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Key Points
• IL-33–induced neutrophil re-

cruitment in vivo is mast cell–
dependent. This is partly me-
diated through the mast cell
release of TNF-�.

• IL-33–treated human mast
cells induce neutrophil migra-
tion in vitro.

IL-33 is a recently discovered cytokine involved in induction of Th2 responses and
functions as an alarmin. Despite numerous recent studies targeting IL-33, its role in vivo
is incompletely understood. Here we investigated inflammatory responses to intraperito-
neal IL-33 injections in wild-type and mast cell–deficient mice. We found that wild-type
mice, but not mast cell–deficient Wsh/Wsh mice, respond to IL-33 treatment with
neutrophil infiltration to the peritoneum, whereas other investigated cell types remained
unchanged. In Wsh/Wsh mice, the IL-33–induced innate neutrophil response could be
rescued by local reconstitution with wild-type but not with T1/ST2�/� mast cells, demonstrat-
ing a mast cell–dependent mechanism. Furthermore, we found this mechanism to be partially
dependent on mast cell–derived TNF, as we observed reduced neutrophil infiltration in
Wsh/Wsh mice reconstituted with TNF�/� bone marrow–derived mast cells compared with

those reconstituted with wild-type bone marrow–derived mast cells. In agreement with our in vivo findings, we demonstrate that
humanneutrophils migrate toward the supernatant of IL-33–treated human mast cells. Taken together, our findings reveal that IL-33
activates mast cells in vivo to recruit neutrophils, a mechanism dependent on IL-33R expression on peritoneal mast cells. Mast cells
activated in vivo by IL-33 probably play an important role in inflammatory reactions. (Blood. 2013;121(3):530-536)

Introduction

IL-33 is a recently described cytokine of the IL-1 family that is
expressed by a variety of cell types, most notably by epithelial
and endothelial cells.1 IL-33 promotes Th2 responses2,3 and has
been suggested to function as an alarmin when released on
necrosis.4-7 IL-33 is inactivated during apoptosis,8 and unlike
IL-1� and IL-18, it does not require proteolytical processing for
activation.4,9 Recently, we demonstrated that of all endogenous
compounds released on necrosis, IL-33 alone is a key alarmin
responsible for mast-cell activation.5 Furthermore, IL-33 has
emerged as a potent regulator of mast cell activity; inducing
cytokine release, adhesion, maturation, and IgE-mediated
degranulation.10-17 In addition to mast cells, IL-33 activates
several other cell types by signaling through the IL-33 receptor
(IL-33R), including eosinophils,18-20 basophils,21-24 and den-
dritic cells.25-27 Furthermore, a new family of IL-33R–positive
innate lymphoid cells, including nuocytes, has been described
during the last years.28

Moreover, IL-33 has been implicated in the pathogenesis of
several diseases (reviewed by Liew et al1), including asthma29,30

and arthritis.31,32 Importantly, mast cells might have a central role in
IL-33–associated diseases, as IL-33 for instance has been shown to

exacerbate collagen-induced arthritis through a mast cell–
dependent mechanism.32 On the other hand, IL-33 has been
ascribed several beneficial functions, including a cardioprotective
function,33 a protective role in atherosclerosis,34 as well as an important
role in helminth infections.3 Thus, IL-33, similar to mast cells, exerts
beneficial or detrimental effects depending on the local environment,
which makes IL-33 an interesting cytokine with therapeutic potential.

Despite this accumulated knowledge, much remains to be
investigated regarding IL-33 functions in vivo. It was previously
reported that IL-33 participates in the recruitment of mononuclear
cells,35 and a recent study reported that mice injected intravenously
with IL-33 before cecal ligation and puncture recruited more
neutrophils to the peritoneum than did mice treated with PBS,36

thus displaying a reduced sepsis mortality rate.
In this study we investigated the cellular responses to intraperi-

toneal IL-33 injections in mice and further addressed the responsive-
ness of human mast cells to IL-33. Our data demonstrate that a
large proportion of the IL-33R� cells in the peritoneal cavity are
c-Kit�Fc�RI� mast cells, and that IL-33 induces neutrophil influx
in the peritoneum of mice through a mast cell–dependent mecha-
nism partly dependent on mast cell–derived TNF.
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Methods

Immunohistochemistry

Mouse mesenterium was prepared as previously described.37 Mesentery
samples were first preincubated with blocking solution (1% BSA, 0.3%
Triton X-100 in PBS) for 1 hour at RT, then treated overnight at 4°C with a
combination of primary antibodies diluted in blocking solution. Samples
were double-stained with antibodies against IL-33 (1:200, R&D Systems)
and 1 of 2 markers for endothelial cells; either CD31 (1:100, Serotec) or
Griffonia simplicifolia (Bandeiraea) isolectin B4 (IB4) directly conjugated
with FITC (1:50, Jackson ImmunoResearch Laboratories). After washing in
0.25% Triton X-100 in PBS, the secondary antibody combination was
applied and incubated for 4 hours at RT. These were donkey anti–mouse-
FITC and/or donkey anti–goat-Cy3 (both 1:200, Jackson ImmunoResearch
Laboratories). Slides were washed twice and mounted with DTG mounting
media (2.5% DABCO [Sigma-Aldrich], 50mM Tris-HCl pH 8.0, 90%
glycerol) with 0.375 ng/mL DAPI (Sigma-Aldrich). A Carl Zeiss AxioIm-
ager M2 fluorescent microscope (Carl Zeiss) with a 20� objective with a
0.8 numeric aperture was used for the images. The images were processed
and arranged in Adobe Photoshop.

Cell cultures and experimental animals

Bone marrow cells were isolated from C57BL/6 wild-type, T1/ST2�/�38

and TNF�/� mice and bone marrow–derived mast cells (BMMCs) were
generated as previously described.39 Human cord blood–derived human
mast cells were generated as previously described.40 Bone marrow from
TNF�/� mice was a kind gift from Kerstin Steinbrink (Johannes Gutenberg-
Universität, Mainz, Germany). Peritoneal cavity mast cells (PCMCs) were
generated by obtaining peritoneal cells from C57BL/6 mice by PBS-
flushing and subsequent culturing in OptiMEM supplemented with 10%
FCS, 1% PeSt, 1% L-glutamine, and 4% SCF conditioned medium for
30 days. Mast cell purity was ensured by toluidine blue staining and FACS
analysis. For in vivo experiments, wild-type C57BL/6 and Wsh/Wsh mast
cell–deficient mice41 on C57BL/6 background were used. All animal
experiments were approved by the Swedish local ethics committee for
animal welfare.

In vitro stimulations and monitoring of mast cell responses

For in vitro stimulations of PCMCs, 1 � 106 cells were seeded in 96-well
plates and incubated with 10 or 100 ng/mL recombinant IL-33 (rIL-33,
Alexis or Biolegend; reported endotoxin level: � 0.1EU/�g purified
protein as determined by LAL test, Bio Whittaker) for 24 hours, after which
supernatants were collected and stored at �20°C until analyzed. IL-6 and
TNF release was monitored using ELISA (Biolegend and BioSource,
respectively), and release of IL-13, GM-CSF, MIP-2, KC, MIP-1�, and
MCP-1 was monitored using Luminex (BioRad).

In vivo administration of IL-33 and flow cytometry

Wild-type C57BL/6 mice and mast cell–deficient Wsh/Wsh mice were
injected intraperitoneally with PBS or 0.1 to 1000 ng rIL-33. After 0.5 to
6 hours, the mice were killed and peritoneal lavage was collected.
Peritoneal cells were analyzed by flow cytometry using a FACSCalibur
(Becton Dickinson). The following antibodies were used: anti–mouse
CD16/CD32 (2.4G2; BioLegend), APC-conjugated anti–mouse Fc�RI�
(MAR-1; Biolegend), PerCP-Cy5.5–conjugated anti–mouse CD117 (2B8;
BioLegend), FITC-conjugated anti–mouse Ly-6G (1A8; BD Pharmingen),
APC-conjugated anti–mouse CD19 (1D3; BD Pharmingen), PE-conjugated
anti–mouse CD11b (M1/70; BD Pharmingen), FITC-conjugated anti–
mouse T1/ST2 (DJ8; MDBiosciences), and FITC-conjugated rat IgG1
isotype control (R&D Systems). For reconstitution experiments, Wsh/Wsh

mice were injected intraperitoneally with wild-type, T1/ST2�/� or TNF�/�

BMMCs (2.5 � 106 per mouse). Four weeks later, the mice were injected
with rIL-33 as previously described. For blocking experiments, 10 �g
rat-anti–mouse KC/CXCL1 neutralizing antibody (clone 124014) or iso-

type control (Rat IgG2A, clone 54447) was used (both from R&D
Systems). In experiments where zileuton was used, a concentration of
35 mg/kg was used. The experiments were approved by the Swedish local
ethics committee for animal welfare.

Human neutrophil migration assay

Migration studies were performed using the disposable 96-well chemotaxis
chamber (ChemoTx; Neuroprobe) with a polycarbonate filter with a pore
size of 5 �m and a filter width/well of 3.2 mm. Twenty-nine �L of the
attractants and controls were added to the wells and 25 �L cell suspension
(250 000 cells) were placed on top of the filter. After 1 hour in 37°C,
5% CO2, the cells were wiped off the filter with a cell harvester and the plate
was centrifugated at 200g for 5 minutes before the filter was removed and
the supernatants aspirated. Migrated cells were quantified by measurement
of the neutrophil marker enzyme myeloperoxidase (MPO). Freshly pre-
pared substrate buffer containing 0.4 mg/mL

o-phenylenediamine dihydrochloride (Sigma-Aldrich), 0.05M
phosphate-citrate buffer with 0.1% TritonX-100 was added to each well
(25 �L). After 10 minutes, the absorbance was measured at 450 nm (Perkin
Elmer EnSpire 2300 Multilabel Reader).

Statistical analysis

The Mann-Whitney test, 1-way ANOVA (Kruskal-Wallis test) or Student
t test were used for statistical analyses, with a P value of � .05 being
considered statistically significant.

Results

The majority of the peritoneal IL-33R� population is
c-Kit�Fc�RI� mast cells; which are dose dependently activated
by IL-33 in vitro to secrete cytokines and chemokines

We studied the presence of IL-33–expressing cells in the mesentery
by analyzing the expression pattern of IL-33 in relation to classic
markers for endothelial cells. We found nuclear expression of IL-33
in the majority of mesentery double-layer cells (Figure 1A). Using
CD31 (Figure 1A) and Griffonia lectin (Figure 1B-C), we were
able to visualize small capillaries as well as medium-sized vessels
of the mesentery. We could not observe any coexpression of IL-33
with either of the tested endothelial markers. However, numerous
IL-33–positive cells with elongated nuclei were found attached to
medium-sized vessels (Figure 1C).

We next investigated the proportion of mast cells in peritoneal
lavage of wild-type C57BL/6 mice and observed that approxi-
mately 1% of the peritoneal cells were c-Kit� mast cells (1.15%
	 0.13% c-Kit�, n 
 10, data not shown), and that the mast cells
express the T1/ST2 subunit of the IL-33R (Figure 2A). Because
several innate immune cell populations, such as nuocytes and
natural helper cells, have been recently shown to be c-Kit�

(reviewed in Saenz et al42), we stained peritoneal cells for IL-33R
and c-Kit together with an antibody recognizing Fc�RI to rule
out the possibility of mistaking nuocytes/natural helper cells
for mast cells. Using this approach, we found that all T1/ST2
c-Kit� cells are Fc�RI� (Figure 2A), thus proving the cells in
this population to be mast cells. We next cultured peritoneal
cells in vitro until obtaining a pure population of PCMCs.
When treating PCMCs with 10 or 100 ng/mL rIL-33, we
observed a dose-dependent secretion of cytokines (IL-6, TNF,
IL-13, and GM-CSF; Figure 2B top panel), and chemokines
(MIP-2, KC, MIP-1�, and MCP-1; Figure 2B bottom panel). In
contrast, we could not detect any secretion of IL-1�, IL-10,
IL-17, or IFN-� after 24 hours (data not shown). Taken together,
these results demonstrate that mouse mesothelial cells of the
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abdominal cavity express IL-33, and that mast cells constitute
the majority of the IL-33R� cells in the peritoneum, and that
these cells respond to IL-33 in vitro by secreting proinflamma-
tory mediators.

Intraperitoneal IL-33 administration induces rapid neutrophil
recruitment

Although many recent studies have investigated various aspects of
IL-33 biology, the initial mechanisms for IL-33–induced cell
recruitment in vivo are still not fully explored or described. To
address this, we first investigated acute responses to intraperitone-
ally IL-33 injections by monitoring peritoneal cellular composition
1 to 6 hours after injection. Using a neutrophil-specific antibody
targeting Ly-6G (clone 1A8), we observed strong neutrophil
infiltration in the peritoneum compared with PBS-injected mice
(28.5% 	 7.8% Ly-6G� neutrophils versus 0.98% 	 0.4%,
P 
 .0079, n 
 5) 6 hours after injection with 0.1 �g IL-33,
whereas the levels of other investigated cell types (mast cells,
macrophages, and B lymphocytes) remained unchanged (Figure
3A-B). These results suggest an innate function for IL-33 in
early neutrophil recruitment in vivo, and we therefore further
investigated dose and time dependency of the observed re-
sponse. We found that administration of small amounts of IL-33
(1-10 ng) generated a small but insignificant recruitment of
neutrophils, whereas administration of 0.1 to 1 �g generated a
strong neutrophilic influx (Figure 4A). Furthermore, we found a
significant neutrophil infiltration into the peritoneum already
1 hour after IL-33 injection and maximal peritoneal neutrophil
infiltration was observed 3 to 6 hours after injection (Figure 4B).

IL-33–induced neutrophil influx is mast cell–dependent

Because IL-33 is a potent activator of mast cells and that we
showed mast cells to constitute a major part of the IL-33R� cells in
the peritoneum, we speculated that mast cells might have a
significant role in the neutrophil recruitment observed in response
to IL-33. Therefore, we injected wild-type C57BL/6 and mast
cell–deficient Wsh/Wsh-mice intraperitoneally with rIL-33 and
monitored cells in the peritoneum 6 hours after injection. rIL-33

Figure 2. A large percentage of peritoneal IL-33R�

cells are mast cells that are activated in vitro to
secrete cytokines and chemokines. (A) Expression of
T1/ST2, c-Kit, and Fc�RI on peritoneal cells. (B) Secre-
tion of cytokines (top panel) and chemokines (bottom
panel) in PCMCs treated with 10 or 100 ng/mL rIL-33 in
vitro. In panel A, 1 representative of 3 experiments is
shown. In panel B, values are presented as mean 	 SEM
(n 
 4-8) *P � .05, **P � .01, ***P � .001.

Figure 1. IL-33 is expressed in the mouse mesentery. (A) Representative
immunohistochemistry image depicting double-layer mesentery exhibiting strong
IL-33 expression (red) in a majority of the cells, (green CD31, blue DAPI nuclear
stain). (B) No endothelial cells (green, IB4) expressing IL-33 (red) were found in small
or (C) medium-size blood vessels, (blue DAPI nuclear stain). (C) Numerous
IL-33–positive cells (red) with elongated nuclei were found attached to medium-size
vessels (green, IB4). Scale bars 50 �m.
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caused a potent influx of neutrophils in the peritoneal cavity in
wild-type but not in mast cell–deficient mice (28.35% 	 7.82%
Ly-6G� versus 4.32% 	 2.31%, P 
 .031, n 
 5; Figure 5A-B).
The percentage of Ly-6G� cells in PBS control Wsh/Wsh-mice was
0.6 	 0.37%. The defective neutrophil response in Wsh/Wsh-mice
was rescued by reconstitution with wild-type but not with T1/
ST2�/� BMMCs (21.94% 	 5.39% Ly-6G� vs 4.15% 	 1.28%,
P 
 .016, n 
 5), thus clearly indicating that neutrophil influx into the
peritoneal cavity in response to rIL-33 is induced through a mast
cell–dependent mechanism. There were no significant differences in
mast cell numbers between wild-type mice and Wsh/Wsh-mice

reconstituted with wild-type or T1/ST2�/� BMMCs (Figure 5C).
Our data generated in vivo thus show that innate responses to
rIL-33 are mast cell–dependent, as mast cell–deficient mice fail to
initiate acute inflammatory responses, manifested by neutrophil
infiltration.

IL-33–induced neutrophil influx is partially dependent on mast
cell–derived TNF

We next attempted to elucidate the mechanism behind the observed
mast cell–dependent neutrophil recruitment in response to IL-33.
To do this, we first repeated an experiment performed by Hueber et
al in a recently published article.43 Here, we treated wild-type mice
with rIL-33 in the presence of a neutralizing antibody targeting
KC/CXCL1. In contrast to results presented by Hueber et al, we
could not obtain a significant decrease in neutrophil infiltration in
mice treated with anti-KC antibody compared with mice treated
with corresponding isotype (Rat IgG2A) control (10.4% 	 0.8602%
Ly-6G� vs 13.86% 	 3.01%, P 
 .46, n 
 5-6; Figure 6A). Next,
we subjected wild-type mice to zileuton, a leukotriene inhibitor, to
investigate the possibility that LTB4 might be involved in the
neutrophil recruitment. However, despite treatment with
35 mg/kg zileuton, IL-33 induced similar recruitment of neutro-
phils compared with vehicle-treated animal (data not shown),
thus suggesting other mediators to be responsible for the
neutrophil recruitment. To explore a possible role for TNF, we
reconstituted Wsh/Wsh-mice with wild-type or TNF�/� BMMCs
and treated these mice with IL-33. Here, we observed a
significant decrease in neutrophil recruitment in mice reconsti-
tuted with TNF�/� BMMCs, compared with mice reconstituted
with wild-type BMMCs (2.361% 	 0.786% Ly-6G� versus
4.87% 	 1.2%, P 
 .046, n 
 6-12; Figure 6B). No significant
differences in mast cell numbers between wild-type mice and
Wsh/Wsh-mice reconstituted with wild-type or TNF�/� BMMCs
were observed (Figure 6C). Taken together, our data imply that
neutrophil influx in response to IL-33 is partially dependent on
TNF secreted by mast cells.

Human neutrophils migrate toward supernatant of human cord
blood–derived mast cells treated with IL-33

To test the importance of the IL-33 mast-cell axis on neutrophil
migration in a human system, we generated human cord blood–
derived mast cells (CBMCs) and treated these in vitro with
10 ng/mL IL-33. The supernatant of IL-33–treated CBMCs was
then used in a migration assay with peripheral human blood
neutrophils from healthy blood donors. Neutrophil migration
was assayed as a measurement of MPO activity. In this experi-
ment, we found that migration was increased in neutrophils
migrating toward the supernatant of IL-33–treated CBMCs
compared with those migrating toward supernatant from un-
treated CBMCs (Figure 7). Although CBMCs spontaneously
released a chemotactic factor which induced neutrophil migra-
tion, the migration was significantly increased if the CBMCs
had been treated with IL-33. Neutrophils did not migrate toward
the negative control (medium alone) or toward IL-33 alone
(10 ng/mL), although migration toward 2 different positive
controls (1 ng/mL IL-8 and 10% zymosan activated serum) was
observed. This taken together with our earlier results thus
demonstrates that both murine and human mast cells treated
with IL-33 induce neutrophil migration.

Figure 3. Intraperitoneal administration of IL-33 causes neutrophil influx in
C57BL/6 mice. (A) Wild-type C57BL/6 mice were injected intraperitoneally with
PBS or 0.1 �g IL-33 and peritoneal cells were analyzed 6 hours later by flow
cytometry. Neutrophils are represented by a Ly-6G� population (a neutrophil specific
clone of the Ly-6G antibody was used: 1A8), mast cells by a c-Kit� population,
macrophages by a CD11bhigh population and B cells by a CD19� population.
(B) Quantification of panel A; results are presented as percentage of total peritoneal
cells in peritoneal lavage obtained from injected mice. In panel A, representative plots
are shown. Values are presented as mean 	 SEM (n 
 4-5) **P � .01. ns 
 not
significant.

Figure 4. Neutrophils are rapidly recruited to the peritoneum following IL-33
administration. (A) Percent neutrophils in peritoneal lavage of mice treated for
6 hours with 0, 0.1, 1, 10, 100, or 1000 ng IL-33. (B) Neutrophil infiltration over time in
mice injected with 100 ng IL-33. Values are presented as mean 	 SEM (n 
 4-5)
*P � .05. ns 
 not significant.
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Discussion

We report here that IL-33 activates PCMCs in vitro to secrete
proinflammatory cytokines and chemokines, and that intraperito-
neal IL-33 administration in vivo induces rapid neutrophil recruit-
ment to the peritoneal cavity through a mast cell–dependent
mechanism. In addition, we found an abundant number of IL-33–
positive cells in the mesothelium. A few of these had elongated
nuclei and were seen in close contact with vessels, but they were
stained for neither CD31 nor lectin. This is in accordance with
previous report that also found mouse endothelial to be IL-33–
negative.44 Thus, the peritoneal cavity represents a sound choice of
anatomical location for studies of acute responses to elevated IL-33
levels. The finding that mast cells are required for the early
recruitment of neutrophils in response to IL-33 helps delineating
the mechanism behind IL-33–induced immune responses, and also
highlights the role of mast cells in innate immune responses.

Although many studies have shown that mouse mast cells are
activated by IL-33 to release cytokines and chemokines,10,12,13,16,32

many of these studies used mast cell lines or bone marrow–derived
mast cells, which do not represent fully mature mast cells.
Therefore, we here investigated whether mast cells obtained from
the peritoneal cavity (PCMCs) display similar responses to IL-33.
Our results show that IL-33 induces release of several proinflamma-
tory cytokines and chemokines, including TNF, GM-CSF, MIP-2,
and KC dose dependently.

It was recently described that mice injected with IL-33 before
CLP display improved bacterial clearance, increased neutrophil
influx, and reduced mortality compared with PBS-treated mice.36

Given our observation that c-Kit�Fc�RI� mast cells constitute a
major part of the IL-33R� population in the peritoneal cavity, we
investigated whether mast cells play a role in neutrophil infiltration
into the peritoneum. Interestingly, our results demonstrate that this
process is entirely mast cell–dependent, as mast cell–deficient mice
lack the neutrophil response to IL-33 administration seen in

Figure 5. IL-33–induced peritoneal neutrophil influx
is mast cell–dependent. (A) Flow cytometry plots of
c-Kit� mast cells and Ly-6G� neutrophils in peritoneal
fluid from wild-type mice, Wsh/Wsh-mice, Wsh/Wsh mice
reconstituted with wild-type BMMCs and Wsh/Wsh mice
reconstituted with T1/ST2�/� BMMCs and injected intra-
peritoneally with 0.1 �g IL-33. Representative plots are
shown. (B) Quantification of panel A (n 
 4-5). (C) Per-
centage of mast cells in the peritoneum of wild-type,
Wsh/Wsh-mice, and Wsh/Wsh mice reconstituted with wild-
type or T1/ST2�/� BMMCs (n 
 5-11). Values are pre-
sented as mean 	 SEM, *P � .05, ns 
 not significant.

Figure 6. Neutrophil infiltration in response to IL-33 is par-
tially dependent on mast cell–derived TNF. (A) Percentage of
Ly-6G� neutrophils in wild-type C57BL/6 mice injected with IL-33
intraperitoneally in the presence of 10 �g anti-KC antibody or rat
IgG2A isotype control (n 
 5-6). (B) Percentage of Ly-6G� neutro-
phils in Wsh/Wsh mice reconstituted with wild-type BMMCs and
Wsh/Wsh mice reconstituted with TNF�/� BMMCs and injected
intraperitoneally with IL-33 (n 
 7-12). (C) Percentage of mast
cells in the peritoneum of Wsh/Wsh mice reconstituted with wild-
type or TNF�/� BMMCs (n 
 7-12). Values are presented as
mean 	 SEM, *P � .05, ns 
 not significant.
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wild-type mice. This response could be rescued in mast cell–
deficient mice by reconstituting the peritoneal cavity with wild-
type mast cells, but not with mast cells lacking the IL-33R, T1/ST2.
Mast cells thus appear to be important for neutrophil influx in the
peritoneum. However, our results are in contrast to a recent study
by Verri et al, where it was demonstrated that IL-33 participates in
the orchestration of neutrophil migration in arthritis after intra-
articular injections.45 Opposite to our data, the authors show that
the neutrophil infiltration in this setting was induced through a mast
cell-independent mechanism, and could instead attribute this effect
to synoviocytes and macrophages. In addition, it was recently
demonstrated that IL-33 injections into the ears of mice induces
inflammatory skin lesions, partly through a mast cell–dependent
mechanism and that IL-33 recruited neutrophils into the ear.43

Consequently, our and others’ data thus suggest that neutrophil
recruitment in response to IL-33 treatment is not only dose and
time-dependent, but also highly dependent on the tissue in
which IL-33 is administered. This together with our data
showing that IL-33–mediated neutrophil influx is mast cell–
dependent might have important implications for future studies
seeking to investigate various potentially therapeutic aspects of
IL-33 biology. Given the fact that IL-33 has the potential to
exert harmful as well as protective functions in vivo,1 adminis-
tration route/location, dosage, and timing will be of vital
importance in such studies.

In our attempt to find the mechanism behind the mast cell–
dependent neutrophil infiltration in response to IL-33, we first
investigated a role for KC/CXCL1, because this chemokine
recently was implicated in neutrophil recruitment after IL-33
administration.43 However, we could not find significant evidence
for a role of KC/CXCL1 in this mechanism in contrast to results
reported by Hueber et al, even though we used the same concentra-
tion of KC/CXCL1 neutralizing antibody.43 One possible explana-
tion for this could be that we performed this experiment in
C57BL/6 mice, whereas Hueber et al used Balb/c mice.43 Mast
cell–derived leukotrienes have also been assigned an important role
in neutrophil recruitment.46 Therefore, we pretreated mice with

zileuton before IL-33 administration, to inhibit the formation of
LTB4, a strong neutrophil chemoattractant,47 but we were unable to
detect a significant decrease in neutrophil recruitment compared
with vehicle-treated animals. Finally, we explored a possible role
for mast cell–derived TNF, because this cytokine previously has
been shown to be important in mast cell-mediated neutrophil
recruitment.48-50 Here, we observed a significant reduction in
neutrophil recruitment when TNF was absent, suggesting an
important role for TNF in this mechanism (Figure 6C). Although
the percentage of infiltrated Ly-6G� cells in IL-33–treated WT
mice differ in Figures 5 and 6, the absolute numbers of
infiltrating Ly-6G� cells did not differ significantly between
these 2 experiments (supplemental Figure 1, available on the
Blood Web site; see the Supplemental Materials link at the top of
the online article).

Our results from in vivo and in vitro experiments using PCMCs,
genetically modified mice, human mast cells and neutrophils,
provide additional evidence for the notion that mast cells initiate
inflammatory responses after IL-33 recognition, here manifested
by neutrophil recruitment. Mast cell–mediated neutrophil recruit-
ment in response to IL-33 might contribute to a beneficial outcome
during for instance bacterial infection, but exaggerated neutrophil
influx might on the other hand result in collateral damage to
surrounding tissues.17

In summary, we show here for the first time, that when injected
intraperitoneally, IL-33 induces neutrophil influx to the peritoneal
cavity through a mast cell–dependent mechanism, as wild-type
mice but not mast cell–deficient mice respond to IL-33 with
neutrophil influx. In addition, we show that this mechanism is
partially dependent on TNF. Further proof for this conclusion is
that local reconstitution of mast cell–deficient mice with wild-type
BMMCs, but not with T1/ST2�/� BMMCs, restored the neutrophil
response to IL-33 injection in these mice. In addition, we show that
mast cells constitute close to 75% of the IL-33R� peritoneal cells.
Our results thus demonstrate that mast cells are crucial for the
important early recruitment of neutrophils during acute stages of
inflammation induced by IL-33 in vivo. Mast cells activated in vivo
by IL-33 probably play an important role in both beneficial but also
detrimental actions of IL-33. Our work presented here provides
novel insights regarding the biology of IL-33, and clearly high-
lights mast cells as important orchestrators of IL-33–induced innate
immune responses.
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