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6Institut National de la Santé et de la Recherche Médicale U668, Paris, France; and 7Department of Laboratory Medicine, University of California, San

Francisco, San Francisco, CA

Key Points

• Neutrophils are necessary
and sufficient for mAb-
induced therapy of
subcutaneous syngeneic or
xenograft tumors in mice.

• Antitumor immunoglobulin
G mAb therapy requires a
Syk-dependent FcgR-
induced killing of tumors by
neutrophils.

Tumor engraftment followed by monoclonal antibody (mAb) therapy targeting tumor

antigens represents a gold standard for assessing the efficiency of mAbs to eliminate

tumor cells. Mouse models have demonstrated that receptors for the Fc portion of

immunoglobulin G (FcgRs) are critical determinants of mAb therapeutic efficacy, but the

FcgR-expressing cell populations responsible remain elusive. We show that neutrophils

are responsible for mAb-induced therapy of both subcutaneous syngeneic melanoma

and human breast cancer xenografts. mAb-induced tumor reduction, abolished in

neutropenic mice, could be restored in FcgR-deficient hosts upon transfer of FcgR1

neutrophils or upon human FcgRIIA/CD32A transgenic expression. Finally, conditional

knockout mice unable to perform FcgR-mediated activation and phagocytosis specif-

ically in neutrophils were resistant to mAb-induced therapy. Our work suggests that

neutrophils are necessary and sufficient for mAb-induced therapy of subcutaneous

tumors, and represent a new and critical focal point for optimizing mAb-induced immu-

notherapies thatwill impact onhuman cancer treatment. (Blood. 2013;122(18):3160-3164)

Introduction

Murine tumor models are the main preclinical tools used to screen
and optimize monoclonal antibodies (mAbs) for potential antitumor
mAb-mediated therapy in the clinic. These models consist of
implanting syngeneic mouse cancer cells into immunocompetent
mice or xenogeneic human cancer cells into immunodeficient mice,
followed by intravenous injections of potential therapeutic mAbs.
Most antitumor therapeutic mAbs target an antigen expressed by
the tumor and were designed to limit tumor growth by inducing
cellular apoptosis or growth arrest.1 Several reports, however, in-
dicate that the immune effector response is highly relevant to the
efficacy of therapeutic mAbs in vivo in mouse models.2 Impor-
tantly, mice deficient for all activating FcgRs (FcRg2/2 mice)
are not protected from the growth of glycoprotein 75 (gp75)–
expressing syngeneic melanoma or of HER2-expressing breast cancer
xenografts following anti-gp75 (TA99) or anti-HER2 (Trastuzumab)
mAb treatment, respectively.3,4 Furthermore, polymorphisms
in FcgR-encoding genes in patients (eg, FcgRIIIA/CD16A and
FcgRIIA/CD32A) have been reported to impact mAb therapeutic
efficacy.5,6

However, the FcgR-expressing cell populations responsible for
the mAb-induced therapeutic activities on tumors have not been
formally identified. In vitro, FcgR1 natural killer (NK) cells and
various FcgR1 myeloid cells7-10 can all kill mAb-opsonized tumor

cells. In vivo, however, it is unclear which of these cell types plays
the dominant role in mAb-induced antitumor effects.

Study design

We used tumor cell lines expressing the enhanced firefly luciferase (luc2)
to allow accurate, noninvasive assessment of tumor burden over time using
bioluminescence acquisition.11,12 A subcutaneous injection of luc2-
expressing syngeneic gp751 B16-F10 (B16-luc2) melanoma into wild-type
mice led to a localized tumor development (Figure 1A; supplemental
Figure 1A, available on the Blood Web site). Recurrent injections of anti-
gp75 mAb TA99 reduced bioluminescence to background level as early as
24 to 48 hours following the first injection and prevented reoccurrence of
detectable tumors in wild-type mice (Figure 1A; supplemental Figure 1A)
but not in FcRg2/2 mice (supplemental Figure 1B), as reported.3 Anti-
gp75 mAb injections starting on day 0 or day 2, but not on day 7,
post–tumor engraftment efficiently reduced the tumor burden (supple-
mental Figure 1C). The protective effect in this mAb therapy model can
therefore be monitored using bioluminescence before appearance of
detectable tumor masses, and mimics the clinical efficacy of antitumor
mAbs on small or residual tumors and their relative inefficiency on
larger tumors.13 The potential contribution of FcgR1 cell populations14

to antitumor mAb immunotherapy could therefore be investigated in the
first days following mAb therapy (see supplemental Material and methods).
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Results and discussion

NK cells did not detectably contribute to anti-gp75 immunotherapy,
as demonstrated by NK-cell deficiency15 (Figure 1B) or depletion
(supplemental Figure 1D). Similarly, monocytes/macrophages were
not involved, as demonstrated by monocyte/macrophage depletion
(Figure 1C; supplemental Figure 2A) or by their inhibition by
gadolinium (data not shown). This latter result was unexpected in
view of the critical role of macrophages reported in the depletion
of B cells after anti-CD20 therapy,10,16 but may rely on the tissue
localization of the target cells, that is, subcutaneous vs circulating,
respectively. Finally, a role for mast cells, basophils, or eosinophils
could be ruled out (supplemental Figure 2B-D). Mouse protocols
were approved by the Animal Care and Use Committees of Paris,
France.

As demonstrated previously,3 FcRg2/2 mice failed to re-
spond to anti-gp75 treatment following tumor transfer (supple-
mental Figure 1B). Although bone marrow cell transfers from
wild-type mice into FcRg2/2RAG2/2 mice restored anti-gp75
immunotherapy (Figure 1D), transfers on days 0 and 1 were not
sufficient to protect mice from tumor outgrowth (supplemental
Figure 3A). This result suggested that a short-lived bonemarrow cell
population may mediate the protection. Among short-lived bone
marrow cells, neutrophils have been reported to have a lifespan
of 12.5 hours in mice.17 Importantly, anti-Gr1–induced depletion
of neutrophils abolished anti-gp75 immunotherapy (Figure 1E;

supplemental Figure 3B-C). Although myeloid-derived suppressor
cells (MDSCs) also express Gr1, it is unlikely that the depletion of
MDSCs is contributing to the loss of the therapeutic activity of
TA99 in this model, as B16 cells have been reported not to induce
MDSCs.18 Because antibody-induced cell depletionmight also affect
other cell populations in this setting, we used a mouse model of
neutropenia,19 induced by the absence of transcriptional repressor
growth factor independence-1 (Gfi1)20 (supplemental Figure 3D).
Whereas tumor growth was identical in Gfi1-deficient and Gfi1-
sufficient (Gfi11/2) mice, anti-gp75 immunotherapy was abolished
in the absence of Gfi1 (Figure 1F; supplemental Figure 3E). Taken
together, our results suggest that Gr11 cells, deficient in Gfi12/2mice,
that is, neutrophils, are mandatory for antitumor mAb therapeutic
efficacy.

We next extended our observations to the HER2/neu1 human
breast cancer cell line BT474-M1 that has been used to assess the
therapeutic activity of Trastuzumab.4 A subcutaneous injection of
luc2-expressing BT474 cells (BT474-luc2; supplemental Figure 4A-B)
in matrigel leads to a localized bioluminescent tumor mass in
immunodeficient nude mice. Trastuzumab injections reduced bio-
luminescence to background level in 7 days and prevented detect-
able tumors from appearing in nude mice but not in FcRg2/2

nude mice (supplemental Figure 4C-D), in agreement with earlier
findings.4 Anti-Gr1–mediated depletion of neutrophils abolished
Trastuzumab immunotherapy (Figure 2A). Using suboptimal doses
of anti-Gr1 resulted in a partial reduction of neutrophil numbers
that correlated with a partial loss of the efficacy of Trastuzumab on

Figure 1. Neutrophils are required for anti-gp75

mAb therapy of melanoma. (A-F) Indicated mice

were injected subcutaneously with 5 3 104 B16-luc2

cells at day 0, intravenously with 200 mg of mAb TA99

or isotype Ctrl on days 0, 1, and 2, and intraperitoneally

with D-luciferin immediately before total photon flux ac-

quisition (photons per second). Indicated mice were also

injected on days21, 1, 3, 5, and 7 with (C) 200 mg/mouse

clodronate-containing liposomes (Clodronate) or (E)

300 mg/mouse anti-Gr1 mAbs, or (D) on days 0, 1,

and 2 with 2 3 106 WT B.M. cells (:). (A-F) Data are

represented as mean 6 SEM (n.s.: P . .05; *P , .05;

**P , .01; ***P , .001) and are representative of at

least 2 independent experiments (n $ 4). B.M., bone

marrow; Ctrl, control; KO, knockout; n.s., not signif-

icant; WT, wild type.
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tumor growth (supplemental Figure 4E). Of note, BT474 cells,
like B16 cells, do not produce granulocyte macrophage–colony-
stimulating factor and therefore do not induce MDSCs.18 More-
over, Gfi1-deficient nude mice were resistant to Trastuzumab
treatment (Figure 2B). These data indicate that neutrophils are also
mandatory for the antitumor effect of Trastuzumab on HER2-
expressing breast cancer xenografts. To further demonstrate a role
for myeloid cells, but not for NK cells in this model, we used
transgenic mice expressing the human FcgRIIA/CD32A gene in
neutrophils and other myeloid cells, but not NK cells.21,22 Ex-
pression of this transgene restored Trastuzumab efficacy in FcRg2/2

nude mice (Figure 2C; supplemental Figure 4F).
We next investigated whether neutrophils were sufficient to

overcome a host environment resistant to mAb therapy. Daily
transfers of purified neutrophils from wild-type mice, but not from
FcRg2/2 mice, into recipient FcRg2/2 mice restored anti-gp75

immunotherapy (Figure 2D; supplemental Figure 5A). Thus acti-
vating immunoglobulin G (IgG) receptors are only required on
neutrophils to allowmAb-mediated therapy. Neutrophils may thus
be responsible by themselves for mAb-induced tumor reduction.
Purified human blood neutrophils (supplemental Figure 5B) could,
indeed, induce the killing of BT474-luc2 cells only in the presence of
Trastuzumab (Figure 2E) suggesting a requirement for physical
interaction between neutrophils and opsonized target cells in vivo.7

Histologic analysis revealed foci of Gr11 cells with a neutrophil
morphology in the tumor outer rim only after anti-gp75 mAb
injection (Figure 2F), whereas similar numbers of CD31, CD45R1,
or F4/801 cells were present in either the presence or absence of
therapy (supplemental Figure 5C-D). These foci contained Ly6G1

cells, indicating that these were neutrophils (Figure 2G).
Finally, we investigated by which mechanism neutrophils con-

tribute to these models of anticancer immunotherapy. Neither a

Figure 2. Trastuzumab efficacy on HER21 xenografts also relies on neutrophils, and FcgRs and Syk are required in neutrophils for mAb-induced antitumor

activity. (A-C) Indicated mice (n $ 4) were injected subcutaneously with 5 3 106 BT474-luc2 cells in matrigel at day 0, intravenously with 100 mg of Trastuzumab or isotype

Ctrl weekly starting day 1, and total photon flux was acquired (photons per second). Mice were also injected (A) on days 21, 1, 3, 5, and 7 with anti-Gr1 mAbs. (B) Data are

compiled from 2 identical experiments. (Nota bene: Anti-Gr1 mAb-treated nude mice and littermates, Gfi12/2 nude, and Gfi11/2 nude littermates were kept under

sulfamethoxypyridazin plus trimethoprim.) (D) FcRg2/2 mice (n $ 4) were injected with B16-luc2 cells and mAb TA99 as in Figure 1, daily with 2 3 106 neutrophils purified

from indicated mice (:: neutrophil injection). (E) Ex vivo cytotoxicity of human neutrophils (PMNs) on opsonized-BT474-luc2 cells at a 50:1 effector:target ratio. (Note: BT474

cells express HER2 but not CD20; thus anti-CD20 Rituximab [Rituxi.] represents a negative control. Triton lysis of BT474-luc2 is used as a positive control. Mean of triplicates

is represented.) (F) H&E staining or anti-Gr1 immunolabeling, or (G) DAPI staining and anti-Ly6G immunolabeling of sections of 7-day-old B16-luc2 tumors 24 hours after

mAb TA99 injection. (F) Original magnification,310 (scale bar5 100 mm). (H) Mice (n$ 4) were injected with B16-luc2 cells, mAb TA99, and analyzed as in Figure 1. (A-E,H)

Data are represented as mean 6 SEM (not significant: P . .05; *P , .05; ***P , .001) and are representative from at least 2 independent experiments. Ctrl, control; DAPI,

496 diamidino-2-phenylindole; H&E, hematoxylin and eosin; PMN, neutrophils; Trastu, Trastuzumab.
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deficiency in cytokines (tumor necrosis factor–a or interferon-g),
in proteases (elastase or myeloperoxidase), in phospholipase-A2–
dependent mediators, nor in reactive oxygen species (gp47phox or
gp91phox-NADPH oxidase complex) affected anti-gp75 immunother-
apy, nor did inhibition of metalloproteases or blocking neutrophil-
chemoattractant chemokine CXCL1 (supplemental Figure 6, data not
shown). To investigate whether neutrophils required FcgR-mediated
activation to contribute to tumor reduction in vivo, we used mice
with a neutrophil-specific deficiency in the Syk kinase, that is, Sykfl/fl

MPR8-cre1 mice.23 Syk has indeed been reported to be necessary
for FcgR-dependent functions, including cell activation,24 antibody-
dependent cell-mediated cytotoxicity,25 and phagocytosis,26 without
impairing neutrophil migration to sites of antibody-induced inflamma-
tion.27 Importantly, Sykfl/flMPR8-cre1micewere resistant to anti-gp75
immunotherapy (Figure 2H), demonstrating an essential role for
Syk-dependent FcgR-induced neutrophil antitumor activity.

Our work provides a mechanistic basis for the observed reduc-
tion in tumor burden following antitumor mAb injection in both
syngeneic and xenograft mouse models of cancer immunotherapy.
The selective requirement and the sufficiency of neutrophils to
mediate IgG–induced antitumor activities we reveal may also extend
to emerging models of IgA mAb-antitumor therapy, which have
been proposed to rely on complement and on IgA receptor (CD89)–
expressing neutrophils.28 Although significant differences between
mouse and human neutrophils including the activating IgG receptors
they express have been reported,14,17 the principles that have emerged
from these mouse studies are likely to apply to human immuno-
therapy protocols. Polymorphisms of FcgRIIA/CD32A expressed
by human neutrophils have indeed been reported to impact mAb
therapeutic efficacy.6 Antibody therapy is, however, usually combined
with chemotherapy that strongly reduces neutrophil numbers. If
human neutrophils mediate the therapeutic effect of antitumor
antibody in the clinic, chemotherapy may thus reduce the efficiency
of antitumor mAbs by depleting their effector cell population.
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