of tumor cells carrying a given
mutation and identify clonal mutations (in all cells) or subclonal
(in a fraction of cells).44 We applied this approach in patients with 2
or more oncogenic mutations (Figure 3A).

Applying this logic across 313 patients with 2 or more driver
mutations, 62% showed only clonal driver mutations, and in a
further 4% the subclonal fractions were too low to reconstruct phy-
logenetic relationships (Figure 3B). The remaining 34% of patients
had strong statistical evidence for the existence of clonal as well as
subclonal driver mutations in which we could robustly define a set of
pairwise precedences reflecting the temporal order of acquisition.
With the large sample size of patients available, there were clear
trends across the set of mutated genes, with some occurring con-
sistently earlier than others (supplemental Figure 7).

Using these pairwise precedences, we calculated a global ranking
of MDS genes reflecting how early in disease evolution they are
mutated (Figure 3C). Strikingly, mutations in genes involved in RNA
splicing and DNA methylation occur early, whereas driver mutations
in genes involved in chromatinmodification and signaling often occur
later. These are not absolute rules (supplemental Figure 7) but
establish robust trends for the observed temporal acquisition.

Our data suggest a hypothesis of genetic “predestination,” that
early mutations shape the future trajectories of clonal evolution of a
cancer through constraints on the repertoire of cooperating genetic

lesions. Here, we find that splicing factors such as SF3B1 and SRSF2
are typically mutated early. However, the 2 genes exhibit pronounced
and contrasting preferences for which genes are most likely to pro-
vide selective advantage subsequently, driving considerable mor-
phologic differences (Figure 1B). We note that this hypothesis is
based on inferences from a cross-sectional study. Confirmation
would require longitudinal analyses of serial samples drawn from
large cohorts.

Figure 5. Relationship between number of oncogenic mutations and outcome.

(A) Leukemia-free survival for patients broken down by how many oncogenic mutations

were identified (including both point mutations and cytogenetic lesions). The mean

number of cytogenetic lesions per patient was 0.2, 0.4, 0.5, 0.8, and 2.3 for patients with

1, 2, 3, 4 to 5, and 6 or more oncgenic mutations, respectively. The P value denotes the

log-rank test of the null hypothesis that all groups had the same leukemia-free survival.

(B) Incidence of transformation to acute leukemia broken down by how many oncogenic

mutations were identified. (C) Leukemia-free survival for patients with no ASXL1

mutations (gray), “known oncogenic” mutations (blue), and “possible oncogenic”

mutations or variants “of unknown significance” (red). The P values refer to log-

rank tests comparing the class of mutation to those patients without ASXL1

mutations.
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Clonal and subclonal mutations affect prognosis equally

Follow-up data were available for 595 patients (Table 1). Of
24 genes mutated in .5 patients, 8 genes were associated with
significantly worse leukemia-free survival if mutated and 1 gene
(SF3B1) with a better leukemia-free survival (supplemental Figure 8).
These findings replicate previous studies.5,9,11,35-37,45,46

We assessed whether the effects on clinical outcome of a given
gene differed by whether mutations were clonal or subclonal. To
explore this, we compared leukemia-free survival of patients with
mutations in the dominant clone to that of patients with mutations
in the same gene present in a minor subclone. Strikingly, we found
no significant difference in leukemia-free survival between clonal
and subclonal mutations for the 6 genes with published survival
effects11,35,46 in which we observed at least 5 patients with
subclonal driver mutations (Figure 4), highlighting the impor-
tance of detecting these subclonal mutations. With a challenging
classification and a chronic clinical course, this information could

enable early identification of high-risk patients as well as the detection
of new emerging subclones of prognostic significance.

Outcome correlates with number of driver mutations

In our study, leukemia-free survival negatively correlates with the
combined number of oncogenic mutations and cytogenetic lesions
(P , .0001; Figure 5A). This remains true if only oncogenic gene
mutations (excluding cytogenetic aberrations) are considered
(P 5 .002, supplemental Figure 9) and remains significant inde-
pendent of TP53 or SF3B1 mutation status. The estimated median
leukemia-free survival for patients with 1 oncogenic mutation or cyto-
genetic lesion was 49months, dropping to 42, 27, 18, and 4months for
patients with 2, 3, 4 to 5, and >6 mutations, respectively. This
was mirrored by a monotonic increase in rates of transformation
to acute leukemia as the number of driver variants increased
(P, .0001; Figure 5B). These data chime with observations that
transformation from MDS to AML or relapse of de novo AML is

Figure 6. Predicting leukemia-free survival. (A) Re-

ceiver operating characteristic curves on cross-validation

subsets for leukemia-free survival using 3 variable

datasets: IPSS (gray); standard variable predictionsmade

using all variables available fromperipheral blood counts

bone marrow evaluation, cytogenetics, and demo-

graphics (red); and sequencing in combination with all

standard variables (blue). The further the curve deviates

from the diagonal, themore informative the prognostic

model is. (B) Multivariate model to predict hemoglobin

levels from driver mutations. The green step curve

shows the cumulative proportion of variance (left y-axis)

in hemoglobin levels explained by each of the genetic

variables as one proceeds from left to right along the

x-axis. The gray shaded area represents the 95% CI

for this curve. Coefficient estimates for each gene in the

model including all variables (right y-axis) are shown as

circles, colored by biological pathway and sized by the

number of patients with the given lesion. Coefficients

above 0 indicate positive correlation with hemoglobin

levels. (C) Multivariate model to predict bone marrow

blast count from driver mutations, as for panel B.
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driven by clonal evolution associated with acquisition of new
driver mutations.42,43

The International Prognostic Scoring System (IPSS), revised in
2012,33 is the most widely used prognostication scheme in MDS.
Gene mutations are currently not included, although there are data to
show that prognostic prediction can be improved by their inclusion.45

We find that the number of oncogenic mutations continues to provide
independent prognostic information after stratification by the IPSS
classification (P 5 .0004; supplemental Figure 9).

Twenty-two percent of MDS patients showed no evidence of
known oncogenic point mutations or cytogenetic aberrations. Patients
with no identified oncogenic events show leukemia-free survival and
rates of transformation to acute leukemia similar to those with 1 to 2
drivermutations (Figure 5A-B). This suggests that they have a disease
course typical of MDS. Several possible explanations may underlie
why we did not identify any mutations in this group. Because we
identified no systematic differences in the overall distribution of driver
mutations between samples derived from bone marrow and those
from peripheral blood, source of DNA is not a major factor. There are
several new genes that are targets for recurrent mutation in myeloid
malignancies—such as SETBP1, SMC1A, and SMC347,48—that were
published after this study was performed and could account for a
proportion of the unaccounted patients.

Furthermore, even in well-characterized genes, there could be
rare driver mutations. For example, we found 10 variants in ASXL1
at residues not previously characterized and consequently annotated
as variants of unknown significance. The prognosis for the 10 patients
with these mutations was significantly worse than for patients without
ASXL1 variants (P5 .03, log-rank test) and tracked the survival curve
for patients with known oncogenic mutations (Figure 5C). This
suggests that at least some of these variants may be of functional
importance, although definitive proof would require establishing
that they are somatically acquired, recurrent in a larger cohort, and
had prognostic effects independent of other variables. Albeit explo-
ratory, this analysis suggests that larger sample sizes with matched-to-
clinical data will support identification of rare driver mutations.

Making prognostic predictions from sequencing data

The refinement of the composite genetic architecture that underpins
MDS has led to a growing anticipation of how these findings can
be translated into clinical practice. We therefore explored what
proportion of the variance in clinical outcomes could be accounted
for by clinical and genomic features. These include morphological
variables, demographic data, peripheral blood counts at diagnosis,
cytogenetics, and gene mutations.

We considered 3 potential datasets: the IPSS; a dataset derived
from all standard clinical variables (including peripheral blood counts,
bone marrow morphology, cytogenetics, and demographic data); and
a dataset that combines standard and genetic variables together.
Owing to missing data, we were not able to calculate IPSS—Revised
(IPSS-R) status. For each dataset, the variables that had sufficient
independent predictive power to enter these models are detailed in
supplemental Table 7.When compared with the IPSS (area under the
curve [AUC] 5 0.76 at 90 months), standard variable sets show an
increase in the prognostic potential (AUC 5 0.80 at 90 months) in
relation to that obtained by the IPSS alone (Figure 6A). This is in
accordance with recent observations from the IPSS-R, which has
refined the incorporation of further cytogenetic abnormalities as well
as the degree of cytopenias and bone marrow blast percentage.33 Incor-
poration of the point mutation data achieves a marginal nonsignificant
increase (AUC 5 0.82 at 90 months), but the 2 curves are broadly

overlapping. This indicates that the amount of prognostic information
contained in each of the 2 datasets is similar and implies that there is
some redundancy in the prognostic information between these 2 sets.

We have previously shown that the SF3B1 mutation status is
a significant predictor for the presence of ringed sideroblasts in the
bone marrow.37 To evaluate other such genotype-phenotype cor-
relations, we used multivariate models to predict clinical variables
of prognostic significance (such as ringed sideroblasts, hemoglobin
count, bone marrow blasts) using driver mutations (point mutations
and cytogenetic alterations) as the predictors (Figure 6B-C). TET2
mutations and del(5q) were the most important genetic predictors of
hemoglobin levels, the former being positively correlated and the
latter negatively correlated (Figure 6B). In combination, genetic
variables can explain 0.063% of the variance observed in hemoglobin
levels. Similarly, mutations in WT1, IDH2, STAG2, and NRAS, as
well as a complex karyotype, correlated strongly with percentage
of bone marrow blasts, whereas SF3B1 mutations predicted a low
fraction of blasts (Figure 6C).

Taken together, these data demonstrate that inclusion of ge-
nomic data should improve prognostic algorithms for MDS.
Given that many genes are rarely mutated and show the complex
patterns of comutation, much larger sample sizes will be required to
realize this potential. The IPSS-R used 7012 patients33; a similar
sample set analyzed with the protocol outlined here may be
necessary for robust prognostic schemes that incorporate genomic
variables.

Discussion

The large sample size and extent of gene sequencing reported here
provides an unprecedented glimpse into the genomic landscape of
MDS and how this impacts on clinical phenotype. For the first time,
we have performed targeted gene resequencing of a clinical cohort
in the absence of constitutional matched DNA. We have developed
several computational approaches to deal with data sets on this scale,
especially in measuring combined prognostic information and in-
ferring temporal evolution of gene mutations. We observe the same
frequencies of mutations in specific genes as reported in the literature,
confirm known gene-gene interactions, and validate published cor-
relations with patient outcome.

We identified at least 1 genomic alteration in 78% of the patients
studied. In the time since our bait set was synthesized, several new
myeloid genes have been described, including SMC1A, SMC3,
and SETBP1,47,48 meaning that this figure could be improved in the
future. A conservative variant annotation was used, with many
variants classified as of “unknown significance”; larger sample sizes
may enable some of these to be reclassified in the future.

In MDS, several key observations emerge. Many genes are targets
for mutation inMDS, but the vast majority are rare (,5%). One of the
strongest predictors of outcome is the number of driver mutations
identified in a patient. Twenty percent of mutations in patients with 1
driver mutation map to genes mutated in ,2% of cases. This is also
true for 30% to 40% of additional acquired mutations (3rd, 4th, etc).
Thus, for use in diagnostic screening, sequencing a comprehensive set
of well-characterized genes is critical.

RNA splicing is the most commonly mutated pathway in MDS,
and we find strong evidence that mutations in splicing factors
occur early in disease evolution. These mutations play a major role
in determining the clinical features of the disease, with differ-
ences in morphological features seen on bone marrow biopsy and in
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leukemia-free survival. Intriguingly, not only do these mutations occur
early, but they may also influence the subsequent genomic evolution
of the disease, because the patterns of cooperating mutations are
strikingly different between, for example, SF3B1 and SRSF2. Con-
firmation of this hypothesis would require analysis of serial samples.

It will be increasingly feasible to undertake sequencing of DNA
from sequential blood samples on, say, an annual basis in MDS
patients. Our data suggest that the emergence of new driver muta-
tions, even if they are still subclonal, can have significant implica-
tions for the future disease course. It should therefore be possible
to identify patients whose disease is progressing before symptoms
associated with higher-risk disease are manifested.

There has been considerable excitement about the opportunity
that massively parallel sequencing offers as a cost-effective, front-
line diagnostic tool for cancer. Our study is a harbinger of future
comprehensive genomic analyses of large cohorts of patients with
clinical data across different tumor types. Many of the themes seen
here will emerge repeatedly, providing important insights into the
genomic architecture of cancer and how this drives the phenotypic
and clinical heterogeneity we see in patients.
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