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Alloreactivity of donor lymphocytes leads

to graft-versus-host disease (GVHD) con-

tributing to significant morbidity and mor-

tality following allogeneic hematopoietic

cell transplantation (HCT). Within the past

decade, significant progress has been

made in elucidating the mechanisms un-

derlying the immunologic dysregulation

characteristic of GVHD. The recent dis-

coveries of different cell subpopulations

with immune regulatory function has led

to a number of studies aimed at under-

standing their role in allogeneic HCT and

possible application for the prevention and

treatment of GVHD and a host of other

immune-mediated diseases. Preclinical

animal modeling has helped define the

potential roles of distinct populations of

regulatory cells that have progressed to

clinical translation with promising early

results. (Blood. 2013;122(18):3116-3121)

Introduction

Immunologic reconstitution is a critical process following hema-
topoietic cell transplantation (HCT). Dysregulation may lead to
immune-mediated destruction of host tissues resulting in graft-
versus-host disease (GVHD) and opportunistic infections. Deeper
understanding and manipulation of immune regulatory mechanisms
to control dysregulated immune responses have enormous potential
for improving outcomes following allogeneic HCT and in a number
of other clinical situations. Recently, the discovery of different
populations of regulatory cells led researchers to focus on the
role of regulatory cells in allogeneic HCT. Several studies have
explored the mechanisms underlying regulatory cell function,
with the aim of extending knowledge on immunologic aspects of
allogeneic HCT and translating these findings to the clinic. Reg-
ulatory T cells (Tregs) and, more recently, natural killer T (NK-T)
cells have been studied extensively in the context of allogeneic
HCT. Furthermore, there is increasing evidence that myeloid-
derived suppressor cells, mesenchymal stem cells, and regulatory
B cells can play a significant role in posttransplant immune reg-
ulation. In this review, we will focus on CD41CD251FoxP31

Tregs, T regulatory type 1 (Tr1) cells, and NK-T cells because
they have been widely studied in preclinical models and extended
to the clinic (Figure 1). The aim of this review is to update the
newest strategies to enhance the potential of Tregs for clinical
benefit and highlight the results of their first clinical applications. In
addition, we will discuss the immunoregulatory role of NK-T cells
and their significance in the development of transplant tolerance.

Regulatory T cells

Tregs are a subset of CD41 T cells that can suppress proliferation
and effector functions of many different cells such as T cells,
B cells, NK cells, and antigen-presenting cells.1 Tregs express the
a chain of the IL-2 receptor (CD25) and a nuclear transcription
factor termed forkhead box P3 (FoxP3)2-4 whose deficiency

causes dramatic immunologic disease in both animal models and
humans.5-7 In spite of a large number of studies, the exact mech-
anism through which Tregs control immune responses has not been
fully elucidated. Treg function appears to be cytokine or contact
mediated. Several studies showed that IL-10, transforming growth
factor b (TGF-b), and IL-35 have been implicated in enhancing
suppression8-12; whereas CTLA-4, LAG-3, CD39, and granzymes
play an important role in the contact-dependent immune
control.13-18

The ability of Tregs to suppress effector cell proliferation and
function makes these cells extremely promising for cellular therapy
of immune diseases. Many studies have been performed to translate
the in vitro results to in vivo animal models. In the setting of
allogeneic HCT, infusion of donor-derived conventional CD41

and CD81 T cells (Tcons) causes an immune-mediated destruction
of host tissues leading to acute and chronic GVHD. In a number
of different allogeneic HCT animal models, the addition of highly
purified CD41CD251FoxP31 Tregs resulted in suppression of
GVHD.19-22

The paucity of Tregs in the peripheral blood is one of the
major obstacles for the application of these models and eventual
clinical translation. Following the finding that Tregs proliferate
in vivo in the allogeneic setting, their infusion before Tcons
allowed for the use of a smaller number of Tregs maintaining
GVHD suppression.23 Another approach widely explored to obtain
a larger number of functional Tregs is through ex vivo expansion.
Different groups demonstrated that Tregs expand in vitro, usually
after activation by CD3/CD28 and in the presence of TGF-b and
antigen-presenting cells.22,24 With these conditions, after a 2- to
3-week culture period, it is possible to obtain a significant expansion
of both mouse and human Tregs. The major limitation of this
approach is the fact that Tcons expand preferentially in these
cultures.25 To avoid the undesired Tcon expansion, different strat-
egies are under investigation, such as the use of rapamycin, the
exclusion of the Tcons from the Treg inoculum, and isolation of
naı̈ve CD41CD251CD45RA1 Tregs prior to expansion.26-28
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Naı̈ve conventional CD41T cells can rapidly express a regulatory
phenotype (CD251FoxP31) following T-cell receptor (TCR) and
TGF-b stimulation.29-31 These “induced” Tregs (iTregs) can exert
suppressive activity but maintain the production of proinflammatory
cytokines and show a different gene expression profile in comparison
with naturally occurring thymus-derived Tregs.32,33 Recently, new
insights regarding FoxP3 gene methylation status and expression of
different markers such as Helios and neuropilin 1 have been con-
tributing to better defining the differences between naturally
occurring thymus-derived Tregs and iTregs.34-39 Many researchers
are exploring the possibility of generating larger numbers of Tregs
in vitro. Unfortunately, ex vivo human iTreg suppressive activity
appears less stable in some preclinical models, suggesting that
FoxP3 expression is not the only factor that naı̈ve CD41 T cells
require to convert into functional suppressive cells.40 The lack of
knowledge regarding in vivo iTreg phenotype stability, function,
persistence, and impact on GVHD onset and severity is limiting
the application of iTregs in clinical trials.

Several reports have shown that Tregs can play a key role in
tumor progression contributing to immunologic escape41,42; therefore,
an important concern in the application of Tregs in the allogeneic
HCT setting is the possible suppression of immune-mediated graft-
versus-tumor (GVT) responses. In HCT animal models, the adoptive
transfer of freshly isolated Tregs preserved GVT reactions in some
model systems.2,20,43 The mechanism underlying this concept has to
do with Treg-mediated suppression of Tcon proliferation but not
activation. In the setting where there is a relatively high T-cell
precursor frequency for alloantigens (eg, following allogeneic HCT,

especially across histocompatibility barriers), expansion of cytotoxic
T cells is less important for the exertion of GVT effects. In the
opposite setting (eg, following vaccination to a rare tumor antigen
where the T-cell precursor frequency is low and T-cell expansion
is required for a biological effect), Tregs appear to suppress these
immune-mediated antitumor effects.44,45 Therefore, following allo-
geneic transplantation where there is immune activation, often
relatively high T-cell precursor frequencies for alloantigens, both
major and minor, and low tumor burden appears to be an ideal
setting in which to test Treg function.

Recently, the first clinical studies have been published showing
that the adoptive transfer of Tregs can control GVHD. The group
from Perugia demonstrated that by introducing freshly isolated
donor-type Tregs after myeloablative conditioning and before the
infusion of a megadose of CD341 cells and Tcons, haploidentical
transplantation is possible without any immunosuppression and with
a very low rate of acute and chronic GVHD.46 In the first protocol,
transplant-related mortality was substantial and felt to be mainly
due to early infections and toxicity of the conditioning regimen,
suggesting the need for improvements in the preparative therapy.
Nevertheless, the infusion of up to 23 106 CD251-selected Tregs per
kg showed no toxicity, permitted the infusion of up to 13 106 Tcons
per kg, boosting immune recovery, and appeared to preserve GVT
responses because the disease recurrence rate was extremely low
despite the fact that all the transplanted patients were affected by
high-risk leukemias. Prior studies have established that infusion of
this number of Tcons without Tregs results in prohibitive GVHD
following haploidentical transplantation without immune suppres-
sion, providing definitive evidence of Treg function. A second study
from the University of Minnesota confirmed that the adoptive
transfer of Tregs is without apparent toxicity and can reduce the
risk of acute GVHD.47 This group demonstrated that umbilical
cord third-party Tregs can be expanded ex vivo, and their application
in the double cord transplant setting appeared to reduce GVHD risk
in comparison with a historical control group. These preliminary
studies demonstrate that cellular therapy with Tregs is safe and
feasible and provides the first evidence of Treg efficacy in GVHD
prevention and GVT persistence.

The importance of enhancing Treg function and numbers to
reduce GVHD led to the development of several strategies to
expand this cell population in vivo. Treatment with IL-2 and/or
rapamycin allowed for the expansion of Tregs maintaining the
suppression of Tcons in different animal models and in human
studies.48-51 Recently, investigators from the Dana Farber Cancer
Center explored the application of low-dose IL-2 treatment of re-
fractory chronicGVHDwith the hypothesis that such treatmentwould
result in preferential expansion of Tregs, which are exquisitely sen-
sitive to IL-2 yet do not produce this cytokine. They demonstrated that
IL-2, at the daily dose of 1 3 106 units/m2, was reasonably well
tolerated, produced in vivo Treg expansion, and induced clinical
responses reducing chronic GVHD in 13 of 23 evaluable patients.52

An alternative approach to enhance Treg numbers is through the
adoptive transfer of highly purified donor-derived Tregs, which is
being applied in the setting of chronic GVHD by several groups
(NCT01911039, NCT01903473). Trzonkowski et al reported 2
patients affected by GVHD that were treated with adoptive transfer
of ex vivo–expanded donor-derived Tregs as adjuvant therapy. The
treatment resulted in a significant clinical response that was more
evident in the patient with chronic GVHD.53

Another possible approach to the clinical translation of Tregs
comes from investigators at the University of Milan who de-
scribed a population of CD41 Tregs that produce high amounts of

Figure 1. Different clinical approaches can be applied to impact the immunologic

balance between alloreactive donor T cells and regulatory lymphocytes. a-GalCer,

a-galactosylceramide; ATG, antithymocyte globulin; IL, interleukin; TLI, total

lymphoid irradiation.
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IL-10 yet do not constitutively express FoxP3.54-56 These cells,
termed Tr1, showed the ability to suppress immune response and
restore tolerance in ex vivo and in vivo models.56-58 Human Tr1
cells can also be generated from IL-10–enriched T-cell cultures and
expanded in vitro.59-61 Recently, Gagliani et al more completely
characterized mouse and human Tr1 cells by the constitutive and
persistent expression of CD49b and LAG3.62 This finding allows
for more effective selection of Tr1 cells for future clinical applications
inGVHD suppression, tolerance induction, and immune recovery
after HCT.

Despite the promising early pilot clinical trials of Tregs, there
are still major issues to be solved regarding optimal cellular source,
cell purity, numbers of cells required for biological effect, antigen
specificity, activation status, phenotype stability, homing, sur-
vival, and impact on important biological functions such as im-
munity and GVT responses. New insights about the expression and
the relevance of surface markers such as CD62L, LAG3, and major
histocompatibility complex class II molecules can help refine Treg
selection and function.17,63-66 Studies aimed at understanding the
impact of Treg derived from different donor sources on GVHD
prevention and treatment can extend the application of this
cellular therapy. Furthermore, studies showed that in vitro–primed
antigen-specific Tregs can be developed with specific suppressive
activity,67-69 so particular effort is needed to identify common
antigens that trigger GVHD and can be used for clinical trans-
lation. Major challenges include the individual variability between
patients; however, the recent introduction of new techniques for
the analysis of the TCR repertoire could represent an extremely
useful tool to overcome such limitations.70 Many groups are also
exploring the possibility that Tregs could induce transplant tolerance
providing a promising tool for enhancing donor engraftment after
nonmyeloablative conditioning or possibly for reducing or treating
solid organ graft rejection. Therefore, the door for Treg clinical
translation has opened encouraging additional trials in several clinical
settings.

NK-T cells

Another subset of T lymphocytes that coexpress NK and T-cell
markers has been shown to have potent immunomodulatory ac-
tivities mainly through the rapid production of cytokines such as
IL-4, IL-10, and IL-13.71 NK-T cells suppress different auto-
immune and alloimmune reactions in both animal models and
humans, setting the stage for clinical translation.72 Invariant NK-T
(iNK-T) cells express the TCRa Va24-Ja18 in humans and
recognize the glycolipid a-GalCer through their TCR with high
affinity.

Adoptive transfer of both donor and host NK-T cells has been
investigated where it was found that these cells are capable of
suppressing GVHD in mice.73-75 Compared with Tregs, even lower
numbers of NK-T cells can prevent GVHD through inducing a T
helper 2–biased immune response.75

Recent retrospective clinical data strongly support the beneficial
immunologic effects of NK-T cells in the setting of allogeneic
HCT in humans. Chaidos and others showed in a multivariate
analysis that a higher graft CD4– iNK-T cell dose was associated
with a significantly lower risk of acute GVHD.76 Similarly, Rubio
and others found that low peripheral blood iNK-T/T-cell ratios
posttransplant was an independent factor associated with the
occurrence of acute GVHD.77

One clinical approach to the translation of these concepts came
from the studies of Strober et al where they found that a preparative
regimen for allogeneic HCT using TLI in combination with ATG
resulted in alteration of conventional T cells and marked reduction
in GVHD risk.78 NK-T cells are relatively radioresistant and express
high levels of bcl-2. Following exposure to TLI, it was found in these
studies that TLI/ATG-prepared animals had dramatically higher
ratios of host NK-T cells/Tcons and could be transplanted with 1000
times the number of conventional T cells as compared with total
body irradiation–conditioned animals, which would otherwise result
in lethal GVHD. In this context, it has been shown that hostNK-T cells
and donor Tregs interact synergistically in a way that host NK-T cells
lead to an expansion of donor Tregs in an IL-4–dependent manner.79

The results from these preclinical animal models have been
successfully translated to patients with hematologic malignancies
who underwent allogeneic HCT after conditioning with TLI/ATG
where they experienced a very low risk of acute GVHD and
transplant-related mortality.80 More recently, 2 larger clinical trials
confirmed independently the protective nature of this conditioning
regimen.81,82 In these studies, the incidence of acute GVHD was as
low as 2% and 10% for patients receiving grafts from related and
unrelated donors, respectively. Nonrelapse mortality was ,4%, re-
flecting the safety of this approach using the reduced-intensity pre-
parative regimen. Hence, conditioning with TLI/ATG might be
considered an alternative treatment option for the elderly, comorbid,
and heavily pretreated patient populations. In addition, these clinical
studies provided evidence for sustained GVT effects. Currently,
several clinical phase 2 trials are ongoing to evaluate the TLI/ATG-
conditioning regimen for the treatment of myelodysplastic and
myeloproliferative disorders (NCT00185796), as well as lymphoid
malignancies (NCT00896493, NCT01566656). Another clinical
phase 2 trial evaluating the impact of TLI/ATG conditioning followed
by allogeneic HCT as consolidation to autologous HCT for the
treatment of patients with poor-risk diffuse large B-cell lymphoma
has been recently completed (NCT00482053).

The iNK-T cell–activating glycolipida-GalCer can induce in vivo
expansion of regulatory cells in mice that effectively prevented acute
GVHD.83 This concept has been translated to the clinic in an ongoing
multicenter phase 1/2 clinical trial (NCT01379209) investigating the
liposomal formulation of a-GalCer (RGI-2001) in patients undergoing
myeloablative allogeneic HCT for the treatment of hematologic
malignancies.

Furthermore, it has been demonstrated in animal models that
TLI/ATG conditioning and transplantation of donor hematopoietic
cells can induce tolerance of solid organ allografts.84,85 A first
patient was successfully treated with combined kidney and HCT
at Stanford in 2005, allowing for the withdrawal of all immu-
nosuppressive medications after 6 months without signs of allograft
rejection, with persistent mixed chimerism, and without signs of
GVHD.86 More recently, it has been shown by Scandling and
others in a pilot clinical study that TLI/ATG conditioning promoted
the induction of tolerance in a majority of patients after combined
kidney and HCT, allowing for withdrawal of immunosuppressive
medications.87,88 As shown in previous animal models, tolerance
induction was associated with increased peripheral blood Treg/T-cell
and NK-T/T-cell ratios, and lymphocytes from patients off immuno-
suppressive drugs showed a significantly reduced response to donor
alloantigens in vitro.

The concept of immune regulation, suppression of alloreactivity,
and induction of tolerance throughmanipulation of immune regulatory
cells in the context of allogeneic HCT has been successfully trans-
ferred to the clinic. Further preclinical and clinical studies are
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necessary to elucidate the mechanisms underlying their potent
immunoregulatory features to optimize these promising approaches
for our patients. It is clear that the concepts initially developed in
preclinical animalmodels are beginning to bear fruit in the clinic with
broad potential applications.

Conclusion

Regulation of immune function following allogeneic HCT is a
complex process involving a variety of important humoral and
cellular mechanisms. The development of strategies to enhance
immune regulatory cell numbers and function, as well as adoptive
transfer of regulatory cell populations, holds significant promise for
improving outcomes for patients undergoing allogeneic HCT and
perhaps a myriad of other immune-mediated conditions. The com-
plexity of the biology of immune regulation, the paucity of regulatory
cell populations, and the lack of knowledge about functional mech-
anisms and optimal methodologies for manipulation are still to be
overcome. However, the recent results deriving from the first clinical
approaches adapted from animal modeling have demonstrated the
biological impact of these cell populations and the feasibility of
clinical translation. Further clinical trials are needed to defini-
tively establish the potential of these cells in controlling immune

dysregulation and their applicability in allogeneic HCT, as well
as extension into other clinical settings.
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