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The role of RUNX1 isoforms in hematopoietic commitment of human pluripotent stem cells

We reported in Ran et al that ectopic expression of RUNX1a, a
naturally occurring isoform of RUNX1 that contains a DNA binding
domain but lacks both transactivation and inhibitory domains of
RUNX1b/c (Figure 1), enhanced the production of CD341CD451
hematopoietic stem/progenitor cells (HSPCs) from human
embryonic stem cells and induced pluripotent stem cells (ES/iPS).1

HSPCs produced from ES/iPS cells transduced with lentiviruses
overexpressing RUNX1a engrafted NSG mice and produced
both myeloid and lymphoid cells. In the “Letter to the Editor” by

Real et al,2 a valid point was raised that the transformation potential
of RUNX1a could partially contribute to the enhancement of HSPC
formation by RUNX1a, although no overexpansion or any other
clear signs of transformation were observed throughout the 9
weeks post-transplantation in our studies. It should be noted that in
addition to the dominant negative effect mentioned by Real et al,
RUNX1a can be an activator or repressor in gene expression, but
loses certain regulatory functions due to its lack of interaction with
some positive and negative cofactors (Figure 1).3,4 In mouse models,
overexpression of RUNX1a results in expansion of hematopoi-
etic cells,5 lymphoid leukemia,6 and enhanced engraftment upon
transplantation.5,7 In contrast, overexpression of RUNX1b/c promotes
p53-dependent senescence,8,9 hematopoietic cell differentiation,10

and the loss of transplanted blood cells.5,11 Using RUNX1a, but not
RUNX1c, in our studies is based on these previous discoveries.

We agree that the potential for hematopoietic cell transformation
due to long-term overexpression of RUNX1a is a concern. However,
regulated transient expression of RUNX1a during hematopoietic
development of ES/iPS cells could be very useful for expanding a
rare population of HSPCs. This same principle is illustrated by the
use of the very potent proto-oncogene c-Myc to generate iPS cells.
In the “Discussion” section, we suggested the use of cell-permeable
transcription factors as an alternative to lentiviral transduction and
expression of RUNX1a.1 Although we suggested this strategy to
avoid the inappropriate expression of endogenous genes via lentiviral
integration, transient expression strategies would also eliminate the
potentially negative impact of long-term overexpression of RUNX1a
on HSPCs. We thank Real et al for raising this important issue, and
giving us the opportunity to clarify our argument.

Regarding the expression of 3 isoforms of RUNX1, our data
agree with the finding of Real et al that the expression of RUNX1a

Figure 1. Three isoforms of RUNX1 and interacting proteins. Selected domains

and isoform-specific regions indicated in key. Coactivator interaction partners are in

red. Co-repressor interaction partners are in green. Numbering of domains refers to

the RUNX1b isoform.
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and RUNX1b/c is increased during the hematopoietic differentiation
of human ES/iPS cells, and that RUNX1b/c expression is always
higher than RUNX1a expression. This was illustrated in Ran et al,1

Figure 1A-B, and supplemental Figure 1.
Finally, Real et al2 questioned whether the engraftment we

observed by CD451 CD341 HSPCs derived from RUNX1a-
expressing human ES cells was due to an intrinsic feature of the
HSPCs, or simply because we transplanted an unusually large
number of HSPCs. At present, we cannot distinguish between those
2 possibilities. However, regardless of the mechanism, overexpression
of RUNX1a permitted engraftment, either by promoting expansion
of HSPCs in vitro, or by altering the properties of HSPCs in vivo;
determining which is the case will be a focus of future studies.

In short, we demonstrate a positive effect of RUNX1a on pro-
moting hematopoiesis from human pluripotent stem cells, which
provides a potential novel avenue for generating therapeutic HSCs.
Additional studies are necessary to examine its possible transforming
ability and to create inducible expression systems for using RUNX1a
in regenerative medicine.
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To the editor:

Young adults with acute lymphoblastic leukemia treated with a pediatric-inspired regimen
do not need a bone marrow transplant in first remission

Gupta et al1 concluded that young adult patients with acute lym-
phoblastic leukemia (ALL) aged 15 to 35 years should be treated in

first remission with allogeneic transplant. They based their judgment
on a meta-analysis of 13 studies, each of which had a control regimen
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