
directly genotyped SNP from case-control analyses (rs10764338) was
again significantly associated with an increased risk for hyperdiploid
B-ALL (OR, 2.47; 95% CI, 1.42-4.29; P 5 9.8 3 1024).

Although risk loci in ARID5B have been shown to confer a greater
risk for hyperdiploid B-ALL vs other subtypes,2,4 the risk loci inBMI1-
PIP4K2A reported here are the first to be exclusively associated with
this ALL subtype. Our results confirm that variation at chr10p12.31-
12.2 confers a risk for childhood ALL and further indicates that these
variants distinguish hyperdiploid B-ALL from other subtypes. Fine-
mapping via SNP imputation refined the association peak to a;35kb
region in PIP4K2A, which includes a rare variant (rs142846483; minor
allele frequency in controls5 0.011) conferring an exceptionally high
risk for hyperdiploid B-ALL among Hispanic children (OR, 15.15;
95% CI, 4.57-50.21 P 5 8.8 3 1026).

The risk variants identified by Xu et al do not affect protein
coding, although they found that the rs7088318 risk allele was
associated with increased PIP4K2A messenger RNA expression.1

Our most strongly associated SNPs were also intronic, suggesting
that variants in PIP4K2A that confer risk for hyperdiploid B-ALL
may be regulatory in nature, as has been observed in fine-mapping
studies of other neoplastic diseases.6,7
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To the editor:

Gender influences the birth order effect in HLA-identical stem cell transplantation

An earlier report by Bucher et al1 indicated a better stem cell
transplant (SCT) outcome with younger sibling donors (YSD).
Transmaternal cell flow during pregnancy2 might explain this obser-
vation. Notably, cord blood comprises minor H antigen experienced
T cells that are not only directed against maternal foreign minor H
antigens.3,4 This observation prompted us to investigate the role of
minor H antigens in the birth order effect in HLA identical SCT.

Hereto, we made use of a large database of 10/10 HLA allele-
matched and minor H antigen–typed SCT donor/recipient pairs
(Spierings et al, submitted), collected under the auspices of the
International Histocompatibility and Immunogenetics Workshop
and Conference. Additional relevant family information was
included for 311 10/10 HLA allele–matched sibling donor/
recipient pairs.
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In the whole cohort of 311 pairs, overall survival, graft versus
host disease (GVHD) incidence, GVHD-related mortality, and
GVHD-free survival were not statistically significantly different in
SCT with older sibling donors (OSD, n 5 143) compared with
SCT with YSD (n 5 168; Figure 1A).

The sample size of 311 appeared too small to analyze the effect
of either single or multiple autosomally or of single Y chromosome–
encoded minor H antigen(s). However, the effect of gender mis-
match5 on the birth order effect appeared feasible to investigate.
Interaction analyses of birth order and gender mismatch showed a
statistically significant interaction for non-GVHD, which is merely

relapse-related, death (P , .05; data not shown). Subsequent anal-
ysis in female recipients of female donors (F→F; Figure 1B) showed
lower, nonsignificant non–GVHD-related death in the YSD group
(hazard ratio 5 3.76, P 5 .094).

The study cohort comprised pediatric and adult SCT pairs.
The number of pediatric pairs (n 5 40) was too small to analyze
separately. Analysis of the adult SCT pairs revealed a significant
reduced GVHD incidence in the YSD group as opposed to the
OSD group by comparing F→F transplantation with male donors
to male recipients (M→M) transplantation (hazard ratio 5
0.337, P 5 .008; Figure 1C). Furthermore, GVHD-free survival

Figure 1. Influence of birth order on overall survival and GVHD incidence. (A) Overall survival and GVHD incidence in recipients with a YSD (n 5 168) compared with

recipients with an OSD (n5 143) are not statistically significantly different. (B) Female donors with female recipients have a higher non-GVHD death incidence (ie, relapse) in YSD

compared with OSD (hazard ratio5 3.76, P5 .094). (C) Adult YSD are subdivided by gender. Female donors in female recipients have a significantly (P5 .008) reduced GVHD

incidence compared with M→M.
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was significantly better in F→F compared with M→M SCT
(hazard ratio 5 0.547, P 5 .043; data not shown).

In summary, we support the existence of a birth order effect as
reported before.1,6 Additionally, we show that gender might be one
of the causal factors. Interestingly, the birth order effect was
significant in the adult female donor/female recipient SCT pairs.
Our current plausible explanation is the intrauterine exposure to
sibling antigens occurring during pregnancy, leading to minor H
antigen experienced T-cell responses in women.4 These responses
might lead to immune regulation.7 Subsequent (re-)exposure to
fetal antigens during pregnancy of the donor herself explains the
favorable younger female SCT donor in combination with the
female recipient.

To get a clearer picture of the influence of minor H antigens
on the birth order effect, we suggest a much larger cohort of
HLA-identical sibling SCT with detailed information regarding
family and obstetric history of both patient and donor.
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