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We performed a meta-analysis of 3 genome-
wide association studies to identify addi-
tional common variants influencing chronic
lymphocytic leukemia (CLL) risk.Thediscov-
ery phase was composed of genome-wide
association study data from 1121 cases and

3745 controls. Replication analysis was per-
formed in 861 cases and 2033 controls. We
identified a novel CLL risk locus at 6p21.33
(rs210142; intronic to the BAK1 gene, BCL2
antagonist killer 1; P � 9.47 � 10�16). A
strong relationship between risk genotype

and reduced BAK1 expression was shown
in lymphoblastoid cell lines. This finding
provides additional support for polygenic
inheritance to CLL and provides further in-
sight into the biologic basis of disease devel-
opment. (Blood. 2012;120(4):843-846)

Introduction

Chronic lymphocytic leukemia (CLL) is the most common form of
lymphoid malignancy in Western countries.1 Although CLL shows a
strong familial risk,2 the genetic basis of inherited predisposition to CLL
is largely unknown. Recent genome-wide association studies (GWAS)
of CLL have provided evidence that the coinheritance of multiple
low-risk variants located on chromosomes 2q37.1, 2q37.3, 2q13,
6p21.3, 6p25.3, 8q24.21, 11q24.1, 15q21.3, 15q23, 15q25.2, 16q24.1,
and 19q13.32 contributes to the heritability of CLL.3-6

The statistical power of individual GWAS has been limited by
the modest effect sizes of individual genetic variants, the need to
establish stringent statistical significance thresholds, and financial
constraints on the number of variants that can be followed up.
Meta-analysis of existing GWAS data therefore offers the opportu-
nity to discover additional CLL susceptibility loci.

In this study, we conducted a meta-analysis of GWAS data, followed
by validation in an independent case-control series, enabling us to
identify a novel susceptibility locus for CLL at 6p21.33.

Methods
Participants

All data collection from study participants were approved by the respective
institutional review boards, and all participants provided written informed

consent in accordance with the Declaration of Helsinki. For all cases, the
diagnosis of CLL had been pathologically confirmed in accordance with the
World Health Organization guidelines.7

Discovery datasets

The discovery phase was composed of 3 previously described GWAS
conducted in the United Kingdom (UK-GWAS)4,5 with 503 cases and
2699 controls, in the San Francisco Bay Area (SF-GWAS)8 with 211 cases
and 750 controls, and in the Genetic Epidemiology of CLL (GEC)
consortium (GEC-GWAS)3 with 407 cases and 398 controls (supplemental
Methods, available on the Blood Web site; see the Supplemental Materials
link at the top of the online article).

Replication series

The replication series was composed of 861 CLL cases (565 men; mean age
at diagnosis, 61.9 years), ascertained through United Kingdom hematology
clinics. Controls were 2033 healthy persons recruited to the National
Cancer Research Network genetic epidemiologic studies, the National
Study of Colorectal Cancer,9 the Genetic Lung Cancer Predisposition
Study,10 and the Royal Marsden Hospital Trust/Institute of Cancer Research
Family History and DNA Registry. These controls were the spouses or
unrelated friends of persons with malignancies. Both cases and controls
were British residents and of European ancestry. Genotyping was conducted
using competitive allele-specific PCR KASPar chemistry (KBiosciences).
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To confirm genotyping accuracy, duplicate samples were genotyped, along
with direct sequencing of subsets of samples. For all single nucleotide
polymorphisms (SNPs), more than 99% concordant results were obtained.

Statistical analysis

Main analyses used R Version 2.5, Stata Version 11, and PLINK Version
1.07 software.11 The association between each SNP and CLL risk was
assessed by the Cochran-Armitage trend test. Odds ratios (ORs) and 95%
confidence intervals were calculated by unconditional logistic regression.
Meta-analysis was conducted under a fixed-effects model. Cochran
Q statistic (to test for heterogeneity) and the I2 statistic (to quantify the
proportion of the total variation because of heterogeneity) were calcu-
lated.12 Associations by sex, age, and clinic-pathologic phenotypes were
examined by logistic regression in case-only analyses. The familial risk
attributable to SNPs was calculated as previously described.13 Linkage
disequilibrium metrics were based on Data Release 27/phase 3 (February
2009) on NCBI B36 assembly.

Results and discussion

The combined GWASs provided genotype data on 1121 cases and
3745 controls; imputation based on data from the HapMap project
allowed association testing for more than 1 500 000 SNPs. We
verified the previously identified risk loci (all P � .05) in the
meta-analysis (supplemental Table 1) and further identified 15 SNPs
that mapped to 6 novel loci.

To validate these findings, we genotyped the top 10 informative
SNPs in an additional series of 861 CLL cases and 2033 controls
(Table 1; supplemental Table 2).

The 2 SNPs localizing to 6p21.33, rs210134 and rs210142,
showed convincing evidence of an association in the replication
series (OR � 1.35, P � 4.87 � 10�6 and OR � 1.47,
P � 2.41 � 10�8, respectively; Table 1). In the combined analysis,
both rs210142 (OR � 1.37, P � 9.47 � 10�16) and rs210134
(OR � 1.40, P � 1.03 � 10�12) provided evidence for an associa-
tion with CLL at genome-wide significance (ie, P � 5.0 � 10�8;
Table 1). None of the other SNPs replicated.

rs210142 maps to chromosome 6p21.33, within intron 1 of the
BAK1 gene (BCL2 antagonist killer 1; MIM: 600516), and
rs210134 maps 100 kb telomeric to BAK1 (supplemental Figure 1).
Both SNPs map to the same region of linkage disequilibrium and
are highly correlated (r2 � 0.8, D� � 0.9). BAK1 promotes apopto-
sis by binding to and antagonizing the apoptosis repressor activity
of BCL2 and other antiapoptotic proteins.14,15 Somatic rearrange-
ments of the immunoglobulin heavy chain locus of BCL2 that result
in constitutive BCL2 overexpression are found in both CLL and
follicular lymphomas. The expression of BAK1 is essential for the
maintenance of B-cell homeostasis; in mice that are conditionally
deficient in BAK1, there is an accumulation of immature and
mature follicular B cells with defective cell cycling in response to
B-cell receptor stimulation.16

To explore whether the 6p21.33 association reflects cis-acting
regulatory effects on BAK1, we analyzed publicly available mRNA
expression (Figure 1). A strong relationship between rs210134 risk
genotype and reduced BAK1 expression was shown in both datasets
(P � 7.8 � 10�5 and .0389, combined P � 4.4 � 10�5; Figure 1).
This result suggests a biologically plausible mechanism by which
reduction of BAK1 expression alleviates repression of antiapoptotic
proteins, thereby inhibiting apoptosis and hence contributing to
B-cell neoplasia. BAK1 does not, however, directly interact with
BCL2, but its interaction is dependent on the allelic form of BCL2
present in cells; thus, the effects of BAK1 are context dependent.18 Ta
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CLL shows male predominance and can be classified on the
basis of the presence or absence of somatic hypermutations of
IGVH genes, with mutated CLL having a better prognosis.19 We
assessed the relationship between age, sex, IGVH mutation, and
rs210142 and rs210134 genotypes by case-only logistic regression
(supplemental Methods). rs210142 and rs210134 showed no
evidence of a relationship with age, sex, or IGVH mutation status
(supplemental Table 3). Furthermore, using data from the CLL4
trial patients (supplemental Methods), we found no evidence that
rs210134 genotype influences overall survival or progression-free
survival (hazard ratio � 1.11, P � .41 and hazard ratio � 1.12,
P � .23; respectively).

We investigated the combined effect of the 6p21.33 variation
and the previously identified risk variants on CLL risk. No
evidence of interaction between any of the loci (P � .05) was
observed, compatible with each locus having an independent role
in defining risk. Whereas the risks of CLL associated with the
6p21.33 and other variants are individually modest, the carrier
frequencies of the risk alleles are high in those persons of European
ancestry; therefore, the loci contribute significantly to the develop-
ment of CLL.

Collectively, the currently identified susceptibility loci account
for approximately 16% of the familial CLL risk. Previous genetic
linkage studies have failed to provide evidence that rare, high-
penetrance genes contribute significantly to the familial risk. Our
study had moderate power (� 50%) to detect variants, such as

6p21.33, indicating that additional common variants with similar or
smaller effects might be identified with additional GWAS data.

By pooling GWAS data and conducting replication analyses, we
have identified a novel CLL susceptibility locus. Although addi-
tional analyses are required to determine the functional conse-
quences of 6p21.33 variation, the findings further highlight the
importance of genetic variation in B-cell developmental pathway
as a biologic basis to CLL pathogenesis. The frequency of the
rs210142 risk allele is substantially higher in Europeans than in
other ancestry groups consistent with adaptive selection. Hence, it
will also be intriguing to explore how our findings translate to
non-European populations, some of which are typified by a
significantly lower prevalence of CLL.20
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Figure 1. Lower BAK1 expression associated with the G allele of rs210134 in
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associated with the elevated risk of CLL.
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