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Key Points

• Proteomic analysis of the
leukemia cell surface reveals
new leukemia-associated
features with a potential to
improve diagnostics.

• The ALL surfaceome is
a resource for systematic
functional exploration.

A better description of the leukemia cell surface proteome (surfaceome) is a prerequisite

for the development of diagnostic and therapeutic tools. Insights into the complexity of

the surfaceome have been limited by the lack of suitable methodologies. We combined

a leukemia xenograft model with the discovery-driven chemoproteomic Cell Surface

Capture technology to explore the B-cell precursor acute lymphoblastic leukemia (BCP-

ALL) surfaceome; 713 cell surface proteins, including 181 CD proteins, were detected

through combined analysis of 19 BCP-ALL cases. Diagnostic immunophenotypes were

recapitulated in each case, and subtype specific markers were detected. To identify new

leukemia-associated markers, we filtered the surfaceome data set against gene expression

information from sorted, normal hematopoietic cells. Nine candidate markers (CD18,

CD63, CD31, CD97, CD102, CD157, CD217, CD305, and CD317) were validated by flow

cytometry in patient samples at diagnosis and during chemotherapy. CD97, CD157, CD63,

and CD305 accounted for the most informative differences between normal and malignant cells. The ALL surfaceome constitutes

a valuable resource to assist the functional exploration of surface markers in normal and malignant lymphopoiesis. This unbiased

approach will also contribute to the development of strategies that rely on complex information for multidimensional flow

cytometry data analysis to improve its diagnostic applications. (Blood. 2013;121(25):e149-e159)

Introduction

The identification of informative cell surface protein markers has
markedly improved disease classification and monitoring of a
therapeutic response in childhood acute lymphoblastic leukemia
(ALL). Over the past 2 decades, flow cytometry (FCM) has been
developed based on studies that identified a limited number of
leukemia cell surface markers to distinguish them from normal
hematopoietic cells.1-4 A significant advantage of FCM is the possi-
bility to detect informative changes in different subpopulations at
the single-cell level. Besides its central role for leukemia diagnosis,
FCM is now often used to monitor response to treatment, with
most accuracy during initial induction therapy.5,6 Yet currently
used markers do not always allow us to unequivocally discriminate
malignant cells from the background of regenerating marrow,
which limits sensitivity and specificity of FCM for the detection of
leukemia cells.

So far, FCM-based discrimination of leukemic subpopulations
in clinical samples is done based on expression patterns of markers
determining lineage and developmental stage of hematopoietic
differentiation.1 Some of these markers, including CD19, CD20,

and CD33, have also been used to target malignant cells with
antibody-derived therapeutics in hematologic malignancies.7-10

However, broader knowledge about possible clinically informative
markers present on the surface of leukemia cells is still very
limited. The reason for this gap is the lack of technologies for the
unbiased and direct measurement of the surfaceome and the limited
availability of primary patient material. Gene expression analysis
can provide comprehensive information on transcription profiles of
a particular cell population but does not allow us to infer about the
subcellular location of the correspond proteins. Antibody-based ap-
proaches provide only a fragmented view of the leukemia cell surface
protein composition, depending on the availability of validated
reagents. The recently developed Cell Surface Capture (CSC)
technology11-13 enables a discovery-driven exploration of the leu-
kemia surfaceome using chemoproteomic tagging of proteins on
the surface of living cells. However, the cell quantities that are
required for comprehensive proteomic screening are often not
available from diagnostic patient samples. This limitation can be
circumvented by expansion of leukemia cells using xenograft mouse

Submitted November 21, 2012; accepted April 22, 2013. Prepublished online

as Blood First Edition paper, May 6, 2013; DOI 10.1182/blood-2012-11-

468702.

P.M. and A.H. contributed equally to this study as senior authors.

This article contains a data supplement.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked “advertisement” in accordance with 18 USC section 1734.

© 2013 by The American Society of Hematology

BLOOD, 20 JUNE 2013 x VOLUME 121, NUMBER 25 e149

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/121/25/e149/1367352/e149.pdf by guest on 07 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2012-11-468702&domain=pdf&date_stamp=2013-06-20


models.14-16 The leukemia cells generated in this approach preserve
phenotypic and genotypic characteristics of the disease and reflect
the original disease in its clonal composition.15,17

Here we analyzed the surfaceome composition of xenografts
from 19 B-cell precursor ALL (BCP-ALL) patients using the CSC
technology. This discovery-driven approach led to the identification
of 713 cell surface–exposed proteins including 181 CD-annotated
proteins. We report a strategy to preselect candidate leukemia surface
markers for better discrimination of the malignant cell subpopulation
from normal hematopoietic cells in patients at different stages of
disease treatment.

Methods

Patient samples

Primary human ALL cells used for xenoamplification and subsequent mass
spectrometric studies were obtained from cryopreserved bone marrow aspirates
from patients enrolled in the ALL-BFM 2000 trial. Patient material for
prospective FCM validation was obtained from bone marrow of patients
enrolled in ALL-BFM 2000 and 2009 trials (Switzerland), ALL-IC BFM
2009 trial (Poland), and ALL-BFM 2009 and ALL REZ BFM 2002 trials
(Czech Republic) or from healthy donors. Informed consent was obtained
from patients or legal guardians in accordance with the Declaration of
Helsinki, and the local Institutional Review Boards of each participating
center approved these studies.

Xenoamplification of primary human material

Xenograft experiments were approved by the veterinary office of the
Canton Zurich, Switzerland. Xenoamplification of patient-derived cells
was performed as described.15,18 Cells freshly isolated from the spleens
of transplanted animals were immediately subjected to CSC technology
procedures.

CSC technology

The Cys-Glyco-CSC, Glyco-CSC, or Lys-CSC technology was applied as
described.12 Briefly, glycoproteins on the surface of viable cells were oxidized
and biotinylated using biocytin hydrazide (Cys-Glyco-CSC/Glyco-CSC) or
directly biotinylated with the sulfo-NHS-SS-biotin (Lys-CSC). Cells were
lysed in the presence of iodoacetamide, and the protein mixture from the
membrane fraction enriched by differential centrifugation was digested
overnight with trypsin. The resulting peptides were incubated with streptavidin-
coated beads; unspecific peptides were removed by stringent washing; and
biotinylated peptides were eluted either by chemical reduction (cysteine- and
lysine-containing peptides) or enzymatic cleavage (glycosylated peptides),
desalted, and analyzed individually by liquid chromatography–mass
spectrometry (LC-MS).

Mass spectrometry analysis

Each peptide sample was analyzed in duplicates by liquid chromatography–
tandem mass spectrometry on an LTQ Orbitrap, LTQ Orbitrap XL, or LTQ
FT (Thermo Scientific, Waltham, MA). Data were searched with Sorcerer-
SEQUEST against a concatenated human and mouse protein database of the
UniProtKB/Swiss-Prot Protein Knowledgebase (version 56.9). Statistical
analysis of each search result for each LC-MS analysis was performed
using the Trans-Proteomic Pipeline TPP v4.3.19

Multiparametric FCM

Combinations of multiple directly conjugated antibodies against cell surface
proteins were used in all cases. For immunophenotyping of xenoamplified
human ALL cells, antibodies against 26 proteins presented in Figure 2B
were integrated into clinical antibody panels used for leukemia diagnosis.
Antibodies against 9 proteins used for primary human material screening
were combined with the backbone antibodies against CD10, CD19, CD20,
CD34, and CD45. Detailed staining procedures and antibody specification
are provided in the supplemental Methods (see the Blood Web site). Data
acquisition was performed using FACS Canto II or LSRII (Becton Dickinson,
Franklin Lakes, NJ) flow cytometers and analyzed using FACSDiva version
6.1.2 (Becton Dickinson) or FlowJo (TreeStar, Ashland, OR) software.

Statistical analysis

Median fluorescence intensity (MFI) for each cell population of interest was
calculated by FACSDiva analytical software. All statistical tests were performed
using GraphPad Prism version 4.0 (GraphPad Software, La Jolla, CA).

Results

Chemoproteomic cell surface capturing provides

unprecedented information of the ALL surfaceome

For the generation of a comprehensive ALL surfaceome data set, we
selected 19 well-characterized samples from BCP leukemia patients
(supplemental Table 1). Xenograft ALL cells were harvested from
the spleen of euthanized animals, shown to contain 94% to 99%
of human ALL cells by FCM, and directly subjected to the CSC
workflow (Figure 1). This discovery-driven CSC screen of glycosy-
lated and lysine-containing cell surface proteins resulted in the
identification of 713 bona fide surface proteins including general
hematopoietic and B-cell–specific markers (eg, CD45, HLA, CD34,
CD19, and CD10), as well as proteins that were not yet described to
be present on leukemia (supplemental Table 2). This provides an
unprecedented view of the leukemia cell surface and a resource for
further research.

Figure 1. Chemoproteomic workflow for childhood ALL surfaceome mapping. Relevant human samples were selected from the biobank of cryopreserved bone marrow

aspirates collected at diagnosis (1) and expanded in immunodeficient mice (2). Subsequently, selective chemical tagging was used to enrich for cell surface–exposed

glycoproteins (3). Mild oxidation of glycan residues on the surface of intact cells (A), followed by their biotinylation (B), membrane disruption, and protein digestion, allowed for

affinity enrichment of selectively tagged glycopeptides (C). The peptide fraction stripped from glycan residues by enzymatic elution from streptavidin-coated beads was

analyzed by mass spectrometry, resulting in protein identification (D). The established leukemia surfaceome data repository includes detailed information on identified cell

surface–exposed proteins and respective peptides (4).
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CSC recapitulates the immunophenotype of ALL samples

To evaluate the quality of the surfaceome data, we categorized the
proteins by their function (Figure 2A and supplemental Table 2).
Most proteins could be assigned to protein families that are con-
sistent with a membrane location, with immunoglobulin, integrin,
and cytokine receptor families. From the 389 CD molecules listed
by the Gene Nomenclature committee, 181 were represented in the
ALL surfaceome (supplemental Table 2, highlighted red). These
included 23 CD molecules that are commonly used in FCM panels
for leukemia diagnostics (Figure 2B). We compared the detection
of these surface markers by CSC with flow cytometric data from
the corresponding ALL samples (Figure 2B). Detection of the markers
was concordant in 84% and discordant in only 16% of all individual
comparisons. The majority of the discordant cases (61% of all dis-
cordances) corresponded to weak positive FCM signals of markers
that could not be detected in CSC data (supplemental Table 3A-B).
The markers that constitute the backbone for BCP-ALL detection by
FCM (ie, CD10, CD19, CD20, CD45, and CD34) were consistently
identified by CSC. The comparison of 4 samples with translocation
t(1;19) and 3 samples with high hyperdiploid cytogenetic features

retrieved, among other interesting markers, the receptor tyrosine
kinase ROR1 to be associated with t(1;19)-positive ALL (supple-
mental Table 3C). ROR1, which was recently proposed as a
therapeutic target for this ALL subgroup,20 was also detected in the
t(17;19)-positive ALL case, as suggested by Bicocca et al20

(supplemental Table 2). These observations provide a first valida-
tion of the ALL surfaceome data, supporting the notion that the
CSC analysis may expand our knowledge about the ALL cell
surface composition.

Integration of ALL surfaceome and transcriptome data from

sorted hematopoietic differentiation states (DMAP) identifies

candidate leukemia markers

To filter the surfaceome for putative leukemia markers, we sought
to detect proteins that are not abundantly expressed on normal human
lymphoid progenitors. Given the limitations of small sample size
for CSC, we took advantage of a recent transcriptome analysis
of sorted human hematopoietic states (differentiation map portal
[DMAP]) to interrogate our surfaceome data set21 (Figure 3); 401
surfaceome members were represented in the preprocessed DMAP

Figure 2. CSC technology captures the surface phenotype of ALL cells. (A) Cell surface proteome map of ALL cells: 713 identified membrane-associated proteins

were categorized based on their biological function assigned by the PANTHER algorithm (left); the 20 most abundant protein families and superfamilies are

displayed (right; protein family assignment according to UniProt KB annotation). (B) Comparison between immunophenotypes described using 2 different

technologies. ALL xenograft samples (n 5 19) included in the proteomic pipeline were analyzed by FCM for expression of 26 selected glycosylated cell surface

proteins (with an exception of nonglycosylated protein CD20 detected here with the Lys-CSC strategy), which are commonly used in clinical diagnostic panels.

Shown is the percentage of cases positive for a given marker by FCM and mass spectrometry identification. Proteins with at least 5 independent spectra acquired for

a given sample were taken into account.
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data set that includes genes differently regulated between 38 sorted
hematopoietic states (supplemental Table 4). We ranked the
corresponding genes according to their expression in sorted BCP
cells. As expected, high messenger RNA expression levels were
detected in normal BCPs for typical B-lymphoid markers identified

in the surfaceome data set (CD79B, CD9, CD10, CD19, HLA-DR,
CXC chemokine receptor 4). Among transcripts underrepresented
in this compartment, we detected 13 markers (SELL, CD44, ITGB7,
IL6ST, ICAM2, ITGA6, TNFRSF1A, CD86, IL3RA, CD300A,
CD99, CD97, and CD69) shown recently by Coustan-Smith et al22

as being differently regulated between leukemia and the CD101

CD191 cell subset isolated from bone marrow of healthy donors.
Thus, we hypothesized that filtering of surfaceome data based on the
transcriptomic information will reveal further markers aberrantly
detected on leukemia cells.

To select candidates for further validation, we restricted the initial
data set to the proteins that were consistently identified in more than
half of the cases investigated by CSC. This resulted in 118 proteins
for which the transcripts were represented on the DMAP platform. In
the first step, we filtered the surfaceome protein data set against the
DMAP data set for proteins for which respective transcripts had low
expression in pre–B cells. This step should reduce the number of
proteins that would usually be abundant in the corresponding normal
differentiation stage and possibly enrich for features that are aberrantly
expressed on leukemic cells. Next, we filtered the resulting set of
86 surface markers for proteins with respective transcripts having
low expression levels in naive and mature B cells, to reduce the
number of proteins that would be commonly expressed in more
mature B-cell differentiation states. This resulted in a list of 33
candidate leukemia-associated proteins (LAPs) for further analysis
(Table 1). For prevalidation studies, we selected a subset of the
candidates for which FCM-validated reagents were available, in-
cluding ITB2 (CD18), CD63, ICAM2 (CD102), BST2 (CD317),
IL17RA (CD217), LAIR1 (CD305), PECAM1 (CD31), CD97, and
BST1 (CD157). We also included as a reference CD58, which was
previously established as a useful marker for detection of minimal
residual disease (MRD) by FCM.23

Validation in an independent patient cohort reveals differential

abundance of selected candidates in leukemia and residual

normal B cells

First, we validated the presence of all 9 selected markers at the cell
surface of the leukemia xenograft samples that were used for CSC
screening (data not shown). Next, we tested the cell surface expression
of these 9 candidate proteins on ALL cells from biobanked diagnostic
cases (n 5 86). The comparison with the remaining nonmalignant
CD191 B-cell populations in the same sample revealed on average
higher levels of CD157, CD97, and CD217 in leukemic cells. In
contrast, the expression of CD18, CD102, and CD317 was decreased
in leukemia cells in comparison with the nonmalignant (mainly
mature) B-cell population (Figure 4A). A similar pattern of marker
expression was present in samples that were acquired prospectively
at day 15 of induction (Figure 4B).

Day 15 of induction therapy has been established as an informative
time point for risk assessment based on FCM MRD analysis.6 Here
we compared the results of FCM MRD assessment at day 15 for 20
available cases with the standard MRD panel used in the clinical
setting (combination of backbone antibodies CD10, CD19, CD34,
CD20, CD45 with CD58, CD38, CD11a, and/or CD11b) and the
combination of the same backbone with our experimental markers
incorporated in the bright fluorochrome positions. As shown in
Figure 5A, leukemia cell quantification with both antibody panels
yielded comparable results. These findings show that in particular
CD157, CD97, CD18, and CD102 may have the potential to serve
as additional markers to increase the confidence of residual leukemia
cell detection and quantification at early treatment time points.

Figure 3. Integrated proteomic and transcriptomic investigation for the

identification of new leukemia-associated markers. The leukemia surfaceome

data set was reduced to 210 proteins identified in more than half of investigated

leukemia cases (at least 11 of 19 cases; 58%) and probed against published gene

expression signatures of B cells at different maturation stages in normal hematopoiesis

(DMAP). One hundred eighteen genes represented in DMAP corresponding to the

proteins of interest were ranked based on average expression in precursor B-cell

populations (step 1). Eighty-three genes with average expression below 0 (green

bar; #) were further ranked based on average gene expression in the cluster of B

cells from later ontogeny stages (step 2) resulting in 33 gene IDs with expression

below 0 (green bar; ##). Cell populations and lineages: 1, hematopoietic stem

cells; 2, common myeloid progenitors; 3, megakaryocyte/erythroid progenitors; 4,

erythroid cells; 5, megakaryocytes; 6, granulocyte/monocyte progenitors; 7, granulocytes;

8, monocytes; 9, eosinophils; 10, basophils; 11, dendritic cells; 12, precursor B cells; 13,

naive and mature B cells; 14, natural killer cells; 15, T cells.
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Prospective investigation of matched samples reveals

treatment-induced changes in LAP expression levels

Antigenic shifts are sometimes observed during the initial treatment
phase with glucocorticoids,24,25 which can provide useful infor-
mation, as illustrated by the occasionally striking increase of CD20
expression.26 To assess the stability of the detected phenotypes over
time, we analyzed the differential expression of the 9 candidates
between leukemia cells and in-sample lineage controls in 34 matched
diagnostic and MRD-positive day 15 samples (Figure 5B). In order
to define the degree to which a given marker distinguishes between
the leukemic cell population and residual nonmalignant B cells,
we calculated the difference of the MFI between the individual
populations in the same sample. We defined a cutoff value of 450
(in arbitrary units) for this MFI difference to consider it informative
for detection of the leukemic population. This comparison of the
MFI changes revealed that although CD97 and CD58 features did
not appear to be modulated at all by chemotherapy, others were
clearly reduced (CD102 and CD317) or increased (CD305 and

CD63) in several cases. Although this modulation resulted in the
loss of discriminating power for a given marker in a few cases
(indicated by white color), the downmodulation of CD102 and es-
pecially a consistent increase in the relative abundance of CD305
and CD63 in a subset of the samples could additionally contribute to
differentiating between malignant clones and normal B cells during
disease follow-up.

Multiparametric FCM analysis demonstrates different

expression levels of candidate LAP in leukemic cells and their

normal counterparts

For a potential clinical application, proteins with differential expres-
sion between disease and healthy state need to be identified to allow
distinction of malignant cell populations on the background of
regenerating normal lymphocytes. To elucidate if the 9 investigated
markers may contribute to improved distinction between malignant
and normal populations, we compared their expression level on ALL
cells with the levels detected in normal or MRD-negative remission

Table 1. List of 33 candidate LAPs

UniProt ID CD protein
ENTREZ
gene ID Description

Avg. expression
pre-B*

Avg. expression
B others†

Proteins selected for validation

ITB2_HUMAN CD18 3689 Integrin b-2 21.428 20.416

CD63_HUMAN CD63 967 CD63 antigen 21.170 20.716

ICAM2_HUMAN CD102 3384 Intercellular adhesion molecule 2 20.525 20.084

BST2_HUMAN CD317 684 Bone marrow stromal antigen 2 20.327 20.141

I17RA_HUMAN CD217 23 765 Interleukin-17 receptor A 20.106 20.152

LAIR1_HUMAN CD305 3903 Leukocyte-associated immunoglobulin–like

receptor 1

20.072 20.204

PECA1_HUMAN CD31 5175 Platelet endothelial cell adhesion molecule 20.064 20.550

CD97_HUMAN CD97 976 CD97 antigen 20.029 20.090

BST1_HUMAN CD157 683 Adenosine 5’-diphosphate-ribosyl cyclase 2 20.001 21.512

Proteins not selected for initial validation

ITAL_HUMAN CD11a 3683 Integrin a-L 21.695 20.266

SEM4D_HUMAN CD100 10 507 Semaphorin-4D 21.391 20.071

AT2B4_HUMAN na 493 Plasma membrane calcium-transporting

adenosine triphosphatase 4

21.312 21.624

S39AE_HUMAN na 23 516 Zinc transporter ZIP14 21.169 20.082

ITAV_HUMAN CD51 3685 Integrin a-V 21.126 20.745

SERC3_HUMAN na 10 955 Serine incorporator 3 21.084 20.522

S29A1_HUMAN na 2030 Equilibrative nucleoside transporter 1 20.976 20.462

AT1A1_HUMAN na 476 Sodium/potassium-transporting ATPase subunit

a-1

20.891 20.210

CD59_HUMAN CD59 966 CD59 glycoprotein 20.590 20.430

IL7RA_HUMAN CD127 3575 Interleukin-7 receptor subunit a 20.558 21.234

FLT3_HUMAN CD135 2322 fms-related tyrosine kinase 3 20.438 20.750

PLXD1_HUMAN na 23 129 Plexin-D1 20.434 20.460

CTR1_HUMAN na 6541 High-affinity cationic amino acid transporter 1 20.399 20.015

S43A3_HUMAN na 29 015 Solute carrier family 43 member 3 20.361 20.736

SIRB1_HUMAN CD172b 10 326 Signal-regulatory protein b-1 20.354 20.946

GTR1_HUMAN na 6513 Solute carrier family 2, facilitated glucose

transporter member 1

20.212 20.089

SREC_HUMAN na 8578 Endothelial cells scavenger receptor 20.211 21.823

TSN14_HUMAN na 81 619 Tetraspanin-14 20.172 20.586

IL3RA_HUMAN CD123 3563 Interleukin-3 receptor subunit a 20.110 20.073

CLM8_HUMAN CD300a 11 314 CMRF35-like molecule 8 20.108 20.917

CD99_HUMAN CD99 4267 CD99 antigen 20.103 20.166

JAM1_HUMAN CD321 50 848 Junctional adhesion molecule A 20.098 20.163

MEGF9_HUMAN na 1955 Multiple epidermal growth factor–like domains 9 20.038 20.695

LFA3_HUMAN CD58 965 Lymphocyte function-associated antigen 3 20.014 20.623

Avg., average; na, not available.

*Average gene expression calculated for sorted subpopulations of precursor B cells represented in DMAP.21

†Average gene expression calculated for sorted subpopulations of mature B cells represented in DMAP.21
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marrows (n 5 20) including postinduction therapy samples with
increased numbers of hematogones (Figure 6). The experimental
markers were included in bright positions into a backbone antibody
panel in order to visualize the major stages in normal B-cell ontogeny
in the bone marrow. These included BCP-I CD101 CD20–, BCP-
II/III CD101 CD201, and BCP-IV CD10– CD201 populations.
Besides CD58 serving as an internal control, and CD97, which was
recently proposed as an MRD marker by Coustan-Smith et al,22 we
identified 2 additional markers, CD157 and CD63, with significantly
higher expression on ALL cells compared with normal B-cell pop-
ulations in the bone marrow. Although not statistically significant,
we also observed differences in CD305 and CD18 expression levels
between ALL cases and their normal counterparts in some samples.
A subset of ALL cases had much lower levels of CD18 compared
with their normal counterparts, suggesting that this marker could
also serve to discriminate leukemia from normal cells when expressed

at low levels on leukemia. Importantly, differential expression of
CD63, CD157, CD97, CD18, and CD305 on ALL cells compared
with normal precursor B cells was confirmed in an independent
cohort of patients investigated prospectively in a second study center
(supplemental Figure 1). An example for the visualization of these
markers in the context of normal bone marrow is provided with the
analysis of a patient presenting with an isolated ALL relapse in
the central nervous system and a submicroscopic involvement of the
bone marrow (supplemental Figure 2). In this case, increased detection
of CD63 on the surface of ALL cells was particularly evident com-
pared with nonmalignant early B cells. To visualize the effect of
additional surface markers on the separation of malignant from
normal cell populations, we used a bidimensional principal component
analysis (PCA)27 (Figure 7). We compared the immunophenotype
of leukemia cells from presentation with leukemia-free marrows
from 2 patients for which bone marrows after 78 days on their

Figure 4. High levels of candidate marker expression help to identify the blast population at diagnosis and early treatment time points. Comparison of the marker

expression in leukemic cell populations (ALL) and the residual nonmalignant CD191 population (in-sample control, CTR). Shown are the MFI measured for indicated markers

in newly diagnosed leukemia samples (n 5 86) (A) and MRD samples at day 15 (n 5 45) of the treatment (B). Represented are data from 3 independent patient cohorts; for

simultaneous representation, the median value for each cohort was adjusted. Values for a population size ,100 events at diagnosis or ,30 events in MRD samples were

excluded. Each point represents a single measurement, and gray bars represent the median value for the group. The asterisk indicates a statistically significant difference in

marker expression between paired measurements by Wilcoxon matched pairs test. No difference was detected between ALL and control samples for CD31 and CD305.
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treatment plan were available, a time point at which regeneration
with normal lymphoid progenitors is usually prominent. This analysis
indicates that several markers contributed to a better separation of the

normal and malignant cell populations, and that, as expected from
our observations in general, the contributions of individual markers
were different in these 2 patients.

Figure 5. Prospective analysis of LAPs in patient samples. (A) Correlation of leukemia detectability based on gating performed with standard MRD markers and panels

including experimental markers. To gate the leukemic population, 9 candidate markers were used in combination with CD19 and CD45 antibodies for a total of 69 tests performed

on 20 MRD cases from day15. The percentage of leukemic cells was calculated in respect to all nucleated events as determined by Syto 41 or Syto16 stainings and compared with

levels of leukemia determined by standard gating based on CD19, CD45, and CD10 expression. R indicates Pearson correlation score. (B) Differential expression of experimental

markers between leukemia cells and residual normal lymphoid cells at diagnosis and in paired MRD cases. The difference in MFI (arbitrary units) between leukemia cell population

and nonmalignant CD191 cells within the same sample measured at diagnosis (Dx) and in MRD cases at day 15 of treatment (M) is represented as a color-coded plot. In total, 187

stainings were performed for experimental markers at both time points in 34 matched ALL cases from 2 cohorts. Depending on material availability, different numbers of markers

were assigned to a given sample (number of patients screened for each individual marker at both time points: CD157, 24; CD97, 27; CD63, 19; CD305, 15; CD18, 27; CD102, 22;

CD317, 12; CD217, 10; and CD31, 31). Cases in which the experimental marker expression in both leukemic and nonmalignant cell population was below the positivity threshold

established for each cohort are not displayed in the graph. Differential expression of CD58 is presented for 9 matched cases as a control.
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Collectively, our results demonstrate that LAPs with significant
differences in abundance between leukemic cells and nonmalignant
precursor B cells can be identified by systematic exploration based
on the CSC ALL surfaceome data set. Here we have shown a
strategy for selection and prequalification of disease-associated
markers for further clinical validation and provided data to support
the use of multidimensional bioinformatic approaches to improve
FCM-based detection of leukemia. Furthermore, our approach will
also be useful for the analysis of specific leukemia subgroups, for
which appropriate leukemia-associated markers are lacking, such
as early thymic precursor or mature T-cell ALL.

Discussion

We report here for the first time an expanded description of the
leukemia surfaceome, based on a chemoproteomic analysis of
primary cells derived from xenotransplanted patient samples. The
direct combination of the CSC technology and the possibility to
expand leukemia cells reliably in immunodeficient mice enables
us to apply a mass spectrometry–based approach that is usually

challenging with primary samples due to the limited sample size.
This methodology provides direct evidence for the localization of
proteins at the leukemia cell surface, information that cannot be
derived reliably from transcriptomic studies or obtained at a larger
scale with currently available antibodies.

Our proteomic data include cell surface proteins that share po-
tentially important functions for the maintenance and propagation
of the disease. Different strategies can be used to select candidate
genes for future functional investigation. For instance, a comparison
with expression data from other tissue could identify ectopic cell
surface marker expression in leukemia. Indeed, we identified different
plexin receptors, which are typically expressed in neuronal tissues,
on ALL cells. The plexin ligands semaphorins, including Sema4D
(CD100), which is known to sustain proliferation and survival of
leukemic cells,28 were also detected. Short lists can be derived from
the surfaceome data by intersection with surface marker information
that reflects relevant biological or disease states (eg, stem and pro-
genitor cells and disease progression). We detected different ephrins
that had been linked to cancerogenesis and metastasis.29 Categori-
zation by functional annotation is another way to prioritize candidates
for further investigation. We identified members of the tetraspanins
(Table1), a type of receptor with potential death receptor function

Figure 6. Differential expression of candidate

markers between leukemic blasts and B-cell

subsets from nonmalignant controls. Shown

are MFI values measured for indicated markers in

malignant populations of newly diagnosed leuke-

mia samples (ALL, n 5 34) and in subpopulations

representing different B-cell maturation stages

(CD101 CD20–; CD101 CD201; and CD10– CD201)

from normal bone marrow and remission samples

with no evidence of disease (n 5 20). Samples

from postinduction therapy time point (day 78)

are labeled in red. MFI values measured for cell

population size ,100 events were excluded. Each

point represents a single measurement, and gray

bars represent the median value for the group. The

asterisk indicates a statistically significant differ-

ence in marker expression by the Mann-Whitney

test with specified P value.
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on normal and malignant B cells,30 and modulators of the cellular
immune response including CD59 and members of the signal
regulatory protein family that could have implications for cellular
antileukemic responses.31 Also striking is the predominance of proteins
from the major facilitator superfamily, including different solute
carrier proteins, which regulate the intracellular flux of metabolic
substrates, which are essential for cell survival and for metabolic
interactions with the microenvironment.32 Surfaceome data could
therefore be used to generate libraries of practicable size for functional
genomic approaches using in vitro and in vivo leukemia xenograft
models in order to identify critical interactions of leukemia cells
with the microenvironment to sustain the disease.

The comparison between malignant and normal hematopoietic
subpopulations can be used to identify new features in both normal
and malignant hematopoiesis. We used a gene expression data set
from FCM-sorted normal hematopoietic subpopulations to pre-
select candidate leukemia markers. Because gene expression data
do not always correlate with protein levels at the cell surface,33-35

and because subcellular location is not reliably predicted based
on transcript information, there is an added value to determine
membrane location by CSC. Coustan-Smith et al22 used gene ex-
pression profiling to identify genes that were preferentially expressed
in ALL cells compared with sorted normal CD101 CD191 lymphoid
progenitors. The ALL surfaceome data include 21 out of the 26
membrane proteins that were reported in this gene expression
profiling study with a threefold higher transcript level in leukemia
cells. From the markers that were validated by FCM in the Coustan-
Smith study, we retrieved 15 (CD44, CD49F, CD69, CD72, CD73,
CD79B, CD86, CD97, CD99, CD102, CD120A, CD123, CD130,
CD200, and CD300A), but most of our candidates did not overlap
with the genes reported in this study. As a proof of concept, we
identified CD58, a marker commonly used for detection of MRD
for ALL.6,23,36 The bottleneck for further validation studies is the

availability of appropriate antibodies. We tested 9 antibodies and
found informative differences between leukemic and normal lymphoid
cells in patient samples for all of them, with most predominant
differences for CD63, CD97, and CD157, as well as informative
antigenic shifts during treatment, which can be helpful for the
identification of leukemia cells.3,24,37,38 Taken together, we provide
initial evidence that this approach will contribute to the identification
of new surface markers.

There is still a need for better discrimination between normal and
leukemia cells by FCM, especially for disease monitoring.6,39,40

With the development of multiparametric FCM, we postulate that
better discrimination between cellular subpopulations will be possible
by increasing the number of different surface markers and analysis
in a multidimensional space.41 The clinical significance of risk
stratification by the monitoring of MRD is well established for
ALL.25,42-44 The availability of more sensitive FCM assays would
have several advantages including speed and cost reduction for
MRD monitoring. In this study, we did not identify markers that per
se will improve discrimination of leukemia cells significantly, but we
show that the addition of new markers to the conventional backbone
of diagnostic markers can improve the separation of malignant and
normal cell subpopulations using a bidimensional PCA.

Our discovery-driven LC-MS approach for the analysis of the
cell surface proteome of ALL cells allows for the identification of
new or unknown cell surface markers. The methodology could be
used for biomarker discovery in defined subsets, such as early
thymic precursor ALL45 or translocation t(17;19)-positive ALL.25

The CSC technology used here has limitations. It is nonquantitative,
directed against a specific subset of the surface proteome, and cannot
ensure a complete cell surface proteome mapping yet. Also, we
cannot make a statement about the spatial and temporal co-
occurrence of all identified proteins. It is important to emphasize the
potential of the part of the detected surfaceome that is left

Figure 7. Bidimensional PCA of the effect of additional surface markers on the separation of normal and malignant cell populations. Bone marrow samples obtained

at diagnosis and after induction therapy (day 78) were obtained from 2 pediatric ALL patients (A-B). Samples were stained with the usual backbone of antibody combinations

including CD19, CD34, CD45, CD10, and CD20 in all tubes and supplemented with either CD18 and CD157, CD31 and CD97, CD63, CD84, CD100, CD102, or CD305. After

data acquisition, .fcs files were merged using the Infinicyt software.27 ALL cells at diagnosis (red) and normal regenerating BCPs at day 78 in MRD-negative samples (blue)

were identified based on the backbone markers and plotted in a bidimensional PCA. The first principal component (PC) is shown on the x-axis, and the second PC on the y-

axis, using the Automatic Population Separator (APS) graphical representation of the Infinicyt software.27 Data represent the mean and first and second standard deviation of

the 2 populations. Backbone: APS plots using backbone markers only. Both populations show some overlap, which impacts the resolution of the analysis. The effect of the

addition of 1 additional marker to this backbone as indicated in the figure legends is visualized by PCA. The separation between the ALL and normal BCPs improves when

some of these markers are added. The relative contribution of each marker varies in the 2 samples.
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unexplored due to lack of appropriate affinity probes. Further
progress can be expected with the development of new antibodies
and alternative quantitative proteomic technologies such as tar-
geted mass spectrometry techniques46,47 or mass spectrometry–
based FCM (cytometry by time-to-flight), which rapidly increases
the numbers of parameters that can be detected at the same time
at the single-cell level.48,49 Our work constitutes the basis for
prospective validation of new leukemia markers and a valuable
resource to build and to characterize the leukemia surfaceome,
including information about cell surface–exposed proteins, their
N-glycosite occupancy, and tools for their targeted mass-spectrometric
assessment. This knowledge will contribute to accelerate the
clinical validation of useful markers for multidimensional visu-
alization and distinction of normal and malignant hematopoietic
subpopulations.
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