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Recent improvement in modern analyti-

cal technologies has stimulated an ex-

plosive growth in the study of glycobiology.

In turn, this has lead to a richer un-

derstanding of the crucial role of N- and

O-linked carbohydrates in dictating the

properties of the proteins to which they

are attached and, in particular, their

centrality in the control of protein syn-

thesis, longevity, and activity. Given their

importance, it is unsurprising that both

gross and subtle defects in glycosylation

often contribute to human disease pa-

thology. In this review, we discuss the

accumulating evidence for the signifi-

cance of glycosylation in mediating the

functions of the plasma glycoproteins

involved in hemostasis and thrombosis.

In particular, the role of naturally oc-

curring coagulation protein glycoforms

and inherited defects in carbohydrate

attachment in modulating coagulation

is considered. Finally, we describe the

therapeutic opportunities presented by

new insights into the role of attached

carbohydrates in shaping coagulation

protein function and the promise of

carbohydrate modification in the de-

livery of novel therapeutic biologics

with enhanced functional properties

for the treatment of hemostatic disor-

ders. (Blood. 2013;121(19):3801-3810)

Introduction

Glycan structures are attached to more than half of all known
proteins,1 and genes encoding the molecular apparatus required
for glycosylation constitute 1% to 2% of the human genome.2

Despite the prevalence of glycan attachment to human proteins
and lipids, the field of glycobiology has traditionally represented
something of a Cinderella subject. However, recent advances in
synthetic, and particularly analytic, methodologies have led to
heightened awareness regarding the structural and functional
significance of carbohydrate structures on proteins. Accumulat-
ing data make it clear that the glycan structures expressed on
many glycoproteins play critical roles in modulating functional
activity. In addition, variation in carbohydrate structures has
been implicated in the pathogenesis of a number of human
diseases. Moreover, it seems inevitable that evidence regarding
the physiological and pathological importance of carbohydrate
expression will continue to emerge in the coming years. In this
context, it is perhaps unsurprising that regulation of glycan
expression on novel recombinant therapeutic glycoproteins is
already established as a key quality parameter within the phar-
maceutical industry. In this review, we provide an overview of
the critical roles played by carbohydrate determinants in regu-
lating human hemostasis and thrombosis. In particular, using
exemplar coagulation glycoproteins, we have sought to highlight
some of the different molecular mechanisms through which
glycan variation can influence glycoprotein biology. Although
we have selected specific examples and focused on plasma coag-
ulation glycoproteins, these concepts can nevertheless be con-
sidered a paradigm equally applicable to other human secretory
glycoproteins.

Protein glycosylation

N-linked glycosylation

N-linked glycans on human glycoproteins are attached to the amide
nitrogens of asparagine (Asn) side chains. N-linked glycosylation
begins in the endoplasmic reticulum (ER),3,4 where a preassembled
oligosaccharide core structure is transferred from a dolichol lipid
donor onto specific Asn residues within nascent polypeptide chains.5

This reaction is catalyzed by the enzyme complex oligosaccharyl-
transferease, which targets Asn residues located in the consensus
sequence Asn-X-serine (Ser)/threonine (Thr) (where X can be any
amino acid except proline).6 Importantly,N-linked glycosylationwithin
the ER is actually a cotranslational event occurring on the luminal
aspect of the ER membrane. As a consequence, depending on poly-
peptide folding and conformation, not all Asn residues in a consensus
sequence will necessarily be glycosylated. The net effect, therefore, is
that polar N-linked glycans are typically found on the surfaces of
glycoproteins, rather than being buried deep within the protein interior.

The initial 14-sugar core N-linked structure attached during
protein synthesis in the ER is mannose-rich (Glc3Man9GlcNAc2).
This core glycan is subsequently remodeled by a series of glycosyl-
transferases and glycosidases as the protein passes through the ER
and onto the Golgi.7 This process commences in the ER with the
removal of 2 terminal glucose moieties by the exoglycosidases
glucosidase 1 and 2. Glucose cleavage enables the protein to interact
with 2 homologous ER lectins, calnexin (Cnx) and calreticulin (Crt),
and thereby engage in a folding cycle.8 Once properly folded,
glycoproteins are subsequently transported to the Golgi, where the
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N-linked glycans are further modified. Unsurprisingly, given that
more than a hundred different glycosyltransferases are encoded by
the human genome, the final N-linked carbohydrate structures can
be complex and heterogeneous in nature. Nevertheless, N-linked
glycans can be classified into 1 of 3 subgroups: high-mannose,
hybrid, or complex (Figure 1). This process is distinct from that of
glycation, which refers to the nonenzymatic irreversible attachment
of reducing sugars to proteins, and in contrast to glycosylation, it is
not enzyme-controlled or dependent on predefined attachment sites.

O-linked glycosylation

O-linked glycans on human glycoproteins are attached to Ser or Thr
residues. O-linked glycosylation differs from N-linked glycosylation
in a number of important regards.9 First, O-linked glycosylation is
a true posttranslational modification, asO-linked carbohydrate struc-
tures are only synthesized on proteins as they transit through the
Golgi. Second, there is no preassembled O-linked oligosaccharide
core structure. Rather, O-linked carbohydrate synthesis involves se-
quential addition of monosaccharide units in a stepwise manner.
These reactions are catalyzed by a series of specific glycosyltrans-
ferases analogous to those required for N-linked glycans synthesis.
Finally, for O-linked glycosylation to occur, Ser or Thr residues do
not need to exist as part of a specific consensus sequence. Never-
theless, previous studies have shown that O-linked glycosylation of
Ser or Thr is more common if Ser/Thr residues are present in clusters or
are located in areas rich in proline or alanine residues.10 Final O-linked
glycan structures are simpler than complex N-linked sugars (Figure 1).

Heterogeneity of glycosylation

In view of the number of distinct human glycosyltransferases and
glycosidases already described, it is perhaps not surprising that gly-
can databases include descriptions of more than 500 different
N-linked carbohydrate structures. The marked heterogeneity of
N-linked glycans structures has proven one of the major obstacles
to the investigation of the potential physiological and pathological
significance of carbohydrate structures. A further level of complexity

is added by virtue of the fact that many glycoproteins contain
multiple individual N- and O-linked glycosylation sites. In addi-
tion, different types of glycan structures can be expressed on each
of these specific Asn residues within the same protein. Importantly,
expression levels for the individual glycosyltransferase and glyco-
sidase enzymes vary significantly between different tissues and can
also be influenced by disease state or normal aging. As a conse-
quence, a given individual can express various glycoforms of a
particular glycoprotein that differ only with respect to their car-
bohydrate profiles.

Many of the human proteins involved in regulating normal
hemostasis circulate as soluble glycoproteins in plasma. Before
their secretion, these proteins often undergo complex posttransla-
tional modification, including significant glycosylation. As a result,
complex branching carbohydrate structures can account for up to
25% of their final molecular mass. These carbohydrate structures
play critical, but often underappreciated, roles in modulating many
of the key biological properties of these coagulation proteins.

Role of glycans in modulating intracellular
trafficking

Carbohydrate determinants regulate transit through the ER

Secretory glycoproteins, including coagulation factors, are synthe-
sized by ER-bound ribosomes. After processing within the ER,
proteins follow an intracellular pathway through the ER–Golgi inter-
mediate compartment (ERGIC) to the Golgi before finally being
secreted into the plasma. Within the lumen of the ER, significant
folding and modification of newly synthesized proteins occurs. This
process is regulated by a series of enzymes andmolecular chaperones,
including immunoglobulin-binding protein (BiP), Cxn, and Crt. Only
correctly folded proteins are allowed to exit the ER. Misfolded
proteins either are retained within the ER or are subject to degradation
by the ER-associated protein degradation pathway.4

Figure 1. Examples of typical N- and O-linked glycan

structures expressed on human plasma glycoproteins.
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Previous studies have clearly defined the critical role played by
carbohydrate structures in regulating glycoprotein interaction with
ER-resident molecular chaperones. In particular, the 14-sugar core
N-linked structure on nascent polypeptide chains is a key regulator
of these interactions. Cxn and Crt are homologous lectins that bind
monoglucosylated polypeptides in concert with the thiol oxidore-
ductase ER p57, facilitating correct folding and preventing protein
aggregation. The fate of the Cxn/Crt-bound polypeptide is ulti-
mately determined by uridine diphosphate–glucose:glycoprotein
glucosyltransferase (GT), which acts as a folding sensor that de-
tects characteristic biophysical properties of misfolded proteins. If
misfolding is detected, the protein is reglucosylated by GT and re-
enters the Cxn/Crt cycle, where it can either continue until cor-
rectly folded or be transferred for degradation. If properly folded,
GT does not reglucosylate high mannoses, and the protein is ready
for transport to the Golgi apparatus.

The physiological relevance of carbohydrate determinants in
regulating transit through the ER has been highlighted in a series
of elegant studies examining biosynthesis of the homologous
coagulation glycoproteins factor V (FV) and factor VIII (FVIII),
respectively. Once activated, these glycoproteins play crucial roles in
the coagulation cascade, acting as cofactors in the prothrombinase
and intrinsic tenase complexes. FV and FVIII share identical domain
structures (A1-A2-B-A3-C1-C2), and significant structural homol-
ogy exists between their A and C domains. In contrast, the B domains
of FV and FVIII exhibit limited sequence similarity.11 Nevertheless,
both B domains are extensively glycosylated, containing 25 (FV)
and 18 (FVIII) potential N-linked glycosylation sites, respectively.
Moreover, although the amino acid sequence encoding the FVIII B
domain has diverged widely between human, porcine, and murine
genes, the large number of N-linked glycosylation sites has remained
strikingly conserved. In spite of their homologous structures,
expression studies have demonstrated that FV is secreted from
mammalian cells significantly more efficiently than FVIII. Limiting
steps in FVIII secretion have been identified and include extended
interactions with ER chaperone molecules, which in turn limit its
progress to the Golgi and onward to secretion from the cell. In
particular, residues within the A1 domain of FVIII have been shown
to mediate stable interaction with BiP.12 In contrast, FV does not
associate with BiP.13 Furthermore, FVIII has also been shown to
bind both Crt and Cxn, which also slows its secretion.14 Unsur-
prisingly, these interactions are mediated in large part through N-
linked glycan structures expressed within the FVIII B domain.
Although FV can also interact with the chaperone Crt, it does not
appear to bind to Cnx.

Carbohydrate determinants regulate transit from ER to Golgi

On successful folding and packaging, new proteins travel from the
ER to the Golgi for additional posttranslational modifications
before secretion. This is achieved by formation of coat protein
complex II (COPII) vesicles, which bud from the ER lumen and
migrate to the Golgi apparatus via the ERGIC.15 Despite their
different ER processing, FV and FVIII have a shared prerequisite
for specialized ER-to-Golgi transport machinery. In particular,
lectin mannose-BiP 1 (LMAN1; also known as ERGIC-53) and
multiple coagulation factor deficiency protein 2 (MCFD2) are
cargo transporters for ER-to-Golgi traffic of FV and FVIII.16,17

N-linked oligosaccharides are key to FV/FVIII interactions with
the LMAN1/MCFD2 complex. LMAN1 association with FV/FVIII
is enhanced by the presence of fully glucose trimmed mannose
9 structures on B domain–located carbohydrates, as demonstrated

using an LMAN1 mutant with defective mannose binding ability
and, consequently, severely diminished FVIII-LMAN1 interaction.
LMAN1/MCFD2 gene mutations that prevent interaction with FV/
FVIII (or each other) have been shown to be the cause of combined
FV/FVIII deficiency, an autosomal recessive disorder associated
with a mild to moderate bleeding tendency caused by reduced FV
and FVIII plasma levels of 5% to 30%.18,19 Cumulatively, these
data serve to emphasize the critical importance of N-linked glycan
structures in regulating the intracellular trafficking of secretory
glycoproteins.

Role of glycans in modulating susceptibility
to proteolysis

In addition to modulating intracellular processing, carbohydrate
expression on plasma glycoproteins influences a number of their
biological properties. In particular, glycans have been shown to
modulate susceptibility to proteolysis. The critical importance of
sugar structures in this regard has been highlighted through a series
of recent studies on the proteolysis of the large, multimeric
sialoglycoprotein, von Willebrand Factor (VWF). Before secretion,
VWF undergoes extensive posttranslational modification, including
significant glycosylation. As a result, each VWF monomer contains
12 potential N-linked and 10 potential O-linked glycosylation sites
with carbohydrate structures.20 The glycan structures of VWF have
been characterized21 and shown to be highly complex and hetero-
geneous in nature. The most common N-linked structure is a
monosialylated biantennary complex chain.22 In contrast, the ma-
jority of the O-linked glycans of VWF are composed of the tumor-
associated T-antigen.23 Thus, both the N- and O-linked VWF
glycans are commonly capped by terminal negatively charged sialic
acid moieties. Unusually, covalently linked ABO(H) blood group
carbohydrate determinants have also been described as terminal
sugar residues on a proportion of both the N-linked (13%) and
O-linked (1%) glycans of VWF.22,24,25

Plasma VWF multimer composition is a critical determinant of
functional activity. High–molecular weight multimers bind both
subendothelial collagen and platelet glycoprotein Iba; with sig-
nificantly higher affinities than lower–molecular weight forms.26

Interestingly, the O-linked glycans of VWF have recently been
reported to modulate the critical interaction with glycoprotein
Iba.27,28 In normal plasma, the multimeric composition of circulating
VWF is tightly controlled by a disintegrin and metalloproteinase
with thrombospondin type repeats 13 (ADAMTS13). The phys-
iologic importance of regulating VWF multimer composition is
highlighted in type 2A VW disease and thrombotic thrombocy-
topenic purpura. In type 2A VWD, increased proteolysis is as-
sociated with concomitant loss of High–molecular weight
multimers and a bleeding phenotype. Conversely, inherited or ac-
quired ADAMTS13 deficiency or dysfunction results in thrombotic
thrombocytopenic purpura, characterized by an excess of cir-
culating ultralarge VWF with the subsequent development of
platelet-rich thrombi in the microvasculature.29

For many years, it has been recognized that glycosylation profiles
on circulating glycoproteins play critical roles in modulating sus-
ceptibility to proteolysis. In particular, loss of terminal sialic acid
expression has been shown to result in increased proteolysis by
various different proteases.30,31 For example, desialylation of VWF
significantly enhances sensitivity to proteolysis by plasmin, chymo-
trypsin, and cathepsin B. In contrast to this accepted paradigm,
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however, recent data from our laboratory have shown that depletion
of terminal a2-6 linked sialic acid from the N-linked glycans of
VWF specifically inhibits susceptibility to ADAMTS13 proteoly-
sis.32 Furthermore, terminal expression of ABO(H) blood group
determinants on VWF glycans has also been shown to influence
VWF permissiveness to ADAMTS13-mediated proteolysis (in the
order O > B > A > AB).33,34 Site-directed mutagenesis studies
have suggested that glycan expression at Asn-1574 in the VWF
A2 domain adjacent to the ADAMTS13 cleavage site may be of
particular importance in this context.35 Mutation of this Asn residue
with subsequent elimination of the associated glycan chain resulted
in markedly enhanced susceptibility of VWF to ADAMTS13 prote-
olysis. In contrast, mutation of neighboring glycan Asn-1515 had no
such effect. On the basis of these findings, therefore, it is clear that
variations in carbohydrate expression profiles can critically regulate
plasma glycoprotein susceptibility to proteolysis, and thereby in-
fluence normal physiology. Moreover, these alterations in carbohy-
drate structure may involve only subtle changes in terminal glycan
determinant expression. In addition, glycan variation at particular
N-linked sites may also be of specific importance in this regard.

Role of glycans in modulating biological
activity

Previous in vitro studies have demonstrated that modification of
carbohydrate determinants on plasma glycoproteins, by either
exoglycosidase digestion or site-directed mutagenesis, can sig-
nificantly influence key aspects of biological function. It is im-
portant to note, however, that even in normal individuals, some
plasma glycoproteins naturally circulate as different glycoforms
(Table 1). Although these protein isomers contain identical
amino acid compositions, they differ with respect to the number
and/or type of their attached glycan structures. As a consequence of
altered glycosylation profiles, individual glycoforms may demon-
strate clinically relevant differences in their functional properties.
Within the coagulation cascade, there are several notable examples of
naturally occurring, partially glycosylated plasma glycoforms that
exhibit differential functional properties compared with their fully
glycosylated counterparts.

Coagulation is initiated in vivo by the exposure of tissue factor
(TF) on extravascular cells on vascular injury, which then interacts
with activated factor VII (FVIIa) to activate factor X (FX). TF has
N-linked glycosylation consensus sequences at 3 positions (Asn-11,
Asn-124, andAsn-137); however, their contribution to TF procoagulant
activity is subject to debate. TF possesses different glycan structures
depending on whether it was derived from human placenta or gen-
erated via recombinant expression in bacterial or insect cells.36-38

Deglycosylation of placenta-derived TF resulted in a significant
(fourfold) reduction in catalytic rate (kcat) for extrinsic FXase
activity, indicating an important role for N-linked glycosylation in
modulating TF procoagulant function.38 In contrast, previous studies
have reported that recombinant TF expressed in Escherichia coli
possessed similar procoagulant activity to that expressed in
mammalian cells.39 In addition, recent studies have shown that
recombinant TF mutants lacking specific individualN-linked glycan
consensus sequences also exhibit functional activity similar to that
of wild-type TF.40

Human coagulation FX is activated in vivo by FIXa and FVIIa
in the presence of cofactors FVIIIa and TF, respectively. FX pos-
sesses 2 N-linked (Asn-39 and Asn-49) and 2 O-linked (Thr-17 and

Thr-29) glycosylation sites, all of which are contained within the
activation peptide of the zymogen protein. Various reports have
suggested that FX carbohydrate moieties can modulate FX
activation.41-43 Mutagenesis of FX N- and O-linked glycan attachment
sites significantly increased FX activation by FVIIa or FIXa but
exhibited a limited effect on the catalytic efficiency of either the
intrinsic (FIXa/FVIIIa) or extrinsic (TF/FVIIa) FXase complexes.42

Enzymatic desialylation of FX attenuates the rate of activation by
either the intrinsic or extrinsic FXase complex, implying an impor-
tant role for terminal sialic acids in enhancing FXase complex for-
mation.43 Further to their role in FX activation, N-linked (but not
O-linked) glycans on the FX activation peptide have been proposed
to protect FX from rapid clearance via glycan-dependent inter-
actions with macrophages in mice, accounting for its prolonged
plasma half-life in comparison with related vitamin K–dependent
zymogens.44,45

The serine proteinase inhibitor antithrombin constitutes the
major plasma inhibitor of thrombin and circulates as a single-
chain glycoprotein that possesses 4 N-linked glycosylation sites
at Asn-96, Asn-135, Asn-155, and Asn-192, respectively. These
glycan structures exist predominantly in the form of disialylated
biantennary complex chains.46 Two different plasma glycoforms
of antithrombin (a- and b-antithrombin) have been described.47

Fully glycosylated a-antithrombin accounts for the majority
of total plasma antithrombin. In addition, a minor glycoform
(b-antithrombin) contributes 10% to 15% of total plasma
antithrombin. This glycoform is identical to a-antithrombin but
for the absence of any N-linked oligosaccharide expression at
Asn-135.48 The loss of this specific glycan chain results in
markedly enhanced protease inhibitor activity.47,49 As a conse-
quence, despite representing only a small minority of plasma
antithrombin, b-antithrombin has been suggested to be the
principal mediator of antithrombin protease inhibitor activity in
vivo.50 Kinetic and crystallographic analyses of the molecular
basis underlying the enhanced activity of b-antithrombin have
demonstrated that the presence of the oligosaccharide structure at
Asn-135 sterically impedes a conformational change required
to activate antithrombin on heparin/heparan binding.51 Thus,
absence of this steric hindrance at Asn-135 in b-antithrombin
enables rapid adoption of an active conformation once bound to
heparin, thereby enhancing its inhibitory activity.52

Protein C (PC), similar to antithrombin, is crucial for the
regulation of thrombin generation in vivo. PC circulates in
zymogen form and is activated by the thrombin–thrombomodulin
complex. After activation by the thrombin–thrombomodulin
complex, activated PC (APC) inhibits further thrombin genera-
tion by proteolytic degradation of procoagulant-activated cofac-
tors FVa and FVIIIa. PC possesses 4 N-linked glycosylation
sequons: 1 located within its first epidermal growth factor (Asn-
97) and the remaining 3 located in its protease domain (Asn-248,
Asn-313, and Asn-329).

In addition, 3 different glycoforms of human PC have been de-
scribed in normal human plasma: a-PC accounts for 70% of total
plasma PC and is characterized by the presence of complex
biantennary oligosaccharide chains at all 4 N-linked glycosylation
sites, b-PC accounts for approximately 25% of total plasma PC and
differs from a-PC in that it is not glycosylated at Asn-329,53 and g-PC
represents only 5% of total plasma PC and lacks oligosaccharide
chains attached at both Asn-329 and Asn-248. Several lines of
evidence support the hypothesis that these different glycoforms of PC
have important biological differences. For example, site-directed
mutagenesis studies have suggested that PC activation by the
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thrombin–thrombomodulin complex is modulated by the presence of
N-linked oligosaccharides at Asn-313.54 APC anticoagulant activity
may also be subject to modulation by its glycan structures, but reports
on its importance have been conflicting. Specifically, a naturally
occurring PCmutation encoding only b-PC (N329T) exhibited mildly
reduced anticoagulant activity when purified from plasma, activated,
and assayed for its ability to degrade FVa.

In contrast, a recombinant version of b-APC in which glycosyl-
ation at Asn-329 was eliminated exhibited approximately twofold in-
creased anticoagulant activity compared with wild-type recombinant
APC.54,55 In addition to its anticoagulant role, APC also possesses

potent anti-inflammatory and antiapoptotic activity that is mediated at
least in part by activation of protease-activated receptor 1 (PAR1).56

We have recently demonstrated that a recombinant APC mutant that
mimics the glycosylation pattern of b-APC (APC-N329Q) exhibits an
increased capacity to maintain endothelial cell barrier integrity and
inhibit endothelial cell apoptosis compared with wild-type APC.55

Interestingly, Asn-329 is located proximal to a putative PAR-1 binding
exosite on the surface of the APC protease domain,57 and recent
work has indicated that elimination of the oligosaccharide chain at
this position accelerates the rate of PAR1 cleavage by APC,
possibly by facilitating increased PAR1 access to the binding

Table 1. Coagulation glycoproteins—carbohydrate composition and biological relevance

Haemostatic
glycoprotein N-linked sites O-linked sites

Functional significance of glycan
structures

Physiological and
pathological glycoforms

Fibrinogen 4 0 Promotes fibrinogen solubility93 Pathological: fibrinogens

Lima,80 Caracas II,81 Niigata,94

Pontoise, Asahi,82 and

Kaiserslautern95

Prothrombin 3 0 None described None described

TF 3 ND Glycans modulate procoagulant

activity of TF36-38

None described

Factor V 26 ND Glycans modulate intracellular

trafficking from ER to Golgi.13,14

N-linked glycans also influence FVa

phospholipid binding affinity and FVa

susceptibility to APC mediated proteolysis.58-60

Physiological: FVa1 and FVa2

Pathological: factor V Liverpool

(Ile359Thr)79

Factor VII 2 2 Influence hepatic clearance and

plasma half-life of recombinant FVIIa.

Loss of O-linked glycans impairs

procoagulant activity of FVIIa in

plasma.96

None described

Factor VIII 24 7 Glycans influence FVIII folding and

intracellular trafficking during

biosynthesis.13,14 N-linked glycans

also regulate FVIII uptake by

dendritic cells91,97 and clearance

by the ASGPR.

Pathological: factor VIII

(Met1772Thr) and (Ile566Thr) 25

Factor IX 2 5 None described Pathological: factor IX

(Arg94Ser) 83

Factor X 2 2 Both N- and O-linked glycans

are negative modulators of FX

zymogen activation.42 N-linked

glycans also regulate FX clearance.45

None described

Factor XI 5 ND None described None described

Factor XII 2 7 None described None described

Factor XIII 3 ND None described None described

VWF 12 10 N-linked and O-linked glycans

influence VWF synthesis, secretion,

and biological activity.27,35,98 Glycan

expression also regulates susceptibility

to ADAMTS13 proteolysis34 and is a

critical determinant of VWF clearance.67

Physiological: ABO blood

group–specific glycoforms

PC 4 0 Modulate PC zymogen activation by

thrombin thrombomodulin complex.54

Glycans also influence the anticoagulant

and antiinflammatory properties of APC.55

Physiological: a-protein C,

b-protein C, g- protein C53

Protein S 3 ND None described Pathological: protein S Heerlen

(Ser460Pro) 84

Antithrombin 4 0 Glycans influence conformational

changes in antithrombin after heparin binding,

and thereby regulate serpin activity.47,51

Physiological: a-antithrombin

and b-antithrombin47

Pathological: antithrombin

(Ile7Asn),99 antithrombin

(Ser82Asn) 100

ND, not determined.
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exosite on APC (E. M. Gleeson, J. S. O’Donnell, and R. J. Preston,
unpublished data). On the basis of these findings, therefore, it is
clear that the different APC glycoforms present in normal human
plasma exhibit important differences in their biological activities
that are likely to be of physiological and pathological relevance.

Partial N-linked glycosylation resulting in the synthesis of het-
erogeneous glycoforms with distinct biological properties has also
been reported for a number of important procoagulant plasma gly-
coproteins. Human FV is abundantly glycosylated, with both N- and
O-linked carbohydrate structures accounting for 15% to 25% of the
total molecular mass. FV is activated by limited specific proteolysis
by either thrombin or FXa and then serves as a critical cofactor in the
prothrombinase complex. Subsequently, FVa is inactivated by APC-
catalyzed proteolysis at Arg-306 and Arg-506. Inactivation of FVa
by APC plays a critical role in down-regulating thrombin formation.
Two different glycoforms of FV are present in the normal human
circulation. As a consequence, activation by thrombin results in the
generation of 2 distinct forms of FVa (FVa1 and FVa2) that differ
only with respect to their glycosylation profiles.58 Site-directed mu-
tagenesis studies have established that unlike FVa1, the FVa2
glycoform appears to result from partial glycosylation at Asn-2181
in the C-terminal C2 domain.59 Importantly, several reports have
shown that this variation in the N-linked glycan component of FVa
significantly modulates its functional properties.58-60 For example,
the affinity of the human FVa2 glycoform binding to anionic phos-
pholipids was approximately threefold higher than that of FVa1.

59

Moreover, FVa1 and FVa2 also displayed differential susceptibili-
ties to APC-mediated proteolysis. In particular, at low phospholipid
concentrations, FVa1was inactivated at a 15-fold slower rate compared
with FVa2.

60 These distinct biological differences serve as a further
example of how the relative concentrations of naturally occurring co-
agulation protein glycoforms have the potential to markedly influence
overall thrombin generation at sites of vascular injury.

Role of glycans in modulating clearance

N- and O-linked carbohydrate structures play major roles in
determining the rate of clearance of many human glycoproteins
from plasma. Terminal sialic acids are of critical importance in
this regard. The removal of capping sialic acid residues leading to
exposure of penultimate Gal and GalNAc moieties typically re-
sults in markedly enhanced glycoprotein clearance. In mammals,
desialylation is achieved by a family of 4 sialidases (also known
as neuraminidases; Neu1-Neu4) that catalytically remove
a-glycosidase-linked sialic acid groups from carbohydrate struc-
tures.61 This clearance is mediated primarily via the hepatic
lectin asialoglycoprotein receptor (ASGPR or Ashwell receptor).
A member of the calcium-dependent (C-type) lectin receptor
family abundantly expressed in the liver, ASGPR is composed of
2 homologous trans-membrane polypeptides (Asgr-1 and Asgr-2)
that assemble into a hetero-oligomer on the cell surface. The
C-terminal extracellular domains of Asgr-1 and Asgr-2 form a
carbohydrate recognition domain that selectively binds glycoproteins
expressing either b-D-galactose (bGal) or N-acetyl-D-galactos-
amine (GalNAc) terminal sugar determinants in a calcium-
dependent manner. However, these bGal and GalNAc residues
are more typically expressed on plasma glycoproteins as sub-
terminal moieties on oligosaccharide chains capped by sialic
acid. If the terminal sialic acid residue is lost, the ASGPR can
bind the exposed bGal or GalNAc and mediate endocytosis.

The critical importance of sialic acid expression in determining
plasma half-life has been observed for several different coagulation
glycoproteins. Enzymatic removal of terminal sialic acid residues
from the abundantly sialylated VWF ex vivo markedly reduces
plasma half-life in rabbits (240 vs 5 minutes for normal and
desialylated VWF, respectively).62 In keeping with this observa-
tion, genetic inactivation of a specific sialyltransferase (ST3Gal-
IV) in a transgenic mouse also resulted in significantly reduced
plasma VWF levels as a consequence of a twofold increased rate of
clearance.63 The importance of the ASGPR in modulating phys-
iological VWF clearance is further underlined by recent data dem-
onstrating that VWF half-life is significantly increased in ASGPR-1
knockout mice.64

In addition to its role in regulating VWF plasma clearance, the
ASGPR may also modulate the clearance of a number of other
coagulation glycoproteins, including FVIII. As previously de-
scribed, FVIII is heavily glycosylated, and the N-linked glycans of
human FVIII are commonly capped by negatively charged sialic
acid residues.65 Surface plasmon resonance studies have demon-
strated that FVIII also binds the ASGPR with high affinity
(Kd 5 2 nM). This interaction is mediated through the N-linked
carbohydrate structures clustered within the B domain of FVIII.
Furthermore, administration of an ASGPR antagonist significantly
inhibited FVIII clearance in mice, suggesting that the ASGPR
may contribute to normal physiological clearance of FVIII from
plasma.66

Similar to sialic acid, ABO(H) blood group determinants are also
expressed as terminal sugar residues on the carbohydrate structures
of both VWF and FVIII. This ABO(H) expression has direct clinical
relevance, as ABO blood group is major determinant of plasmaVWF
levels. Group O individuals have 25% less circulating VWF com-
pared with non-O individuals (group A, B, or AB).67,68 Moreover,
plasma VWF levels are even lower in individuals with the rare
Bombay blood group phenotype, in which H antigens are not
expressed.34 The effect of ABO(H) blood group antigens on VWF
levels is explained by differences in clearance rates between each
blood group. As such, the VWF plasma half-life is significantly
shorter in normal group O vs non-O individuals (10.0 vs 25.5 hours,
respectively).67 Nevertheless, the molecular mechanism underlying
the enhanced clearance of group O VWF remains unknown.
However, given that the ASGPR selectively binds either GalNAc
or Gal residues, it seems likely that another clearance receptor is
responsible for modulating this phenomenon. A weak effect of the
Secretor blood group locus on plasma VWF levels has also been
reported.69 Interestingly, this blood group system is similar to ABO,
in that it is characterized by the presence or absence of specific
terminal carbohydrate determinants on oligosaccharide structures.
To date, it remains unclear whether this Secretor influence is also
modulated through an effect on VWF clearance.

In addition to the ASGPR, a variety of other lectin receptors has
been characterized. These lectins typically contain a carbohydrate
recognition domain that has binding specificity for particular ter-
minal glycans moieties expressed on N- and/or O-linked carbohy-
drate structures. Examples of other lectins that have been implicated
in modulating glycoprotein clearance include Mac-1 (aMb2), the
macrophage galactose lectin, and the scavenger receptor C-type
lectin.70 The relative contribution of these individual receptors in
mediating clearance of individual plasma coagulation glycoproteins
has not yet been defined. However, recent data have demonstrated
that macrophage-mediated endocytosis may be important in the
physiological clearance of both VWF and FVIII.71 Furthermore, data
from our laboratory have shown that the rate of VWF clearance by
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macrophages is markedly influenced by VWF glycan expression.72

Recent data have also demonstrated that galectin 1, galectin 3, and
siglec 5 can also all bind to human VWF.73,74 In addition, other
putative lectin-like receptors that may be involved in determining
plasma levels of the VWF-FVIII complex have been identified
through genome-wide association studies and include C-type lectin
domain family 4 member M and stabilin 2.75 Thus, although the
molecular mechanisms responsible for modulating the clearance of
glycoproteins from plasma remain poorly understood, carbohydrate
expression is of critical importance in regulating the rate of
clearance.

Aberrant glycosylation can cause
human disease

Although rare, almost 50 different congenital disorders of glycosyl-
ation have been identified.76 These disorders typically involve
defects in N-linked glycosylation and are associated with severe
multiorgan clinical phenotypes including skeletal and neurological
abnormalities. Significant coagulopathies have also been observed in
childrenwith congenital disorders of glycosylation.76-78 In particular,
factor XI, PC, antithrombin, and protein S are commonly deficient.
The molecular mechanism or mechanisms responsible for the re-
duced plasma levels of these specific coagulation glycoproteins
remains unclear. Nevertheless, significant thrombotic and bleeding
complications are well recognized as constituting important clinical
features of these conditions.77,78

Aberrant glycosylation of specific proteins, including coagulation
factors, has also been implicated in the etiology of human pathology.
Point mutations that result in the introduction of novel N-linked
glycosylation sites are of particular importance. For example, the
amino acid substitution Ile359Thr within the heavy chain of FV (FV
Liverpool) creates a newN-linked glycosylation consensus sequence,
such that an additional glycan chain is expressed at Asn-357.79 As a
result, the FVa-Ile359Thr molecule is resistant to APC-mediated
proteolysis, and consequently, FV Liverpool is associated with a
prothrombotic phenotype. A number of different amino acid sub-
stitutions that introduce additional N-linked glycosylation sites have
also been described in patients with congenital dysfibrinogenemia.
These include fibrinogens Lima (Aa Arg141Ser),80 Caracas II
(Aa Ser434Asn),81 Asahi (g Met310Thr),82 and Kaiserslauten
(g Lys380Asn). In each of these cases, the attachment of an extra
N-linked glycan causes impaired functional activity and a conse-
quent bleeding tendency. Similarly, an FIX gene mutation that
results in an extra glycosylation site has been identified in a family
with hemophilia B.83 Interestingly, the Arg94Ser substitution
actually leads to the introduction of a new O-linked glycosylation
site in the second epidermal growth factor-like domain of FIX,
which in turn markedly attenuates activation by FXIa.

In contrast, mutations leading to the loss of a single specific N-
linked glycosylation site have also been implicated in disease pa-
thology. Protein S is a plasma glycoprotein that is important in
regulating thrombin generation in vivo. First, protein S functions as
a nonenzymatic cofactor for APC inactivation of FVa and FVIIIa.
In addition, protein S may also regulate hemostasis by APC-
independent inhibition mechanisms. Protein S Heerlen is found in
approximately 0.5% of the population and is characterized by
a Ser to Pro substitution at position 460.84 This change results
in the loss of N-linked glycosylation at Asn-458 and has been
associated with an increased risk for venous thromboembolism.85

The clinical phenotype relates in part to the fact that the Ser460Pro
substitution results in reduced plasma protein S levels because of
an enhanced clearance.86 In addition, protein S Heerlen demonstrates
reduced cofactor activity for APC-inactivation of FVIIIa.85

Glycan modification: therapeutic implications
and opportunities

As summarized in this review, carbohydrate structures on human
coagulation proteins play essential roles in determining stability,
circulatory half-life, and biological activity. As a consequence, in
the production of biopharmaceuticals, glycosylation is of critical
importance. In particular, for the synthesis of recombinant glyco-
protein therapeutics, it is well established that glycosylation pro-
files can vary significantly, depending on the cell line chosen for
expression. Moreover, recombinant proteins generated in vitro can
also demonstrate significant heterogeneity in terms of their glycan
profiles. This obviously has major implications, given that many
studies of coagulation protein structure and function have used re-
combinant proteins that may express carbohydrate determinants that
differ markedly to those expressed on the native human proteins.
Unsurprisingly, these glycan variations also can have important
therapeutic sequelae. For example, recombinant FVIIa (rFVIIa;
NovoSeven) used for the treatment of patients with hemophilia
with inhibitors contains 2 N-linked and 2 O-linked glycans and is
expressed in baby hamster kidney (BHK) cells.87 Although all 4
sites are glycosylated in the purified rFVIIa molecule, approxi-
mately 10% of rFVIIa molecules from BHK cells have N-linked
glycans lacking terminal sialylation. Moreover, a further 30% of
the rFVIIa possesses significantly reduced N-linked sialic acid
expression. This variable sialylation has important consequences in
determining the plasma half-life of therapeutic rFVIIa, as hyposialy-
lated rFVIIa is rapidly cleared from the circulation through the
hepatic ASGPR.88

Patients with hemophilia A can be treated using either plasma-
derived or recombinant FVIII products. Unsurprisingly, glycan
expression differs significantly between plasma-derived and recom-
binant FVIII.89 Moreover, glycosylation variation has also been
described between different commercial recombinant FVIII prod-
ucts that have been synthesized in different mammalian cell lines
(including Chinese hamster ovary and BHK).89 For example,
rFVIII from Chinese hamster ovary cells express the NeuGc
epitope, which accounts for 0.5% of total sialic acid.90 In contrast,
Gal-a(1,3)Gal structures have been identified on ;3% of BHK-
expressed rFVIII. Importantly, high levels of antibodies against
NeuGc and Gal-a(1,3)Gal both occur naturally in most humans.
Interestingly, recent studies have also demonstrated that specific
glycan chains on FVIII may influence dendritic cell uptake
mediated through the macrophage mannose receptor (CD206).91

Thus, removal of the mannosylated sugars at Asn-239 (A1 domain)
or Asn-2118 (C1 domain) abrogated dendritic cell endocytosis of
FVIII and presentation to CD41 T-cells. Importantly, these data
raise the possibility that variations in glycan expression on
recombinant FVIII products may influence immunogenicity
and, consequently, risk for inhibitor development in patients with
hemophilia.92

As our understanding of the critical role played by glycan
structures in regulating the biological activity and half-life of plasma
glycoproteins continues to further develop, it seems likely that
significant opportunities for the development of novel therapeutic
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agents will arise. In particular, glycoengineering involving targeted
selective carbohydrate modification may enable the development of
recombinant glycoprotein therapies with improved clinical efficacy.
From the data presented in this review, the wide spectrum of
coagulation factor properties that can be influenced by protein
glycosylation are readily apparent. Manipulation of carbohydrate
structures may be useful in prolonging plasma half-life of recom-
binant clotting factor concentrates; for example, through hyper-
sialylation. Alternatively, glycoengineering may be useful in reducing
the immunogenicity of recombinant therapeutic glycoproteins. Clearly,
even minor glycan modification of terminal sugar moieties, or indeed
the loss or introduction of a specific glycosylation site, may be enough
to develop a glycoform with enhanced therapeutic properties.
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