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Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent
alterations in antiapoptotic and chromatin-remodeling genes
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To ascertain the genetic basis of pediatric
Burkitt lymphoma (pBL), we performed
clinical-grade next-generation sequencing
of 182 cancer-related genes on 29 formalin-
fixed, paraffin embedded primary pBL
samples. Ninety percent of cases had at
least one mutation or genetic alteration,
most commonly involving MYC and TP53.

EBV(�) cases were more likely than EBV(�)
cases tohavemultiplemutations (P < .0001).
Alterations in tumor-related genes not previ-
ously described in BL were identified. Trun-
cating mutations in ARID1A, a member of
the SWI/SNF nucleosome remodeling com-
plex, were seen in 17% of cases. MCL1
pathway alterations were found in 22% of

cases and confirmed in an expanded panel.
Other clinically relevant genomic alterations
were found in 20% of cases. Our data sug-
gest the roles of MCL1 and ARID1A in
BLpathogenesis and demonstrate that com-
prehensive genomic profiling may identify
additional treatment options in refractory
disease. (Blood. 2012;120(26):5181-5184)

Introduction

Burkitt lymphoma (BL) is an aggressive B-cell malignancy that
predominantly affects the pediatric population. Although most
children are cured with intensive chemotherapy, up to 20% die of
relapsed or refractory disease.1-3 Cure rates are significantly lower
in developing countries that have a greater incidence of BL,
making BL a global health concern. The molecular hallmark of BL
is the translocation of the MYC proto-oncogene to the
immunoglobulin-heavy or one of the light chain genes, leading to
constitutive MYC activation. Additional molecular alterations that
may counteract MYC-induced proapoptotic signals are likely
relevant in the pathogenesis of BL. RNA sequencing recently has
been preformed to investigate the genetic landscape of BL via the
use of a cohort that combined pediatric and adult cases.4 In contrast
to adult cases, which typically have a simple karyotype, 60%-90%
of pediatric tumors have secondary chromosomal abnormalities,
the consequences of which are less well characterized.5-8 There-
fore, we focused on pediatric BL (pBL) to better understand the
driving genomic alterations in this disease and to aid the develop-
ment of rational therapeutics.

Genomic studies in rare tumors previously have been limited by
the availability of frozen tissue to obtain DNA. In this report, we
demonstrate comprehensive next-generation sequencing on
formalin-fixed, paraffin embedded (FFPE) tissue, which allowed
the use of archived specimens. We identified mutations in a

significant proportion of pBL, including recurrent alterations in
ARID1A and MCL1 not previously reported.

Methods

Patient samples

Eighty-two FFPE samples of pBL were collected from sites in the United
States, Kenya, and Brazil. Cases were included if the patient age was
� 21 years and the diagnosis of BL was confirmed. Cases included endemic
(n � 20), sporadic (n � 60), and HIV-associated (n � 2) pBL. All samples
were obtained with institutional research board and biospecimen-use approval.
From this panel, a cohort was selected for next-generation sequencing on the
basis of tumor representation � 80%, sufficient tissue availability, and adequate
DNA yield (supplemental Methods, available on the Blood Web site; see the
Supplemental Materials link at the top of the online article). This study was
conducted in accordance with the Declaration of Helsinki.

Tumor characterization, FISH, and immunohistochemistry

See supplemental Methods.

Targeted genomic sequencing

DNA was extracted from FFPE tissue (supplemental Methods). Molecular
barcode-indexed ligation-based sequencing libraries were constructed

Submitted June 15, 2012; accepted October 2, 2012. Prepublished online as
Blood First Edition paper, October 22, 2012; DOI 10.1182/blood-2012-06-437624.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked ‘‘advertisement’’ in accordance with 18 USC section 1734.

© 2012 by The American Society of Hematology

5181BLOOD, 20 DECEMBER 2012 � VOLUME 120, NUMBER 26

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/120/26/5181/1361116/zh805212005181.pdf by guest on 22 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2012-06-437624&domain=pdf&date_stamp=2012-12-20


using 50-200 ng of total DNA. Libraries were hybridization captured with
custom biotinylated RNA oligo pools (custom SureSelect kit; Agilent)
representing 3230 exons of 182 cancer-related genes plus 37 introns from
14 genes often rearranged in cancer (supplemental Table 1). Paired end
sequencing (49 � 49 cycles) was performed with the HiSeq2000 (Illu-
mina). Sequence analysis is detailed in the supplemental Methods.

Results and discussion

Sequence analysis of 29 cases of pBL at an average coverage of
653-fold identified 99 somatic genetic alterations in 19 genes,
including 68 base substitutions, 10 insertions/deletions, 12 copy
number alterations, and 9 structural rearrangements (Figure 1A,
supplemental Table 2) Twenty-six cases were sporadic (14 from the
United States; 12 from Brazil) and 3 endemic (Kenya); 2 were
HIV� (both sporadic). The most frequent genomic alterations were
point mutations/indels in MYC (58.6%) and TP53 mutations
(41.4%). MYC mutations spanned the coding region and included

hot spots previously documented in lymphomas (supplemental
Table 3, supplemental Figure 1).9 Cases with MYC mutations also
demonstrated MYC translocation, confirming that mutations may
functionally cooperate with translocation to promote MYC-
mediated oncogenesis. Twenty of 29 cases (69%) had genetic
alterations in addition to those involving MYC.

Although mutations did not group with epidemiologic subtypes,
EBV(�) cases were more likely to have multiple genetic altera-
tions than EBV(�) cases. When we excluded MYC alterations,
12 of 14 EBV(�) cases had � 1 alteration and 0 of 11 EBV(�)
cases had � 1 alteration (P � .0001; Figure 1B). This is consistent
with the tumorigenic role of EBV in a subset of BL. TP53 was
altered in 4 EBV(�) and 8 EBV(�) cases.

Recurrent alterations were identified in cancer-related genes not
previously reported in BL, including truncating mutations in
ARID1A and amplification of MCL1 (Figure 2, supplemental Table
4). ARID1A is a member of the SWI/SNF family of complexes,
which function as chromatin remodelers, and has been implicated

Figure 1. Genomic alterations in pBL. (A) Diagram of
mutations identified by targeted genomic sequencing.
Columns represent individual samples. Alterations listed
include only those likely to be somatic as referenced in
COSMIC,22 as well as MYC point mutations and indels of
unknown significance. We detected copy number altera-
tions by comparing targeted genomic DNA sequence
coverage with a process-matched normal control sample.
We detected genomic rearrangements by clustering chi-
meric reads mapping to targeted introns. (B) Distribution
of frequency of alterations by EBV status. EBV-negative
cases (EBV Neg) are significantly more likely to have
� 1 alteration compared with EBV-positive cases
(EBV Pos; P � .0001).
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as a tumor suppressor.10 Inactivating ARID1A mutations have been
described in solid malignancies, including ovarian and gastric
cancer,11-13 and a tumor suppressor role of ARID1A is supported by
functional studies.12

Mutations in ARID1A were found in 5 of 29 (17.2%; 95%
confidence interval 5.8%-35.8%) of pBL cases, one of which was
EBV(�). Mutations were distributed throughout the gene and all
resulted protein truncation (Figure 2A), consistent with tumor
suppressor role. In addition, one case with ARID1A mutation had a
secondary mutation in SNF5, also a member of the SWI/SNF
family. ARID1A protein expression was evaluated by immunohis-
tochemistry in an expanded cohort (n � 50) that included 17 cases
with known ARID1A mutation status. Cases with ARID1A altera-
tions leading to truncated protein lacking the antibody epitope
showed decreased expression (Figure 2B). In contrast, 10 of 12 cases
with WT ARID1A demonstrated increased expression (Figure 2B,
supplemental Figure 2). Overall 15 of 50 cases (30%) demonstrated
ARID1A expression that was equal to or lower than that seen in cases
with known mutation. There was no evidence of loss of heterozygosity
in mutated cases because the mutation was present in close to 50% of the
reads. As has been proposed for other malignancies, haploinsufficiency
of ARID1A may be enough for cellular transformation.

Recurrent amplification was found in MCL1, a member of the
BCL2 family. MCL1 and related proteins inhibit apoptosis by
blocking the cell death mediators BAK and BAX.14 The impor-

tance of MCL1 as an oncogene has been implicated in transgenic
mice that develop aggressive B-cell lymphomas.15,16 MCL1 is
located on 1q21.2, a genomic region amplified in approximately
25% of pBL cases.17 Amplification of MCL1 has been described in
a BL subline18 but has not been reported in primary BL samples.
MCL1 overexpression may be clinically relevant because it has
been linked to chemotherapy resistance,18,19 and several inhibitors
that may target MCL1 are in clinical development (supplemental
Table 5).20 We identified MCL1 amplification in 5 of 29 (17.2%,
95% confidence interval 5.8%-35.8%) cases ranging from 1.8X to
3.1X copy gain relative to a diploid control (Figure 2C). In addition,
one case had a point mutation in FBXW7, which encodes an ubiquitin
ligase that targets MCL1 for degradation.21 FISH for MCL1 confirmed
the sequencing results, and in an independent cohort, 5 of 17 (29%)
cases demonstrated MCL1 amplification by FISH (Figure 2D). In total
10 of 46 (21.7%) pBL cases demonstrated MCL1 amplification.
Evaluation of MCL1 protein expression by immunohistochemistry and
densitometry analysis revealed increased MCL1 protein expression in
amplified cases (P � .002; Figure 2E-F).

Alterations also were found in other cancer-related genes,
including point mutations in LRP6; truncating alterations in
LRP1B, PTPRD, PTEN, NOTCH, and ATM; amplifications of
RAF1, MDM4, MDM2, KRAS, IKBKE, and CDK6; and a deletion
of CDKN2A, many of which are targetable by therapies in clinical
trials (supplemental Table 5).

Figure 2. Primary BL cases demonstrate recurrent alterations in ARID1A and MCL1. (A) Representation of ARID1A gene and mutations identified by sequencing.
The 20 exons of ARID1A are represented in the green boxes. Diamonds represent deletion; triangles represent point mutation. In all 5 cases, the mutation was truncating. ARID
indicates AT-rich interactive domain; LXXLL, leucine-rich motifs; nt, nucleotide; and UTR, untranslated region. (B) ARID1A protein expression in mutated and wild-type cases as
determined by IHC. Cases B-6 and BL-17 have truncating mutations upstream to the antibody epitope and demonstrate decreased staining compared with cases lacking
mutations. Case BL-27 has a mutation downstream of the antibody probe. (C) MCL1 pathway-altered cases as identified by sequencing. Five cases had a 1.8 to 3.1 copy gain
of MCL1 relative to a diploid control, corresponding to a predicted 4-6 copies of MCL1 per tumor cells. One case had a mutation in FBXW7, a gene in the MCL1 pathway.
(D) FISH for MCL1 using an MCL1 probe (red) and centromeric probe for chromosome 1 (green). A representative wild-type case (WT; left) and an amplified case (right) are
shown. Amplified cases had 3-4 copies, but in some a signal was stronger, suggesting tandem duplication. (E) MCL1 protein expression was evaluated by
immunohistochemistry. Quantitative analysis of MCL1 staining intensity in tonsil (n � 3), MCL1 WT (n � 24), and MCL1 amplified (n � 5) cases is shown. Error bars represent
standard error of the mean. Unpaired t test was performed to evaluate statistical significance between expression in MCL1 WT and MCL1 amplified cases. (F) Representative
normal and amplified cases are shown, as well as the pattern in a tonsil control showing stronger cytoplasmic expression in the follicles. Panels B and F, original magnification
�400 with 40� objective lens. Microscope: Olympus BX 41; camera: Olympus Q-COLOR3; software: QCapture Version 2.9.8.0 (Quantitative Imaging). Panel D, original
magnification �1000: Apochromatic 100� lens with 1.4 aperture; microscope: Olympus BX51; camera: Jai CV-A10CL; software: Cytovision Imaging Version 3.6 (Genetix).
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This is the first report of next-generation sequencing focusing
specifically on pediatric BL. Our work demonstrates the feasibility
of genomic sequencing using FFPE specimens. We identified novel
recurrent alterations in members of the SWI/SNF family of
chromatin remodeling genes, the antiapoptotic gene MCL1, as well
as other therapeutically actionable alterations. As the spectrum of
mutations in pBL becomes further defined and genotype-phenotype
and clinical correlations are established, inclusion of mutation
profiling should become part of routine diagnostic testing, prognos-
tic evaluation, and treatment of pBL. In particular, as we move into
the era of precision medicine, the specific genomic information
reported here should be useful in the molecular subclassification of
pBL and use of therapies that target key biologic pathways such as
chromatin remodeling and suppression of apoptosis.
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