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Key Points

• Hermansky-Pudlak syndrome
type 2 confers a moderate risk
for hemophagocytic
lymphohistiocytosis.

Genetic disorders of lymphocyte cytotoxicity predispose patients to hemophagocytic

lymphohistiocytosis (HLH). Reduced lymphocyte cytotoxicity has been demonstrated in

Hermansky-Pudlak syndrome type 2 (HPS2), but only a single patient was reported who

developed HLH. Because that patient also carried a potentially contributing heterozygous

RAB27Amutation, the risk for HLH inHPS2 remains unclear.We analyzed susceptibility to

HLH in the pearlmousemodel of HPS2. After infectionwith lymphocytic choriomeningitis

virus, pearl mice developed all key features of HLH, linked to impaired virus control

caused by amoderate defect in CTL cytotoxicity in vivo. However, in contrast to perforin-deficient mice, the diseasewas transient, and

all mice fully recovered and controlled the infection. An additional heterozygous Rab27a mutation did not aggravate the cytotoxicity

defect or disease parameters. In the largest survey of 22HPS2patients covering 234 patient years,we identified only 1 additional patient

with HLH and 2 with incomplete transient HLH-like episodes, although cytotoxicity or degranulation was impaired in all 16 patients

tested. HPS2 confers a risk for HLH that is lower than in Griscelli or Chediak-Higashi syndrome, probably because of a milder defect in

cytotoxicity. Preemptive hematopoietic stem cell transplantation does not appear justified in HPS2. (Blood. 2013;121(15):2943-2951)

Introduction

Hermansky-Pudlak syndrome type 2 (HPS2) is a rare autosomal-
recessive disorder of lysosomal trafficking caused by mutations
in the gene encoding the b3A subunit of the adaptor protein 3
complex (AP-3).1,2 Patients with HPS2 display oculocutaneous
albinism, bleeding diathesis, neutropenia, interstitial lung disease,
pulmonary fibrosis, and suffer from recurrent infections.3 Immu-
nological studies have shown that AP-3 deficiency leads to a defect
in cytotoxicity of natural killer (NK) cells and cytotoxic T cells
(CTL) as the result of impaired biogenesis and degranulation of
perforin-containing lytic granules.4-7 Defective cytotoxicity caused
by impaired degranulation also is observed in other disorders of

lysosomal trafficking, such as Chediak-Higashi syndrome (CHS)
and Griscelli syndrome type 2 (GS2), which are associated with
albinism and in familial hemophagocytic lymphohistiocytosis
(FHL) types 3-5.8,9 All of these diseases confer a high risk of
developing hemophagocytic lymphohistiocytosis (HLH), a severe
disorder of immune homeostasis that leads to a life-threatening
hyperinflammatory disease. Hematopoetic stem cell transplanta-
tion (HSCT) can eliminate this risk and is therefore an important
consideration at diagnosis.9,10

We have previously described 1 patient with HPS2 who de-
veloped severe HLH that was eventually lethal.5 This case, however,
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is the only one of severe HLH among 12 published patients with
HPS2.2,5-7,11-14 Because this patient also carried a heterozygous
RAB27Amutation (causing GS2, if homozygous), it remains unclear
whether HPS2 per se confers a risk for HLH or if the HLH observed
in that patient was attributable to this additional mutation. Transient
episodes of HLH were thereafter described in another patient with
HPS2,6 and 1 additional patient had recurrent inflammatory episodes
that did not fulfill all diagnostic criteria for HLH.7 Overall, the risk of
developing HLH in HPS2 remains incompletely defined. However,
this risk is important for clinical decision-making because preventive
treatment is available in the form of HSCT.

In this study, we used 2 approaches to address this problem. First,
we analyzed pearl mice, who represent a mouse model for AP-3-
deficiency, in an experimental system known to provoke HLH in
mouse strains with cytotoxicity defects. Although mice deficient
in perforin, Rab27a, Lyst, Unc13d, or Syntaxin-11 do not develop
HLH spontaneously, they develop all clinical features of the disease
after infection with lymphocytic choriomeningitis virus (LCMV).15-20

This approach allowed us to compare the susceptibility to HLH of
pearl mice with that of other cytotoxicity mutants after a defined
viral trigger and to assess the impact of an additional heterozygous
Rab27amutation on the phenotype. Second, we performed a survey
of all 12 published and 10 previously unreported HPS2 patients to
document the clinical evolution of their disease and—if available—
the extent of their cytotoxicity defect. Our data show that the risk of
developing HLH in HPS2 is relatively low because of a milder
cytotoxicity defect. Considering the small risks and serious long-term
pulmonary complications of the disease, which are not influenced by
HSCT,21 pre-emptive HSCT is probably not indicated in HPS2.

Methods

Mice and virus

C57BL/6 mice were purchased from Charles River Laboratories (Sulzfeld,
Germany). Perforin-deficient (PKO) mice were originally generated on a
C57BL/6 background by D. Kägi22 and were kindly provided by H. Pircher
(IMMH, Freiburg, Germany). B6Pin.C3-Ap3b1pe/J (stock no. 003215;
pearl23) mice (backcross to C57BL/6) were purchased from The Jackson
Laboratory (Bar Harbor, ME) and C57BL/6J-Rab27aash/J (ashen) mice
backcrossed to C57BL/6 for 10 generations were kindly provided by G. de
Saint Basile (INSERM, Paris, France).19 Pearl mice carrying a heterozygous
Rab27a mutation were obtained by mating of pearl and ashen mice (pearl-
ash1/2). Mice were kept in an individual ventilated cage unit (BioZone, Kent,
UK) and infected at the age of 6-12 weeks. The lymphocytic choriomeningitis
virus WE (LCMV-WE) was provided by H. Pircher (IMMH, Freiburg,
Germany). LCMV was grown on MC57G fibroblasts and stored at –80°C
until use. Mice were injected intravenously with 200 plaque-forming units
(pfu) or 104 pfu as indicated. A focus-forming assay was used as described to
quantify virus in organs from infected mice.24

HLH biomarkers in mice

Ferritin serum levels were measured by use of the Roche Modular Analytics
Evo. Levels of sCD25 were analyzed with the mouse IL-2Ralpha DuoSet kit
(R&D Systems) according to the instructions of the manufacturer. The
interferon (IFN)-g enzyme-linked immunosorbent assay was performed as
described previously.17 Blood cell counts were determined with the Sysmex
KX-21 hematology analyzer.

Lymphocyte phenotyping and intracellular cytokine staining

For flow cytometry, the following antibodies were used: CD3e (145-2C11;
ebioscience), CD8a (53-6.7; BD), CD107a (1D4B; ebioscience), NK1.1

(PK136; BD), IFN-g (XMG1.2; BD), tumor necrosis factor-a (TNF-a:
MP6-XT22; BD), KLRG1 (2F1; eBioscience), CD127 (A7R34; eBio-
science), CD44 (IM7; eBioscience), and CD62L (MEL-14; eBioscience). To
analyze the intracellular IFN-g or TNF-a production of CTL, spleen cells
were restimulated with gp33 peptide (PolyPeptide, France) for 3 hours in the
presence of monensin (BD). After surface staining, cells were fixed,
permeabilized, and stained intracellularly for the respective cytokines.

Degranulation and cytotoxicity assays

To analyze NK-cell degranulation, mice were injected intraperitoneally with
200 mg of polyinosinic acid/polycytidylic acid (poly (I:C); Sigma-Aldrich).
One day later, spleen cells were restimulated for 2 hours with the NK-sensitive
YAC-1 target cells or medium as a control in the presence of anti-CD107a
antibody. Degranulation of NK1.11CD32 NK cells was determined by flow
cytometry. NK-cell cytotoxicity was determined by a 5-hour incubation of
spleen cells with 51chromium-loaded YAC-1 target cells. Quantification of
NK cells was performed by flow cytometry to calculate the NK-cell/target
ratio. Surface expression of CD107a and intracellular IFN-g expression of
CD81CD31 CTL were determined by flow cytometry. CTL cytotoxicity was
determined in a 5-hour 51chromium-release assay by incubating spleen cells as
effectors with either EL-4 cells loaded with gp33 or LCMV-infected MC57G
cells as targets.25 To calculate the CTL/target ratio, CD8 T cells were quan-
tified by antibody staining.

Adoptive transfer experiments

Splenic CD8 T cells from mice that had been infected with LCMV 8 days
earlier were magnetic-activated cell sorting (MACS)-purified with use of
the MACS CD8a1 T Cell Isolation Kit II (Miltenyi Biotec). Purity was
.90% in all experiments. A total of 2 3 106 purified CD8 T cells were
transfused into C57BL/6 mice that had been infected with 104 pfu LCMV
10 hours before, and after additional 18 hours, splenic virus titers were
determined.26

Histology

Organs were fixed with 4% formaldehyde and embedded in paraffin.
Sectioning, staining, and analysis were performed as described previously.17

Patients

We performed a Pubmed search for “Hermansky-Pudlak Syndrome,”
“Hermansky-Pudlak syndrome type 2,” “Adaptor protein 3,” and “AP3B1”
to identify all published HPS2 patients. We also contacted colleagues involved
in the diagnosis of primary immunodeficiencies and HLH to identify additional
patients. Material from 4 patients with HPS2 had been referred to the CCI
Advanced Diagnostics Unit for functional studies. We contacted the
corresponding authors of all relevant publications and all referring physicians
to obtain current clinical information. Written informed consent for im-
munologic evaluation was obtained from the patients or their legal guardians
according to the guidelines of the Declaration of Helsinki, as approved by the
institutional review board at the University of Freiburg. NK-cell and CTL
cytotoxicity and degranulation assays were performed according to local
protocols.27

Statistical analysis

Tests were performed with the GaphPad InStat software version 3.06. The
comparison between data were evaluated with a one-way analysis of variance
with post-test. Differences were considered significant at a P , .05.

Results

Pearl mice develop transient HLH after LCMV infection

To evaluate whether AP-32deficient mice are at risk of develop-
ing HLH, we infected pearl mice with 200 pfu of LCMV-WE
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intravenously. Infection with LCMV has previously been shown to
trigger HLH in a number of mouse strains representing models for
human defects in lymphocyte cytotoxicity.15-19 To model the genetic
situation of the single HPS2 patient who developed lethal HLH,5

we also infected pearl mice carrying an additional heterozygous
Rab27a mutation (pearl-ash1/2). Homozygous Rab27a-deficient
mice (ashen)19 and PKO15,18 were included as disease controls, and
wild-type C57BL/6 mice served as negative controls. Because viral
infections per se can cause a number of features of HLH in mice
and humans, we applied the full set of HLH diagnostic criteria28 to
the LCMV-infected mice with one exception: a decrease in ear
temperature, reflecting circulatory centralization, was counted as
fever. Thus, mice were considered to undergo HLH, if at least 5 of
the 8 human diagnostic criteria were fulfilled. Elevation of serum

levels of IFN-g and elevation of glutamic-pyruvic transaminase
(GPT) and lactate dehydrogenase (LDH), which are also character-
istic of human HLH, also were assessed and taken as supporting
evidence.

After infection with LCMV, wild-type mice showed no changes
in body weight and temperature, whereas ashen and PKO mice
developed a significant decrease in body weight and temperature
until the end of the experiment (d12). Pearl mice and pearl-ash1/2

mice also displayed weight loss and a decrease in body temperature
starting 6 days after infection but eventually recovered starting at
d9 (Figure 1A-B). At the time point of the most obvious disease
(d8), wild-type mice showed leukocytosis, whereas pearl and
pearl-ash1/2 mice had leukopenia that was even more pronounced
in ashen and PKO mice (Figure 1C). Pearl, pearl-ash1/2, ashen,

Figure 1. Pearl mice develop transient HLH after

LCMV infection independent of the presence of an

additional Rab27a mutation. C57BL/6, pearl, pearl-

ash1/2, ashen, and PKO mice were infected intrave-

nously with 200 pfu of LCMV-WE, and (A) body weight

and (B) temperature were monitored daily. Dashed

lines indicate the detection limit. (C) Blood counts were

analyzed on d8 after infection. The white line indicates

the mean, and the gray area indicates the range of

values of naı̈ve pearl mice. D8 serum levels of (D)

ferritin, (E) sCD25, and (F) IFN-g are shown. Graphs

show pooled data of 2 independent experiments with 3-

4 mice per group except for ashen mice, in which

results from 3 mice obtained in 2 independent experi-

ments are shown. n.s. indicates not significant (P .

.05); *P , .05; **P , .01; ***P , .001.
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and PKO mice showed anemia and all groups, including wild-type
mice, developed thrombocytopenia (Figure 1C). Serum levels of
ferritin (Figure 1D), sCD25 (Figure 1E), and IFN-g (Figure 1F)
were elevated in all mutant mice, with the greatest values found in
ashen and PKO mice. Splenomegaly was observed in all groups,
including wild-type mice, whereas triglycerides were increased in
PKO but not in pearl mice (Figure 2A-B), all mutant, but not
wild-type mice showed significant elevation of GPT and LDH

as well as histopathological evidence of hemophagocytosis
(Figure 2C). Finally, splenic NK cells from pearl mice showed
impaired degranulation and cytotoxicity in response to NK-
sensitive YAC-1 target cells 24 hours after injection of poly(I:C),
although the response of individual mice was highly variable
(Figure 3).

In summary, pearlmice developed 7 of 8 HLH criteria on d8 after
LCMV infection. However, the abnormalities in some parameters

Figure 2. Liver disease and histopathological alterations in pearl mice undergoing LCMV-induced HLH. C57BL/6, pearl, pearl-ash1/2, ashen, and PKO mice were

infected with LCMV-WE and 8 days later, serum levels of (A) GPT, LDH, and triglycerides (TG) were determined. (B) Splenomegaly was analyzed by calculating spleen weight

in percent of body weight. (C) Representative liver sections stained with anti-F4/80 (original magnification, 103) obtained at day 8 after infection. Lower left inset:

semiquantitative analysis of hemophagocyting macrophages as assessed in 10 high-power visual fields (403) per mouse. (1) indicates rare;1, few; and11, frequent. Scale

bars represent 100 mm. n.s. indicates not significant (P . .05); *P , .05; **P , .01.

Figure 3. Impaired NK-cell function in pearl mice.

C57BL/6, pearl, and PKO mice were injected in-

traperitoneally with 200 mg of poly (I:C). At 24 hours

later, spleen cells were restimulated for 2 hours with

YAC-1 target cells or medium as a control in the

presence of anti-CD107a antibody (A-B). (A) Repre-

sentative histograms of NK1.11CD32 NK cells are

shown. Dashed line indicates medium control; solid

line indicates restimulation with YAC-1 cells. (B)

Degranulation is shown as increase of CD107a

expression on NK1.11CD3- cells (DCD107a) after

restimulation with YAC-1 cells compared with medium

control. (C) NK-cell cytotoxicity was determined in

a 5-hour 51chromium release assay on YAC-1 target

cells. Quantification of NK cells was performed by flow

cytometry. Representative data for 3 independent

experiments with 3-5 mice/group are shown.
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were less severe than in ashen or PKO mice and pearl mice
recovered from the disease without any treatment. Thus, pearl mice
had regained body weight and normalized ear temperature, leukocyte
counts, and serum levels of ferritin, sCD25, and IFN-g but retained
some thrombocytopenia and splenomegaly at d12 after infection
(supplemental Figure 1; see the Blood Web site). Of note, the
additional heterozygous Rab27amutation did not enhance any of the
disease parameters in pearl mice.

Recovery from HLH in pearl mice is associated with eventual

virus elimination

In our recent study in mouse models of CHS, we found that HLH
manifestations were associated with the persistence of LCMV.17

We therefore analyzed virus elimination kinetics in the different
strains in spleen, liver, and lung. Splenic viral titers were com-
parable in wild-type, pearl, and PKO mice at day 4 after infection
(Figure 4A). However, although wild-type mice had almost
eliminated the virus by day 8 after infection, pearl and pearl-ash1/2

mice retained a virus load that was similar to that of ashen and PKO
mice (Figure 4A). At this time point, spread of LCMV to lungs and
livers was observed in all mutant mice (Figure 4B). Interestingly,
determination of viral titers on day 12 after infection revealed that
pearl and pearl-ash1/2 mice had eliminated LCMV below
detection limit in all investigated organs, whereas ashen and PKO
mice developed long-term virus persistence (Figure 4A-B). Thus,
the presence of HLH correlated with loss of virus control in these
cytotoxicity mutants as well.

Pearl CTL have a defect in degranulation and cytotoxicity that

contributes to delayed virus control

Pearl mice show a number of immunological defects, including
lack of NKT cells, defects in antigen presentation, and impaired
cytotoxicity in vitro.29-33 To determine whether reduced cytotoxicity
was a critical factor for the impairment of virus control and de-
velopment of HLH, we analyzed the capacity of pearl CTL to
degranulate and to lyse LCMV-infected target cells in vitro and to
control LCMV infection in vivo. Eight days after infection with
LCMV, pearl CTL showed a moderate but significant reduction in
degranulation in response to the immunodominant LCMV gp33
peptide compared with wild-type C57BL/6 mice (Figure 5A-B). This
degranulation defect was reflected in a reduced ex vivo cytotoxicity
on LCMV-infected target cells (Figure 5D, left), which was more
pronounced when CTL activity was analyzed on target cells loaded
with a limiting concentration of gp33 peptide (10210 M; Figure 5D,
right). We then transfused MACS-purified activated CTL from pearl
or C57BL/6 control mice into mice that had been infected with 104

pfu LCMV 10 hours earlier and determined virus titers in the spleen
after additional 18 hours. In this short-term protection assay, virus
control depends on perforin-mediated cytotoxicity.26 While trans-
fusion of activated wild-type CTL could clear the infection in this
short-term assay, pearl CTL were not able to fully control the virus
(Figure 5C). These data indicated that the CTL cytotoxicity defect
contributed to the lack of virus control.

Pearl CTL are phenotypically and functionally altered on

d8 after LCMV infection but regain functionality after

virus elimination

We have recently shown in a mouse model of FHL-4 that HLH
in cytotoxicity mutant mice is accompanied by characteristic phe-
notypic and functional alterations of virus-specific CD81 T cells.20

We therefore analyzed the production of intracellular IFN-g upon
gp33 stimulation of spleen cells obtained on days 8 and 12 after
LCMV infection. On day 8 after infection, the total frequency of IFN-
g2producing CTL was similar (data not shown), but the relative
frequency of IFN-ghigh CD81 T cells was lower in pearl and PKO
compared with control mice (Figure 6A). Moreover, the fraction of
cells expressing TNF-awas reduced in the 2 mutant strains compared
with control mice (Figure 6B). However, at day 12 the staining pat-
tern for both cytokines returned to normal in pearlmice, whereasPKO
CTL remained less responsive to antigen stimulation (Figure 6A-B). A
similar pattern was observed when we analyzed the differentiation
phenotype of CD81 T cells. On day 8, pearl CTL resembled PKO
CTL with a reduced fraction of KLRG11CD1272 cells (Figure 6C)
and of CD44hiCD62lo cells (Figure 6D), whereas at day 12 after
infection the phenotype of pearlCTL resembled that ofwild-typeCTL
(Figure 6C-D). Thus, the altered phenotype was linked to virus control
and was transient in pearl CTL, whereas it persisted in PKO CTL.

HPS2 patients have a moderate risk of developing HLH

The findings in the pearl mouse model suggested that because of
a less-severe defect in cytotoxicity, the risk of developing HLH is
lower and episodes are less severe than in other cytotoxicity mutants.
To assess the risk of HLH in human HPS2 patients, we performed
a survey of all 12 so-far published patients with HPS2 and 10
additional, previously unreported patients (Table 1). For 5 patients,
we had to rely on the information given in the published report2,7,14;
for all other patients, a 2012 update on the clinical evolution of the
disease was provided. The mean age at last follow-up was 10.6 years

Figure 4. Pearl mice show a delay in virus control. C57BL/6, pearl, pearl-ash1/2,

ashen, and PKO mice were infected with 200 pfu of LCMV-WE and (A) virus titer in

spleens were determined on days 4, 8, and 12 after infection. (B) Days 8 and 12 virus

titers are shown for lung and liver. The means and the SDs are indicated. Graphs

show pooled data of 2 independent experiments with 3-4 mice per group. For ashen

mice data of 3 mice obtained in 2 different experiments are shown. The dashed lines

indicate the detection limit.
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(range, 1.25-30 years) and the overall observation covered 234
patient years. There were 5 sibling pairs, 6 patients had compound
heterozygous mutations, and 16 had homozygous mutations. All

but 1 patient had neutropenia; 12 received granulocyte-stimulating
colony factor (G-CSF) therapy. Eighteen patients had recurrent
bacterial and viral infections, most of which affecting the respiratory

Figure 5. CTL of pearl mice are impaired in

degranulation and cytotoxicity. CTL from C57BL/6,

pearl, ashen, and PKO mice were analyzed 8 days

after infection with 200 pfu of LCMV-WE. Degranula-

tion of LCMV-specific CTL was analyzed after in vitro

restimulation with the gp33 peptide. (A) Representa-

tive fluorescence-activated cell-sorting plots gated on

CD31CD81 lymphocytes are shown. Numbers indicate

the percentage of CD107a1 cells among gp33-specific

IFN-g1 CTL. (B) Frequencies of CD107a1 cells of IFN-

g1CD81 T cells were analyzed. Pooled data from 3

independent experiments are shown. ***P , .001 (C)

Wild-typemice were infected with 104 pfu LCMV. Then,

10 hours later they were adoptively transfused with 2 3

106 isolated day 8 splenic CTL of either wild-type or

pearl mice and after additional 18-hour splenic virus

titers were analyzed. Pooled data from 2 independent

experiments with 3-4 mice per group are shown. The

dashed line indicates the detection limit. Nil indicates

without transfer. (D) Ex vivo cytotoxicity was tested in

a 5-hour 51chromiumrelease assay on either LCMV-

infected MC57 target cells (left) or gp33 peptide-loaded

EL-4 target cells (right). Results from 1 of 2 in-

dependent experiments with 3 mice per group are

shown.

Figure 6. Function and phenotype of pearl CTL at different time points after infection. (A, B) Cytokine production of C57BL/6, pearl, and PKO CTL was analyzed by flow

cytometry on days 8 and 12 after infection with 200 pfu of LCMV. CTL were stained for (A) IFN-g and (B) TNF-a production after peptide stimulation in vitro. Representative

FACS plots are shown at the top and (A) frequencies of IFN-ghi cells among IFN-g1 CD8 T cells and (B) frequencies of TNF-a1 cells among CD8 T cells are shown at the

bottom. Surface expression of (C) KLRG1 and CD127 and (D) CD44 and CD62L on CTL are depicted as representative FACS plots (top) and frequencies are shown (bottom).

Representative data from 1 of 2 independent experiments with 3-4 mice per group are shown. For IFN-g and TNF-a (day 8) pooled data from two independent experiments are

shown. n.s. indicates not significant (P . .05); *P , .05; **P , .01; ***P , .001.
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tract. Eleven of 20 patients, where this information was available, had
clinically relevant episodes of bleeding, and 9 of 18 patients had
evidence of lung fibrosis.

Apart from the reported patient with lethal HLH,5 one other
patient could be identified who developed 2 transient episodes
fulfilling 5 of 8 HLH criteria. Two further patients had spontaneously
resolving episodes of fever and cytopenia in association with varicella
and CMV infections that did not fulfill the diagnostic criteria but
may have represented incomplete manifestations of HLH.6,7 Of
the 5 reported deaths in HPS2 patients, 1 was from HLH, 2 from
pneumonia in the context of lung fibrosis and 2 after accidents. In 4
patients without any HLH-related symptoms, asymptomatic serocon-
version to Epstein-Barr virus, a known strong trigger for HLH, was
documented. At least one immunological test addressing NK-cell or
CTL cytotoxicity, NK-cell, or CTL degranulation was available from
16 patients. The experimental protocols including local reference
values varied from laboratory to laboratory. However, abnormal
findings in at least one of these tests were reported in all 16 patients.
We also restudied 3 patients with our previously evaluated stan-
dardized panel of diagnostic tests.27 In these in vitro tests, they showed

degranulation abnormalities that were similar to that of patients with
CHS or GS2 (supplemental Figure 2). Overall, despite a significant
degranulation and cytotoxicity defect, human HPS2 appears to confer
only a limited risk for developing HLH.

Discussion

HPS2 is a rare genetic disorder of lysosomal trafficking with clinical
manifestations in several organ systems.2,5-7,11-14 As for other subtypes
of HPS, affected patients have a diathesis toward bleeding as the result
of a platelet storage pool deficiency34 and a risk of lung fibrosis as the
result of aberrant repair mechanisms of the lung caused by lysosomal
mistrafficking.21 In addition, however, patients with HPS2 have
significant immunological problems, manifesting mainly as chronic
neutropenia and a susceptibility to infections. This is in part explained
by chronic neutropenia reflecting a role for AP-3 in neutrophil
development,3,35,36 but HPS2 also involves other immunological
abnormalities, such as an impaired development of NKT cells,14

impaired TLR recruitment to phagosomes, and impaired MHC-II

Table 1. Patients with HPS2

Patient
no./ID
(reference)* AP3B1 mutation

Age at
last visit,
years

Clinical features
NK or CTL

cytotoxicity and/or
degranulationNeutropenia Bleeding

Recurrent
infections

Pulmonary
fibrosis HLH

1 (7) EX10

c.1063_1064delCAinsTATCAATATC;

p.Q355fsX360

7 1 (G-CSF) 2 1 2 2 Impaired

EX16 c. 1789_1790insA;

p.I597fsX608

27 EX10

c.1063_1064delCAinsTATCAATATC;

p.Q355fsX360

4 1 (G-CSF) 1 1 1 One incomplete episode Impaired

EX16 c. 1789_1790insA;

p.I597fsX608

P2 (6) EX19 c.2078_2165del; p.E693fsX706 6 1 2 2 2 2 Impaired

P3 (6) EX2 c.153_156delAGAG p.E52fsX63 7.2 1 (G-CSF) 2 1 (1) Two incomplete episodes Impaired

FR5† EX27 c.3222_3223delTG; p.E1075fs 5‡ 1 11 1 11 2 Impaired

FR1378 EX27 c.3222_3223delTG; p.E1075fs 13 1 (G-CSF) (1) (1) 1 2 Impaired

29 (14) EX15 g.del8172bp; p.del491-550 18 1 (G-CSF) 2 1 n.a. 2 n.a.

30 (14) EX15 g.del8172bp; p.del491-550 21 1 (G-CSF) 2 1 n.a. 2 n.a.

40 (2) EX11-12 c.1166_1228del;

p.del390-410

22 1 1 1 1 2 n.a.

EX16 c.1739T.G; p.L580R 2

42 (2) EX11-12 c.1166_1228del;

p.del390-410

27 1 1 1 1 2 n.a.

EX16 c.1739T.G; p.L580R

FR50 Del Exon 16 16‡ 1 (G-CSF) 2 1 11 2 Impaired

87 (13) Ex15 c.1525C.T; p.R5093 17 1 1 1 1 2 Impaired

Ex18 c.1975G.T; p.E6593

FR393 (5) EX8 c.904A.T; p.R3023 3‡ 1 1 1 2 One lethal episode Impaired

FR1315 EX18 c.2041G.T; p.E6813 2 1 (G-CSF) 2 2 2 Two episodes Impaired

A, P (11) IVS1015G.A 6 1 (G-CSF) 1 1 1 2 n.a.

C, B EX1 c60_delG; p.L20fsX41 1,25‡ 1 n.a. 1 n.a. 2 Impaired

C, A EX1 c60_delG; p.L20fsX41 2‡ 1 (G-CSF) n.a. 1 n.a. 2 Impaired

L, M EX23 c.2770_delC; p.L924fsX926 2.5 1 (G-CSF) (1) (1) 2 2 Impaired

W, M EX23 c.2770_delC; p.L924fsX926 11 1 (G-CSF) (1) (1) 2 2 Impaired

M, Z EX4 c.205T.C p.L102P 11 1 1 2 2 2 n.a.

n.a. (12) IVS1416T.C 30 2 2 2 2 2 Impaired

EX15 c.1619insG; p.A541fsX565

n.a. inv (5) (q14.1) 2.25 1 2 1 2 2 Impaired

N.a. indicates not available.

*Patient ID in published report.

†Kurnik et al, manuscript submitted 2013.

‡Deceased.
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presentation of antigens internalized by phagocytosis.32,37,38 Finally,
lytic granule exocytosis depends upon AP-3, leading to deficiencies of
NK-cell and CTL mediated cytotoxicity in HPS2.5-7,12

Because of limited patient numbers, little is known about the
prognosis of affected patients, which renders treatment decisions
difficult. Life-threatening events may encompass episodes of serious
bleeding, severe infections, or respiratory failure caused by pro-
gressive pulmonary fibrosis. Moreover, the defect in lymphocyte
cytotoxicity can predispose patients to HLH.5,8,39 Because HSCT can
prevent the risk of HLH in other genetic disorders of cytotoxicity,
can correct the platelet defect, and mitigate the increased suscepti-
bility to infection, HSCT is a relevant consideration for HPS2
patients.9,10,40,41 However, this treatment carries its own risks and
may not affect lung fibrosis,42,43 so it must be carefully balanced
against the natural history of the disease. In this study we combined
experimental studies in a mouse model of HPS2 with observations in
the largest reported cohort of 22 HPS2 patients to evaluate the extent
to which AP-3 deficiency predisposes to HLH.We also examined the
effect of other disease manifestations on prognosis.

Pearl mice carry a 793-bp tandem duplication in the Ap3b1 gene
altering the reading frame and truncating the protein 130 amino acids
from the C-terminus.23 There are conflicting data concerning residual
protein expression in these mice,34,44 and we cannot fully exclude the
possibility that some functional AP-3 remains. Nevertheless, the mice
recapitulate the platelet storage pool deficiency,34 the pigment di-
lution,45 and the lung pathology.46,47 They also show impaired NKT
cell development29,30 and impaired TLR mediated type I IFN
responses.32,37,38 In one previous report authors analyzed NK-cell
cytotoxicity in pearl mice and found that it was not significantly
altered.48 In our study, we found a mild NK cell and CTL de-
granulation defect leading to impaired cytotoxicity in pearl mice.
This was less pronounced than in PKO mice or in Lyst-mutant
souris mice.17 Nevertheless, there was a clear impact of the defect
on CTL-mediated control of LCMV infection. However, in contrast to
PKO mice, pearl mice were eventually able to clear the virus from all
organs.

The authors of previous studies have shown that lymphocyte
cytotoxicity is also significantly impaired in HPS2 patients. Although
initial studies who used T-cell lines found a severe defect,12

subsequent studies demonstrated significant residual activity.5,6 Ex
vivo NK-cell cytotoxicity was reduced or absent in all reported
patients.5,7 In the patients collected for our study, different
protocols were used to analyze CTL or NK-cell degranulation
and/or cytotoxicity, but at least one abnormal test result was
reported in all 16 patients analyzed. Of note, CTL cytotoxicity,
which is a less sensitive assay, was normal in 3 patients despite
abnormal NK-cell degranulation tests. This pattern has been
observed previously in patients with variants of CHS associated
with a low risk of HLH.17

We investigated to what extent the cytotoxicity defect in HPS2
predisposes to HLH. Indeed, as for other cytotoxicity mutants,
infection of pearl mice with LCMV-induced HLH as assessed by
the 8 criteria that define the human disease.28 However, in contrast
to other strains, the pearl mice recovered spontaneously without
any treatment once the virus was controlled. Pearl mice thus
represent the first mouse model for transient HLH, represented by
a disease course that can also be observed in FHL patients with
milder cytotoxicity defects as the result of hypomorphic muta-
tions.49,50 The recovery of these mice from HLH after the virus is
controlled indicates that the pathogenic uncontrolled immune
response inducing HLH is not autonomous but that continuous
antigen stimulation is a key factor in the maintenance of the

disease. This finding was also reflected by a more detailed
analysis of disease-inducing LCMV-specific T cells. At the peak
of clinical disease, pearl mice showed phenotypic and func-
tional alterations of CTL that were indistinguishable from those
of PKO mice. However, once the virus was controlled, these
functional and phenotypic changes disappeared, whereas they
were maintained in PKO mice, where virus and disease man-
ifestations persisted.

Our clinical observations indicate that the risk for HPS2 patients
of developing HLH is clearly present but much lower than for
patients with Griscelli syndrome type 2, CHS, or FHL. Considering
our findings in pearl mice, this is likely attributable to the milder
defect in cytotoxicity, allowing delayed, but eventually full control of
the dysregulated immune response. The fact that pearlmice carrying
an additional heterozygous Rab27a mutation showed the same
disease course as pearl mice without that mutation suggests that the
severe course of HLH in our previously reported HPS2 patient was
not caused by that additional mutation.

The prognosis of the patients in our cohort was not only determined
by HLH alone. Of the 3 patients who died of disease manifestations, 2
died of pneumonia in the context of lung fibrosis. In fact, 9 of 18
patients had evidence of lung fibrosis. This disease manifestation is
caused by impaired pulmonary repair mechanism attributable to dis-
turbed vesicle trafficking that may not be corrected by bone marrow
transplantation. The neutropenia was responsive to G-CSF in all
patients, significantly reducing the risk of infections. Only a single
patient had significant recurrent bleeding episodes. Taken
together, this study suggests that pre-emptive HSCT is not
indicated in this patient group, as it is in GS2 and some patients
with CHS.17 Nevertheless, HPS2 patients and their treating
physicians must be aware of the fact that there is a relevant risk of
HLH and must be alert to the early signs of this potentially life-
threatening disease manifestation.
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