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To the editor:

Complement factor H mutations are present in ADAMTS13-deficient, ticlopidine-associated
thrombotic microangiopathies

The antiplatelet agent ticlopidine is associated with the rapid onset
of a thrombotic microangiopathy (TMA) resembling thrombotic
thrombocytopenic purpura (TTP) and atypical hemolytic-uremic
syndrome (aHUS). These disorders occur in 0.06% of individuals
exposed to ticlopidine, usually within 1.5 to 6 weeks of exposure.1,2

The vast majority of ticlopidine TMAs are accompanied by antibody-
mediated inhibition of the protease ADAMTS13, making them
similar to idiopathic TTP.3,4 However, ADAMTS13 deficiency alone
is not sufficient for the development of TMAs. Our group has shown
that exposure to both the pharmacologic levels of ticlopidine and
plasma from patients with ticlopidine TMAs induces apoptosis in
primary human microvascular endothelial cells, suggesting that
ticlopidine-induced endothelial cell apoptosis is a provoking factor

in ticlopidine TMAs.5 In other TMAs such as aHUS, complement
regulatory protein mutations represent another provoking factor for
the development of these diseases.6 Complement mutations have
not been studied in ticlopidine TMAs.

We obtained plasma samples from 4 consecutive patients with
TMAs that occurred within 2.5 to 4 weeks of ticlopidine exposure
(Table 1).7 ADAMTS13 activity and inhibitor titers were deter-
mined, as previously described by Bennett et al.8 All patients
had thrombocytopenia, schistocytosis, markedly elevated levels of
lactate dehydrogenase (LDH), renal impairment, and significantly
decreased ADAMTS13 activity. Three of 4 had ADAMTS13
inhibitors. Plasma levels of C5a and C5b-9 (membrane attack
complex) were measured by enzyme-linked immunosorbent assay

Table 1. Clinical characteristics of 4 patients with ticlopidine TMAs

Patient code Age Sex
Duration of

ticlopidine (wk)
Creatinine
(mmol/L)

Platelets
pretherapy

Platelets
posttherapy

LDH
pretherapy (U/L)

LDH posttherapy
(U/L) Outcome

PEX
sessions (N)

ADAMTS13
Activity (%)*

010 84 M 3 110 40 235 2555 NA Death 8 ,5

022 77 M 4 150 5 131 1084 214 Survival 10 ,5

003 78 F 3.5 260 33 93 1005 1736 Death 3 ,5

012 42 F 2.5 110 13 323 790 170 Survival 30 ,5

Platelet values expressed as 3103.

F, female; M, male; NA, not available; PEX, plasma exchange.

*ADAMTS13 was assessed by both FRET-VWF assay (,5%) and immunoblot activity (,10%).
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(Quidel). Genomic DNA was isolated from plasma using the
QIAamp kit (Qiagen). To determine the presence of complement
mutations, we selected primers to soluble complement factor H
(CFH), complement factor I, and membrane-linked membrane
cofactor protein, 3 complement regulatory factors with mutations
that have been identified with high frequency in aHUS.4,5 We found
substantially elevated levels of membrane attack complex despite
normal C5a levels, and all 4 patients had CFH genetic abnormalities
(Table 2). Two of the 3 polymorphisms are of known functional
significance, and even heterozygous CFHmutations are sufficient to
develop aHUS.7,9

This is the first report of CFH mutations in ticlopidine TMAs.
These mutations are otherwise uncommon in healthy individuals
and have a background mutation rate of ,5% in northern
Europeans.10,11 ADAMTS13 deficiency has previously been
considered to be pathognomonic of TTP. However, complement
regulatory factor mutations represent another independent sus-
ceptibility factor in many types of TMAs, and their presence in
addition to ADAMTS13 deficiency may be required for the
onset of disease. If a complement mutation is required for TMA
development after ticlopidine exposure, it could explain the rarity
of ticlopidine TMAs despite the fact that the drug causes micro-
vascular endothelial cell injury in vitro.5 Unlike idiopathic TTP,
both aHUS and ticlopidine TMAs respond poorly to plasma ex-
change, even though hematologic parameters may normalize. Renal
disease and overall mortality are not affected, and LDH levels do
not return to normal, which suggests ongoing endothelial injury.9

We hypothesize that ticlopidine TMAs occur as a result of a failure
to regulate complement on endothelial cell surfaces after cell
injury, leading to ongoing microvascular damage. This defect may
be present in other TMAs. We recently illustrated the role of
complement in a patient with severe refractory idiopathic TTP
with ADAMTS13 ,5% and a high inhibitor titer. He rapidly
responded to anti-C5 therapy after other treatment failures.12 No
complement mutations were detected utilizing a commercially
available platform. Subsequent analysis, however, did reveal a CFH
mutation (unpublished data).12 In conclusion, complement regula-
tory protein mutations may form the basis for TMA susceptibility
and should be further studied.
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Table 2. Complement levels of 4 patients with ticlopidine TMAs and
corresponding mutations

Patient
code

C5a (ng/mL)
(normal range, 0.3-70)

sC5b-9 (ng/mL)
(normal range, 100-300)

CFH
polymorphism

010 32.08 4862 Homozygous exon

18 E936D

022 51.21 6023 Heterozygous exon

18 Q950H

003 27.74 5904 Heterozygous exon

18 E936D

012 50.96 6229 Heterozygous exon

19 N1050Y

Primers used are exon 18 first step TAGACAGACAGACACCAGAAGG (for-

ward), GGTACCACTTACACTTTGAATGAAGA (reverse); exon 18 second step

AATTTATGAGTTAGTGAAACCTGAAT (forward), GGTACCACTTACACTTTG

AATGAAGA (reverse); exon 19 first step TGTGTAATCTCAATTGCTACGGCT

(forward), GGCTGGGCCCACACATTA (reverse); and exon 19 second step

ACAAAATGGCTAATATATTTTCTCAAG (forward), GGCTGGGCCCACACATTA

(reverse).

CFH, complement factor H.
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