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Mutations of genes encoding isocitrate
dehydrogenase (IDH1 and IDH2) have
been recently described in acute myeloid
leukemia (AML). Serum and myeloblast
samples from patients with IDH-mutant
AML contain high levels of the metabolite
2-hydroxyglutarate (2-HG), a product of
the altered IDH protein. In this prospec-
tive study, we sought to determine
whether 2-HG can potentially serve as a

noninvasive biomarker of disease burden
through serial measurements in patients
receiving conventional therapy for newly
diagnosed AML. Our data demonstrate
that serum, urine, marrow aspirate, and
myeloblast 2-HG levels are significantly
higher in IDH-mutant patients, with a cor-
relation between baseline serum and urine
2-HG levels. Serum and urine 2-HG, along
with IDH1/2-mutant allele burden in mar-

row, decreased with response to treat-
ment. 2-HG decrease was more rapid with
induction chemotherapy compared with
DNA-methyltransferase inhibitor therapy.
Our data suggest that serum or urine
2-HG may serve as noninvasive biomark-
ers of disease activity for IDH-mutant
AML. (Blood. 2012;120(23):4649-4652)

Introduction

Mutations in genes encoding isocitrate dehydrogenase (IDH1/2)
were recently discovered in acute myeloid leukemia (AML).1,2

Their prognostic significance remains under investigation.3-9

IDH proteins catalyze the oxidative decarboxylation of isocit-
rate to �-ketoglutarate (�-KG). IDH mutations reside in the active
site10 and include missense alterations affecting arginine-132
(R132) in IDH1, and the analogous arginine residue (R172), or one
at arginine-140 (R140), in IDH2.1-3,5,6,8,11 The altered IDH proteins
instead catalyze reduction of �-KG to the metabolite
2-hydroxyglutarate (2-HG).12 2-HG is normally present at low
levels in cells,13 readily interconverted by 2-HG dehydrogenase to
�-KG,14,15 but IDH mutations promote its accumulation in myelo-
blasts and sera of affected patients.10

No prior studies have prospectively measured 2-HG in IDH-
mutant AML during treatment. We focused on the utility of 2-HG
as a potential biomarker of disease burden and sought to assess the
effect of treatment on the trajectory and kinetics of 2-HG levels. To
accomplish this, we serially measured serum, urine, marrow
aspirate, and myeloblast 2-HG during conventional therapy for
newly diagnosed AML.

Methods

Adult patients at Massachusetts General Hospital, eligible for treatment of
newly diagnosed AML, as defined by World Health Organization criteria,

were enrolled. Samples were obtained through a protocol approved by our
institution, Dana-Farber Harvard Cancer Center, its institutional review
board, and the scientific review committees, with the approved protocol
number 11-121. Informed consent was obtained per the Declaration of
Helsinki.

Serum, urine, and marrow samples were obtained for 2-HG measure-
ment before therapy. Mononuclear cells from blood and marrow aspirate
were isolated using density gradient centrifugation with Ficoll-Hypaque
(GE Healthcare). 2-HG measurement was performed by Agios Pharmaceu-
ticals, with methods previously described.13,16 Serum and myeloblast 2-HG
levels were considered elevated if � 1000 ng/mL or 1000 ng/2 � 106 cells,
respectively, as per previous reports.10 In those with elevated baseline
2-HG, serum and urine were serially obtained for 2-HG measurement, at
days 7, 14, 30, 60, and relapse. Bone marrow samples were collected at
baseline, days 14, day 30, and relapse.

IDH1/2 mutational assays were performed through single-base exten-
sion sequencing using the SNaPshot assay (Applied Biosystems) and
through direct sequencing using the Sanger method, as previously de-
scribed.17 The relative IDH1/2 mutational burden during treatment was
determined using next-generation sequencing as number of wild-type to
mutant reads. Briefly, IDH1/2 exon 4 PCR amplicons were generated using
primers containing Ion Torrent adapters and unique barcodes. Samples
were normalized through quantitative PCR quantification and combined.
The resulting library was amplified on Ion Sphere particles by emulsion
PCR, and sequencing was performed on the Ion PGM Sequencer (Life
Technologies).

AML therapies included cytarabine- and idarubicin-based induction, the
DNA-methyltransferase inhibitors decitabine or 5-azacitidine, or low-dose
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cytarabine. Statistical evaluation was performed using a 2-tailed
Mann-Whitney test for comparing values between groups and a correlation
coefficient to assess relationship between variables.

Results and discussion

Forty-two patients were enrolled, with 10 (24%, 90% exact
binomial CI, 14%-37%) displaying baseline elevations in serum or
myeloblast 2-HG (supplemental Table 1, available on the Blood
Web site; see the Supplemental Materials link at the top of the
online article). In 9 of 10 patients, IDH1/2 mutations were
discovered: 2 IDH1-R132H, 1 IDH2-R172M, and 6 IDH2-R140Q
mutations. In the remaining patient in whom IDH mutations were
not found, myeloblast 2-HG was elevated (4040 ng/2 � 106 cells),
but serum 2-HG was not (241 ng/mL). No IDH mutations were
found in 32 patients without elevated 2-HG. One IDH-mutant
patient did not have elevated serum 2-HG but did demonstrate
elevated myeloblast levels.

Serum 2-HG for IDH-mutant patients (median, 1863 ng/mL;
range, 365.1-66 207 ng/mL) was significantly higher than for
IDH-wild-type patients (median, 87 ng/mL; range, below quantita-
tive limit [BQL]-755 ng/mL, P � .001; Figure 1A). Urine 2-HG
was higher in IDH-mutant patients (median, 34 100 ng/mL; range,
8620-282 000 ng/mL vs median, 5525 ng/mL; range, BQL-
38 800 ng/mL, P � .001), as were marrow aspirate 2-HG (mean,

27 925 ng/mL vs mean, 924 ng/mL, P � .001), and myeloblast
2-HG (median, 22 880 ng/2 � 106 cells; range, 5560-96 400 ng/
2 � 106 cells vs median, 148.5 ng/2 � 106 cells; range, BQL-
4040 ng/2 � 106 cells, P � .001; Figure 1B-1D). Baseline serum
2-HG was correlated with urine 2-HG levels (r � 0.82, P � .001).
We also measured serum 2-HG on 7 samples from healthy persons,
all measuring � 100 ng/mL (median, 91 ng/mL; range,
33-93 ng/mL).

In those with elevated baseline 2-HG, serum and urine 2-HG
decreased during therapy, concordantly with decreases in blast
counts. Seven patients were treated with induction chemotherapy,
2 with 5-azacitidine, and 1 with decitabine. Serum and urine 2-HG
levels during treatment are demonstrated for patients who achieved
remission after induction (Figure 2A-B). More rapid and profound
decreases were noted with induction chemotherapy versus DNA-
methyltransferase inhibitor therapy. For the latter, a slower de-
crease in 2-HG occurred with response, as demonstrated in a
patient with partial response to 5-azacitidine, with a follow-up
of � 250 days (Figure 2G-H).

For 3 patients, marrow samples were available for IDH
mutational analysis at remission, after induction chemotherapy.
Using the SNaPshot assay and/or direct sequencing of loci, an
IDH1/2 mutation was no longer detectable in 2 samples; but in the
remaining sample, an IDH1 R132H mutation was detectable, even
with low serum 2HG levels. Interestingly, to date, this is the only

Figure 1. 2-HG levels in IDH-mutant and IDH-wild-type samples. 2-HG measurements in samples from patients with a wild-type-IDH1/2 (n � 33) versus those harboring
IDH1/2-mutations (n � 9), obtained at presentation, showing 2-HG measurement in serum (A), urine (B), myeloblasts (C), and marrow aspirate (D). Each point represents an
individual patient sample; blue dots represent IDH-wild-type samples; and red dots, IDH-mutant samples. The left column in each figure represents the wild-type samples; and
the right column, the mutant samples. In each column, horizontal bars represent the median; and vertical lines, the lower and upper quartiles. (A,C) Dotted line across graphs
indicates 2HG levels of 1000 ng/mL serum or 1000 ng/2 � 106 within cells, respectively, above which 2-HG levels were deemed to be elevated in this study. All figures describe
a statistically significant difference in 2-HG levels between IDH1/2-mutant samples relative to wild-type samples (P � .05). One IDH-mutant patient did not have elevated
baseline serum levels of 2-HG but did demonstrate elevated myeloblast 2-HG at baseline.

4650 FATHI et al BLOOD, 29 NOVEMBER 2012 � VOLUME 120, NUMBER 23

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/120/23/4649/1361067/zh804912004649.pdf by guest on 21 M

ay 2024



patient who has relapsed, at � 150 days after induction. His 2-HG
increased precipitously with relapse, and again transiently de-
creased after reinduction, to which he was ultimately refractory
(Figure 2D-E). Intriguingly, this patient’s baseline serum and urine
2-HG were the highest measured, 66 207 ng/mL and 282 000 ng/
mL, respectively. Through next-generation sequencing of available
serial samples from 3 patients who received induction therapy, we
also found that IDH1/2 mutational burden (mutant allele as fraction
of total IDH1/2) decreased over time concordantly with 2-HG
(Figure 2C). The mutational burden reached 0%, 1%, and 4%, at
remission in these patients, with the latter patient identified as the
sole relapser in whom the mutant burden subsequently rose in
concordance with 2-HG (Figure 2F).

Emerging evidence suggests that 2-HG plays a role in promot-
ing malignancy.10,18,19 2-HG, structurally homologous to �-KG,
may interfere with �-KG–activated enzymes, like TET, histone
demethylases, and prolyl hydroxylases, suggesting roles in epige-
netic modulation and HIF-1� down-regulation.10,19-22 Reports of
aberrant hypermethylation and inactivation of loci in IDH-mutant
AML are intriguing,23 with the underlying mechanism possibly
related to �-KG down-regulation or increase in 2-HG.23-25

With this study, we provide the first prospective evidence that
elevated serum and myeloblast 2-HG are specific features of

IDH1/2-mutant AML. None of the studied patients with non-
elevated 2-HG demonstrated any IDH mutations, and 9 of 10 with
elevations did have elevated serum or myeloblast 2-HG, suggesting
that 2-HG is a discriminatory marker in this setting. The sole
sample that demonstrated elevated myeloblast 2-HG, but no IDH
mutation, is under investigation to determine the underlying cause.
We also report that urine and marrow aspirate 2-HG are similarly
elevated in IDH-mutant patients. Most significantly, our data
suggest that serum and urine 2-HG may serve as easily measured,
noninvasive biomarkers of disease and can be followed during
treatment in patients with elevated baseline levels.

Serum and urine 2-HG decreased with response to therapy in a
consistent and predictable fashion. Decreases occurred more rap-
idly with induction chemotherapy than with DNA-methyltransferase
inhibitor therapy, as expected given the kinetics of response to
these agents. In all evaluated patients with a baseline elevation in
serum 2-HG and who subsequently achieved a complete remission,
serum 2-HG decreased to � 500 ng/mL by day 30 and � 200 ng/mL
by day 60. We also found that the relative burden of IDH1/2-mutant
alleles correspondingly decreased with treatment, and this too may
serve as a molecular surrogate for disease activity, especially at
remission.

Figure 2. Serial measurement of 2-HG during therapy. Serum (A) and urine (B) 2-HG levels measured serially over the course of the first 60 days of treatment for patients
with baseline elevations in 2-HG and who achieved complete remission after induction chemotherapy. (C) IDH1/2-mutant allele burden measured serially in marrow samples
over the course of the first 30 days of treatment for 3 of these patients with complete remission after induction chemotherapy. (D-F) Serum (D) and urine (E) 2-HG levels
measured serially over time for a patient (patient 1 in panels A-C) who received cytarabine- and idarubicin-based induction, went on to relapse at � day 150, and was
then treated with reinduction therapy consisting of mitoxantrone, etoposide, and cytarabine (MEC), to which he responded transiently before displaying refractory disease.
(F) IDH1-mutant allele burden for the same patient, measured serially in marrow samples, displaying initial decrease in IDH1-mutant allele burden with remission, with
subsequent increase associated with relapse. (G-H) Serum (G) and urine (H) 2-HG levels measured serially over time (� 250 days) for a patient who received hypomethylating
therapy with 5-azacitidine 75 mg/m2 intravenously on days 1-5 of 28-day cycles.
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Longer follow-up with larger populations will validate the value
of 2-HG as a biomarker in monitoring minimal residual disease and
predicting clinically meaningful outcomes. In time, 2-HG levels
may play an important role in the noninvasive management of
patients receiving conventional or IDH-targeted therapy.
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