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Genomic technologies are becoming a

routine part of human genetic analysis.

The exponential growth in DNA sequenc-

ing capability has brought an unprece-

dented understanding of human genetic

variationand the identificationof thousands

of variants that impact human health. In

this review, we describe the different types

of DNA variation and provide an overview

of existing DNA sequencing technologies

and their applications. As genomic technol-

ogies and knowledge continue to advance,

theywill become integral inclinical practice.

To accomplish the goal of personalized

genomic medicine for patients, close col-

laborations between researchers and clini-

cianswill be essential to develop andcurate

deep databases of genetic variation and

their associatedphenotypes. (Blood. 2013;

122(19):3268-3275)

Introduction

Modern DNA sequencing technologies have opened the door to the
large-scale characterization of human genomes.1-3 Application of
these new technologies to individuals and populations offers the
unprecedented opportunity to identify and characterize functional
humanDNAvariants amid the diverse spectrum of genomic variation.
Appreciation of DNA as a complex and dynamic molecular anthology
is essential for the study of inherited and acquired biological pro-
cesses. In this article, we review the fundamentals of DNAvariation as
well as several common sequencing approaches, with emphasis on
the application and trajectory of next-generation DNA sequencing
technology.

Review of terminology and DNA
sequence variation

DNA is a long double-stranded polymer composed of 4 nucleotides
which form complementary base pairs (bp) with each other: adenine
(A) with thymine (T), and guanine (G) with cytosine (C). Connected
59 end to 39 end (referring to the fifth and third carbons of the sugar),
these 4 nucleotides are the building blocks of DNA.

DNA is organized into huge, linear, highly structured molecules
which form the chromosomes. Chromatin, the physical organization of
DNA and associated proteins, participates in regulating DNA function.
Genes are the regions of DNA which encode for proteins. Protein
coding regions are defined by the presence of exons, read 59 to 39,
which are made up of codons, triplets of nucleotides which specify
amino acids or signal translation stop.The stretches of nonprotein coding
DNA between exons are introns. Splice sites mark the exon-intron
boundaries and direct the excision of introns from the RNA message.

Control of gene expression

There are numerous functional noncoding DNA elements which
participate in gene expression. Promoters, located immediately

upstream of genes, are required for gene transcription. DNA reg-
ulatory elements which enhance or repress gene expression are
often located near (or within introns of) structural genes, but can
also lie at great distance. Some elements can control large genomic
regions which contain many genes, such as the globin locus control
region.4 Additionally, there are numerous DNA regions which tran-
scribe noncoding functional RNAs, for example, transfer RNAs,
ribosomal RNAs, and microRNAs. DNA nucleotides can also be
reversibly chemically modified, such as by methylation, to affect
elements which influence developmental or tissue-specific gene
expression, such as occurs during imprinting or cell-lineage
differentiation.5,6

DNA sequence variation

DNA is a living molecule in that it is constantly changing. DNA
replicates during every mitosis, and recombines and segregates with
every meiosis. Although DNA-replicative processes operate at ex-
tremely high fidelity, they are not (and cannot be) perfect.7 Thus,
DNA variation is rarely but inevitably introduced during the copying
of DNA template or ligation of free ends. DNA errors also arise from
misrepair of DNA damaged as a result of routine exposure to cellular
and environmental sources or by excess ionizing radiation, UV, or
chemical insults. DNA-damage repair processes generally exhibit
lower fidelity than DNA replication. This error permissiveness is
thought necessary to facilitate restoration of a functional genome
from corrupted DNA template without stalling DNA repair entirely,
and can result in damage-specific patterns of acquiredDNAvariation.8,9

DNA accumulates variation as time progresses longitudinally over
generations (germline variation) and within a single individual over
many cell divisions (somatic variation). The vast majority of DNA
variants cause no observable phenotype. However, a small fraction
of variants are functional and can alter phenotypes.

Any difference in the DNA sequence as compared with a common
reference sequence is considered a DNA variant (Figure 1). The
simplest type of DNA variant is a change in a single-nucleotide
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base, known as a single-nucleotide variant (SNV). An SNVwhich is
common in human populations (.1%) can also be known as a
single-nucleotide polymorphism (SNP). Another type of DNA
variation results from insertion or deletion (known as an indel)
of a stretch of nucleotides. Structural variants (typically affecting
.1000 bp) are DNA variants which include large indels as well as
more complex DNA sequence rearrangements such as inversions
(a block of DNA which has flipped “backwards”) and translocations
(joining of distant genomic regions). Copy number variants (CNVs)
are a type of structural variation resulting from gain or loss of a copy
of an entire DNA region by deletion or duplication.

All types of DNA variation hold the potential to alter the ex-
pression or function of genes. SNVs can work directly by misspelling
a codon’s amino acid translation (missense), creating a STOP codon
(nonsense), or altering splice sites. SNVs can affect gene function by
varying the sequence of promoters, regulatory elements, or noncoding
RNAs. Indels can also create frameshift variants which shift codon
registers to create new amino acid sequences downstream. Large
indels can similarly disrupt genes as well as impact entire genomic
regions or alter chromatin structure. Inversions and translocations not
only disrupt their genomic sites of origin, but can also bring together
new combinations of genes and/or regulatory elements. Additionally,
CNVs which result in gain or loss of whole copies of functional DNA
can affect phenotype via a differential gene dose effect. Thus, any type
of DNA variant can affect function, and all categories of DNA
variation have been implicated in disease.

DNA sequencing technologies

In the pregenomic era, various technologies were used to localize
disease susceptibility genes (cytogenetics, fluorescence in situ hybrid-
ization) or to identify susceptibility alleles using DNA sequence
variation in linkage analysis in family-based studies (microsatellite
markers) or in candidate gene genotyping in unrelated individuals
(restriction fragment length polymorphism [RFLP] analysis, allele-
specific polymerase chain reaction [PCR]). The completion of the
Human Genome Project1,2 and development of dense, genome-wide

SNP marker genotyping arrays resulted in dramatic improvements
in the design of genetic association studies for complex traits10-12

(Figure 2). These technologic advancements made it possible to
efficiently screen the human genome for common polymorphisms
associated with clinically relevant traits and ushered in the era of
genome-wide association studies (GWAS). In the GWAS design,
a large fraction of the commonly varying sites across the human
genome are assessed either directly or indirectly (through linkage
disequilibrium) for association with quantitative or qualitative pheno-
types. While some of the genetic variants associated with complex
hematologic traits are located within or near genes known to be
involved in disease etiology or trait physiology, the genome-wide
approach of GWAS led to discovery of previously unknown loci
that provided new insights into disease biology.13,14 Similarly, com-
parative genomic hybridization (CGH) arrays based on the compar-
ative cohybridization of fluorescently labeled sample and control
DNAs have found CNVs to be common and sometimes associated
with disease.15,16

GWAS have exhaustively tested common, usually noncoding,
DNA sequence variants and identified many new loci related to
hematologic traits. However, rare DNA sequence variants, partic-
ularly those within protein-coding sequence, likely also contribute
to interindividual variability in the population for hematologic traits
or locus heterogeneity for monogenic hematologic syndromes. Recent
advances in next-generation DNA sequencing technology allow com-
prehensive detection of rare DNA sequence variants.

First-generation DNA sequencing

DNA sequencing has always been at the core of human genetic
analysis because sequencing is the only method that can provide the
genotype at every position.1 In fact, capillary-based, fluorescence-
based sequencing, known as Sanger sequencing, continues to be
a mainstay technology to rapidly analyze any small region across
a handful of samples.17 For fluorescence-based (Sanger) sequenc-
ing, the region of interest is first amplified from the genome by PCR.
The amplified target is added to standard nucleotides (A, C, G, T)
containing a mix of terminators, which are modified nucleotides
each labeled with a different fluorophore. A DNA polymerase
copies the target starting from an oligonucleotide primer, and as the
DNA is synthesized (extended) the incorporation of fluorescently
labeled terminators randomly stops synthesis such that a ladder of
differently sized products is generated ending at each base in the
target sequence. This cycle is repeated similar to PCR, generating
many copies of the laddered products and enhancing the detection of
each modified base that terminates a fragment. By subjecting the
resulting ladder to single-base-resolution capillary electrophoresis,
the fluorescence of the terminator in each fragment (from shortest to
longest) is detected (Figure 2). The resulting sequence can exceed
600 bp. Fluorescence-based (Sanger) sequencing is still considered
the gold standard, particularly in diagnostic situations. Therefore,
this technology is still in common use, although higher-throughput
technologies are rapidly being integrated into clinical laboratories.

Next-generation DNA sequencing

The development of next-generation sequencing (NGS) has changed
the comprehensiveness of human genetic analysis and significantly
reduced the costs associated with sequencing a genome.18-21 Today,
for clinical evaluations, whole-exome sequencing (coding regions
only) or whole-genome sequencing (coding and noncoding) of the
individual22-26 are thought to be appropriate and practical testing
modalities. The choice between exome or genome ultimately depends

Figure 1. Types of DNA sequence variation. (A) SNVs result from the substitution

of 1 base, while insertion or deletion (indel) affects a string of nucleotides. (B) Structural

variants (typically affecting.1000 bp) include large indels, inversions, duplications, and

CNVs.
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on cost and the need for noncoding data for clinical assessment.
Exome sequencing is currently cheaper than whole-genome se-
quencing, although that may change in the future. In addition to
exome and whole-genome sequencing, specific target gene panels
can be optimized for NGS.

Sample preparation and library construction. There are sev-
eral basic steps that are common to all massively parallel sequencing
approaches (Figure 3).27,28 The first step is the generation of an in
vitro library from the sample (DNA, or RNA converted to com-
plementary DNA [cDNA]). The quality of the library is critical in
determining sequencing efficiency. Originally, to prepare the
sample, DNA fragments were physically sheared. Now, a number of
enzymatic approaches have been developed29,30 which greatly sim-
plify the process and increase the uniformity of library production. The
throughput of NGS has increased to the point where samples from

different individuals can often be sequenced together by uniquely
bar-coding individual samples during library construction and then
pooling samples prior to amplification. After sequencing, the barcodes
permit the sequences to be separated or deconvoluted.

Amplification. After a library is constructed, the molecules
within the library are amplified to generate additional copies, ensuring
robust detection.28 Amplification is one of the steps in the process that
introduces biases as it decreases sequence coverage for some regions,
that is, GC-rich regions such as some promoters and first exons, and
introduces errors prior to sequencing. Errors that arise during the
copying process are random, and their presence makes each individual
sequence read less accurate. These errors are not usually miscalled
as variants because the sequence is ultimately determined by a
consensus of multiple unique reads, which are reads distinguished
by their unique genomic positions, sequences, and/or lengths. However,

Figure 2. First-generation sequencing and genome-wide association technologies. (A) Stylized schematic of fluorescence-based (Sanger) sequencing chromatogram

result showing heterozygosity for T/C at position Y. (B) Cartoon of genome-wide SNP marker genotyping array (SNP array) showing detection of differential hybridization

(green or red if homozygous, yellow if heterozygous) of fluorescently labeled DNA representing common SNPs to the chip. (C) Cartoons of results from genetic array data. In

GWAS, a “Manhattan plot” is typically used to summarize the large number of P values obtained, as represented by genomic coordinates displayed along the x-axis, with the

negative logarithm of the association P value for each SNP displayed on the y-axis. A 2log P value, such as indicated by the dashed line, is generated which is considered to

meet the threshold for statistical significance. SNPs with significant values would appear above the line (shown in red). (D) For array CGH, gains and losses of DNA are given

as a ratio and plotted against genomic position. This example shows loss of a region compared with the reference.
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when low-level detection is desired, such as in cancer sequencing,
errors introduced during amplification must be considered. Low-
level tumor variants are usually called only when they are seen
more than twice, giving greater confidence that the observed variant
is truly present and not an artifact of the process. Thus, greater
depth (usually 300 times or more) among the unique reads is
desirable in explorations of heterogeneous samples, as occurs in
malignancy.26,31

Sequencing. There are a number of formats and chemistries
used in NGS.27,28 Many use fluorescent dyes in a manner similar
to fluorescence-based (Sanger) sequencing. Sequence detection for
NGS is performed in channels, chambers, nanowells, or on assembled
nanoballs. What varies substantially among the platforms is the ap-
proach used to obtain the sequence. One of the most widely applied
technologies (available from Illumina) uses reversible dye terminator
sequencing.20 In this system, the molecular library is captured in
a channel and then amplified to generate a small cluster from each
captured molecule. Next, DNA polymerase and all 4 dye terminators
are flowed through the channel, resulting in fluorescent base extension
for each cluster. Fluorescence is then read for the hundreds of millions
of clusters found in the channel simultaneously. The dye terminators
are then reversed by flowing reagents through the channel to clip off
the fluorophore and repair the nucleotide, readying the base to be
extended again. This whole process is known as a cycle, which is then
repeated. Typically, 100 bp sequence reads are obtained from each end
of the cluster, although read lengths from 50 to.200 bp are possible.
An entire run from multiple channels can generate ;600 gigabases
(Gb) of sequence in an 11-day period. With a new upgrade, 120 Gb
can be generated in;27 hours, or an entire whole genome every day
at.30-fold coverage. This is trulymassively parallel sequencing, and
these approaches continue to improve and evolve.

Other sequence systems routinely generate whole-genome se-
quence data, such as those from Complete Genomics and Life Tech-
nologies. Complete Genomics does not sell an instrument, but
provides a service in which a DNA sample is sent to the company
and the sequence returned. In their approach, library construction
leads to the production of a massive array of nanoballs, which are
sequenced by a combination of hybridization and DNA ligation.32

Life Technologies’ SOLiD platform also uses DNA ligation, rather
than DNA polymerization, to sequence on a massive scale.33

Other next- and third-generation sequencing platforms.
Many other NGS platforms are available, and more are under devel-
opment. Some have sufficient throughput to sequence the human
exome, and all are capable of handling targeted gene panels or RNA
sequencing applications. The Ion Torrent (Life Technologies) is unique
in detecting the slight change in pH that takes place when each base
is added 1 nucleotide position at a time34 and is similar in concept to
454 (Roche) which detects a base addition by the generation of a
pyrophosphate.18 Another unique platform from Pacific Biosciences
measures fluorescent base incorporation in single molecules in real
time.35 Although throughput is not as high as other NGS platforms,
it can produce long reads up to 25 kilobases (kb) in length and
directly detect DNA methylation.36

Long read length can be advantageous when sequencing more
complex regions of the human genome. Single-molecule sequencing
holds the promise of long read length capabilities and is an active area
of technology development. For example, in nanopore sequencing37

single DNA molecules are moved through a narrow pore and each
base is detected in real time,38,39 which offers the potential of being
able to generate molecule long reads. While this and other promising
platforms are possible in the future, existing NGS technologies are
also working toward longer reads to improve assembly of individual

Figure 3. Schematic of 1 form of NGS. The process starts by randomly cutting genomic DNA (or cDNA) into short fragments (a few hundred base pairs in length).

Oligonucleotide linkers are added to the fragments to generate a library in vitro. Libraries are introduced into a microscope slide with flow channels containing complementary

oligonucleotides on the surfaces of the channel to ones on the libraries, thus allowing hybridization to attach millions of individual molecules to discrete locations on the slide. In

situ PCR is performed to copy the individual fragments of the library to enhance sequencing detection. Single-base extension by a DNA polymerase with all 4 dye terminators

extends the sequence 1 base. The image of the base extension is captured. This cycle and is repeated a 100 times from 1 end of the molecule and 100 times from the other.

BLOOD, 7 NOVEMBER 2013 x VOLUME 122, NUMBER 19 GENOMIC SEQUENCING TECHNOLOGIES 3271

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/122/19/3268/1370688/3268.pdf by guest on 02 June 2024



genome sequences and detection of difficult to call variants, such as
larger indels and structural variants.

Sequence assembly. After sequence reads are generated by an
NGS platform, they are typically aligned and assembled on a human
reference sequence. The human reference sequence serves as a scaffold
for read placement using a rapid indexing approach that finds the
best match taking into account errors and variants in the reads.
Although this form of assembly is not perfect, it is effective and fast
at assembling the vast amounts of NGS data. In fact, the majority of
the genome (;90%) can be reliably mapped with this approach.

However, not all variants in the sequenced genomes are repre-
sented in the reference sequence, and short NGS read length can pose
problems in assembly. Particularly challenging are large indels and
other structural variations which cannot be assembled simply by align-
ing reads to the reference scaffold. Emerging tools to identify and
characterize these variants include the addition of other sequences into
the assembly and/or use of alternative algorithms.40,41 Genes with
high sequence similarity (homology) also pose dilemmas by gen-
erating highly similar short sequence reads originating from different
genes. Obtaining longer paired-end NGS reads will solve many of
these issues. The use of hybrid approaches to genome sequence
and assembly also holds promise for improving sequence assembly by
combining short- and long-read NGS technologies or assembling
short reads into longer ones molecularly.42 Additionally, the selected
use of de novo sequence assembly, which assembles sequences with-
out a reference scaffold43,44 and/or the application of new approaches
to resolve human sequence haplotypes,45,46 could also improve our
ability to analyze these challenging regions.

Variant calling. Once assembled, sequence variants are called
in the dataset. In the early days of NGS, variants were identified by
counting the number of times they appeared in unique reads to a set
threshold. For example, if a region had 30 overlapping reads where
15 were called C at 1 position and 15 were called T at that same
position, a heterozygous C/T variant would be called because each
haplotype should be equally represented if the data were obtained in
an unbiased fashion. Of course, in reality, sequencing reads obtained
by any method are not unbiased, and these biases must be con-
sidered in analysis of the data.

The accuracy of SNV calling is high for most NGS platforms,
although there is still significant variation among platforms because
the error profiles and decoding schemes are not the same. Indels
(small and large) and CNVs are more problematic both in specificity
and sensitivity. Statistical and machine learning approaches are being
applied to find variants and accurately and reproducibly call geno-
types,47 and many new algorithms can now handle different types of
variants, that is, indels or CNVs.48-50 Target gene panels are already in
use for cancer sequencing, where the deeper sequence coverage
obtained for each base increases the sensitivity and specificity of
identifying variants.26 New approaches are also being developed to
identify somatic mutations present at lower levels in samples.51

Thus, variant-calling capabilities are quite good with some variant
types, such as SNVs, but face challenges for calling other, particularly
larger, variants. The rapid pace of method development promises even
higher sensitivity and specificity in the identification of complex
variation in NGS data in the near future.

Applications of NGS to human genetics

Many lessons are emerging from the large-scale application of NGS
in human genetics. Sequencing of the human exome and other large,

targeted gene panels reveals that the level of rare variation in the
human genome is far greater than expected.52,53 NGS data have also
confirmed that the rarest variants in the human population are the
youngest ancestrally and predicted to be the most deleterious.54

These findings have stimulated the development of high-throughput
approaches to resequence genes in thousands of samples using the
same capture methods successfully applied for exome sequencing.
Simplifying and increasing the cost effectiveness is a key focus area
of technology development. Critical to this will be optimizing
approaches for multiplex PCR to capture hundreds or thousands of
genomic targets in a single reaction.55 Combined with extensive
sample bar coding, hundreds of samples could be sequencedwith ease
across thousands of regions.56 Already, systems such as molecular
inversion probes are offering new ways to advance NGS capabilities
and facilitate sequencing of the thousands of individuals required to
pursue rare variant discoveries in human genetics.57

The scale of massively parallel sequencing opens new avenues for
all forms of biological analysis, including analysis of sequence vari-
ants (shown in Table 158-63).64 Variant discovery and RNA sequenc-
ing are the principal applications today for NGS.65 Exome sequencing
and genome sequencing have been successful in discovering causal
variants in individuals with rare, highly penetrant monogenic dis-
orders.66 The application of exome sequencing and exome-based
genotyping arrays to more complex phenotypes in large population
samples is under way through consortia such as the National Heart,
Lung, and Blood Institute (NHLBI) Exome Sequencing Project
(ESP). Early results suggest exome sequencing and newer statisti-
cal approaches to analyzing rare variants can be used to further
characterize genetically heterogeneous traits in large population-
based studies.67,68

The types of digital profiling that can be tackled by NGS are
nearly unlimited, including methylation,36,69 chromatin profiling,70

structural DNA interactions,71,72 as well as many others.73,74

Among the alternative applications, RNA sequencing is the most
widely applied. In RNA-seq, read counts are used to measure gene
expression in the sample.75 Importantly, RNA sequencing also
assesses alternative splicing and isoform usage, which, along with
high sensitivity, offers major advantage over microarray analysis.
RNA-seq brings new challenges for optimizing sample prepara-
tion and analyzing the resulting data, which are active areas of
development.76 NGS is emerging as the method of choice for
analyzing biology and genomic regulatory elements on a large-
scale,64,77,78 highlighted by the myriad of new insights from the
ENCODE project.79

Table 1. Selected applications of NGS

Sequencing applications Examples
Selected
references

Genomic variation Clinical genetics, cancer analysis 24, 25

Coding and targeted

resequencing

Mendelian genetics, rare variant

detection, cancer sequencing

22, 23, 26, 53

RNA profiling RNA-Seq for expression, alternative

splicing and cancer analysis

58, 65

DNA methylation Epigenetic profiling 36, 69

Active regulatory regions Dnase-seq, FAIRE-Seq 59, 72

DNA-DNA interactions Hi-C 70, 71

Protein-DNA interactions Chip-Seq, Chia-PET 60, 73

Mutagenesis profiling Functional profiling of proteins or

DNA elements, ie, (promoters,

enhancers)

64, 78, 79

Immunoprofiling HLA, T-cell receptor profiling 61-63
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Promise and challenges in the genomic era

Benefits of genomic-scale DNA sequencing are being realized as
NGS is widely applied in research and being piloted for some
clinical applications, such as pharmacogenomics, inherited con-
genital syndromes, inherited cancer risk genes, and tumor pro-
filing.80,81 There are several examples where genome sequencing
has been used for diagnosis of rare, Mendelian disorders,23,24 and
new opportunities are available through the Centers for Mendelian
Genomics.82 Moreover, noninvasive prenatal diagnostic screening
by genome sequencing is under way.83 Detailed functional char-
acterization of the consequences of sequence variation in genetic
regulatory elements or protein function at single-nucleotide res-
olution are now possible through massively parallel reporter assay
analysis.64,78

Genomic technologies are incredibly powerful but still hindered
by the physical limits of the amount of DNA which can be se-
quenced at a time and the computing power needed to analyze the
resulting data. As read lengths become longer and DNA sequencing
becomes cheaper, the ability to deeply characterize entire genomes
is expected to continue its current path of exponential growth.
However, as the cost of storing raw data for long periods of time is
offset by the uncertain practical utility of maintaining it,84 there is
movement to only maintain analyzed results and, if needed, simply
resequence at a future date. The ability to generate comprehensive
personal sequence data also increases the likelihood of capturing large

numbers of incidental findings; this will require development of
consensus on procedures for maintaining and returning inci-
dental results that vary in penetrance, clinical relevance, and
medical actionability.85

Large-scale genomic sequencing of well-phenotyped population-
based cohort or case-control studies may help to define the role of
rare or lower frequency genetic variants, perhaps explaining some
of the “missing heritability” of common, complex diseases and
quantitative traits. However, extremely large sample sizes (in the
hundreds of thousands) may be required for adequate statistical
power. Consortia such as the NHLBI ESP have begun to evaluate
the association of lower-frequency coding variants with hemato-
logic traits, demonstrating the benefits of sequencing approaches
to characterize genetically heterogeneous traits in large population-
based studies. Another goal of ESP is to share these datasets with
the scientific community, both through National Institutes of
Health (NIH) repositories of genetic variants (dbGaP, dbSNP) and
through the Exome Variant Server (http://evs.gs.washington.edu/
EVS/), a web-based application that can be queried by gene or
chromosomal location for a detailed summary of all identified
sequence variants (Figure 486). Another outgrowth of large exome
sequencing consortia has been the development of the Illumina
Infinium Human Exome BeadChip, a lower-cost genotyping array
that interrogates lower-frequency nonsynonymous, nonsense, and
splice-site variants.

The prospect of personalized medicine truly seems to be within
reach as DNA sequencing technologies continue to become
cheaper, faster, and provide more information. However, there remain

Figure 4. Screenshot from exome variant server of the MPL gene showing part of a summary table of variants discovered through the NHLBI ESP. The current data

release is taken from 6503 unrelated European American and African American samples drawn from multiple ESP cohorts and represents all of the ESP exome variant data. Users

can select summary characteristics of interest for display and query sequence variants by gene, rsID (the variant identifier in dbSNP, if known), chromosomal location, or batch. The

corresponding attributes (eg, allele counts or frequencies overall or by ethnicity, various evolutionary conservation scores such as GERP, phastCons, functional annotation) can be

viewed on the web or downloaded as text-formatted files. Color coding is used to annotate variants according to genomic function (eg, splice/nonsense/frameshift, missense,

synonymous, UTR). A functional prediction for each missense variant is shown using the Polyphen2 prediction algorithm.86 GERP, genomic evolutionary rate profiling; UTR,

untranslated region.
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significant challenges to fulfilling the promise of personalized
medicine via deciphering of individual human genomes. Com-
plete reference human genomes and maps of human genetic var-
iation are incomplete, in part due to limitations in detecting
structurally complex variants, and in part due to the need for
comprehensive DNA sequence data on many individuals from
ethnically diverse populations in order to represent human genetic
diversity.

In summary, significant expansion of our knowledge of the
human genome in conjunction with rapid technological advance-
ments in DNA sequencing technologies has led to the iden-
tification of genetic variants responsible for hundreds of diseases.
This number will only continue to grow as NGS capabilities are
now within reach of most research laboratories and are being
developed in clinical settings. Maintenance of the current steep
trajectory in the understanding of human genetic diversity and
successful application of that knowledge for the benefit of
human health requires active collaboration between genomic
experts and medical scientists to generate the accessible, deeply
characterized, well-annotated, and diverse genomic and bio-
logical reference data to realize the potential of the human
genome.
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