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Episomal amplification of NUP214-ABL1 fusion gene in B-cell acute lymphoblastic leukemia

The NUP214-ABL1 fusion gene is found amplified as multiple
(5-50) episomal copies in 6% of T-cell acute lymphoblastic
leukemia (T-ALL).1,2 Alterations of the TLX1, TLX3, CDKN2A/B,
and NOTCH1 genes are commonly associated with NUP214-ABL1
T-ALL. Recently, the NUP214-ABL1 fusion gene has been reported
in 2 of 15 cases of B-cell acute lymphoblastic leukemia (B-ALL)3

identified by RNA-sequencing with no evidence of episomal
amplification, suggesting an intrachromosomal rearrangement. In
1 of 2 cases, phosphoflow analysis demonstrated increased CRK-like
protein phosphorylation, suggesting active ABL1 signaling, that was
sensitive to tyrosine kinase inhibitors (TKIs). We now report the first
case of B-ALL associated with extrachromosomal, episomal amplifica-
tion of NUP214-ABL1. All methods can be found in supplemental
Methods (available on the Blood Web site; see the Supplemental
Materials link at the top of the online article).

A 22-year-old male presented with a hemoglobin 108 g/L, white
cell count 12.72 � 109/L, and platelet count 65 � 109/L. Bone
marrow aspirate and trephine revealed 99% blast cells expressing
CD79a, CD19, CD10, CD20, surface IgM, HLA-DR, cytTdT, and
CD7 (Figure 1A-B). The latter 2 markers are more suggestive of
bi-lineage blasts, but there was no cytCD3 CD2, CD4, CD5, CD7,
CD8, cytMPO, CD33, CD13, CD15, and CD117 expression. The
karyotype was: 47,XY,�X.

Interphase fluorescence in situ hybridization (FISH) using a
BCR-ABL1 probe demonstrated 50-80 extrachromosomal copies of
ABL1; FISH probes targeting 3� regions of ABL1 and NUP214
confirmed episomal NUP214-ABL1 amplification in � 99% of
cells (Figure 1C). Conversely, a probe targeting the 5� region of
ABL1 showed a normal signal pattern. This signal configuration is
the same as previously shown in T-ALL.2 Multiplex ligation–
dependent probe amplification (MLPA) confirmed amplification of
both ABL1 and NUP214 (data not shown). Although FISH, MPLA,
and SNP6.0 analysis showed no rearrangement of TLX1 and TLX3,
aberrant TLX1/3 expression cannot be excluded. MLPA showed
focal deletions of exons 2-7 of IKZF1 and exons 1-2 within the
CDKN2A/B locus. SNP6.0 analysis confirmed NUP214 and 3� ABL1
amplification (supplemental Figure 1). SNP data also confirmed
IKZF1 and CDKN2A/B loss and showed other copy number
aberrations including some previously implicated in B-ALL;
FHIT,4 TBL1XR1,5 and the histone cluster at 6p226 (supplemental
Table 1).

The patient was treated with induction therapy (vincristine,
daunorubicin, pegylated asparaginase, prednisolone, and CNS prophy-
laxis http://www.ctsu.ox.ac.uk/research/mega-trials/leukemia-trials/
ukall-2003/). A day 29 marrow showed complete morphologic
remission, but PCR-based IgVH MRD rearrangement studies
revealed 1 in 104 cells with clonal IgVH rearrangement. The patient
successfully underwent cyclophosphamide/total body irradiation
myeloabalative sibling donor allogenic stem cell transplantation
and is in complete remission at 4 months.

NUP214-ABL1–positive patient primary cells were cultured
with low and high concentrations of imatinib (0.5 and 5�M),
dasatinib (10 and 150nM), nilotinib (0.5 and 5�M), and ponatinib

(10 and 100nM; Figure 1D; concentrations based on IC50 values
and maximally achievable plasma concentrations in chronic my-
eloid leukemia patients). After a 72-hour culture, compared with no
drug control, there was no significant reduction in viable cell
numbers and no increase in apoptosis in any experimental arm. In
contrast, BCR-ABL1 lymphoblastic cell line BV-173 demonstrated
anticipated TKI sensitivities. Moreover, in T-ALL the mutant
fusion kinase appeared more sensitive in vitro than BCR-ABL1 to
TKIs.7 It is noteworthy, there are only case reports documenting
mixed clinical responses to TKIs in NUP214-ABL T-ALL.8,9

It is unclear to what extent subtypes of NUP214-ABL1 seen in
T-ALL, and now described in B-ALL, differ biologically. In part,
these differences in drug sensitivity may arise kinase amplification
in our case and differential kinase activation between NUP214-
ABL1 and BCR-ABL1.7 Differences may arise not only from
variable NUP214-ABL1 copy number, but also the nature of
cooperating mutations. In our case, these likely include IKZF1 and
the CDKN2A/B locus, important B-ALL aberrations. This variable
genetic landscape may, in part, account for differential in vitro
sensitivity to TKIs.
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Figure 1. Characterization of episomal NUP214-ABL1 B-ALL and in vitro sensitivity of patient blasts to TKI. (Ai) May-Grunwald-Giemsa stain of blasts from a trephine
roll. (ii-vi) Immunocytochemical stains of trephine sections stained with antibodies indicated above each panel. (Bi-v) Flow cytometric analysis of marrow blasts. (i) Cell
populations in the blast cell gate (CD45� and of the indicated side scatter (SSC) were studied further in subsequent panels. (ii-iv) Expression of the indicated cell surface and
cytoplasmic (cyto) antigens was studied on blast cell populations. (Ci) FISH analysis of a blast cell with probes specific for ABL1 (green) and NUP214 (red). Two green and red
signals indicate normal chromosomal ABL1 and NUP214. Yellow signals indicate location of fusion gene. (ii-iv) MPLA analysis shows deletion of IKZF1 exons 2-7 and CDKN2A
exons 1-2. (D) Absolute cell counts of viable control BV173 (i) and patient primary blasts (ii) after 72 hours in culture with either no drug or the indicated concentration of imatinib
(IM), dasatinib (DAS), nilotinib (NIL), or ponatanib (PON). (iii) FACS plots of aliquots of patient’s cells after 72 hours of culture showing annexin V and 7-amino-actinomycin
D (7-AAD) expression.
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To the editor:

Role of fecal calprotectin as biomarker of gastrointestinal GVHD after allogeneic stem cell
transplantation

We read with interest the article of Rodriguez-Otero et al.1 The
authors studied the ability of fecal calprotectin (FC), �-1 antitryp-
sin, and elastase to diagnose acute gastrointestinal GVHD
(GI-GVHD) after allogeneic stem cell transplantation (SCT). In
their experience, FC and �-1 antitrypsin increased in patients with
GI-GVHD, but there was no statistic difference compared with
control groups. On the other hand, high levels of both markers at
the time of diagnosis were predictive of steroid-resistant GVHD. In
past years, our group also investigated the role of FC as a
noninvasive biomarker of GVHD. We enrolled a cohort of
59 hematologic patients consecutively submitted to allogeneic
SCT, and studied the level of FC in patients who developed
GI-GVHD, non–GI-GVHD, and in patients with infective colitis.
We also included a control group of 9 patients with aspecific colitis
after autologous SCT. FC was detected at the onset of symptoms
and before starting any therapy. Stool collection was performed by
Calprest device and the protein level was measured by ELISA

assay (Calprest test; Eurospital). Data were analyzed using IBM
SPSS Statistics 20 Core System and Prism Version 3.0 software
(GraphPad). Diagnosis and staging of acute GVHD (aGVHD) and
chronic GVHD (cGVHD) was made according to current criteria.2,3

FC was higher in patients with acute GI-GVHD (GI-aGVHD) than
in non–GI-aGVHD (500 mg/Kg vs 95 mg/Kg; P � .0003; Figure
1A), and in stage III-IV GI-aGVHD than in the others; although, no
statistic difference was observed in this case.

After treatment, in 2 of 3 responsive patients, FC value
decreased to less than 15 mg/Kg. In contrast, FC was lower in
patients with infective colitis compared with GI-aGVHD
(106 mg/Kg vs 500 mg/Kg; P � .0039; Figure 1B). Comparing
patients with GI-aGVHD, patients with infective enteritis and
patients with both conditions, the median level of FC was
500 mg/Kg, 106 mg/Kg, and 475 mg/Kg, respectively (P � .0096;
Figure 1C). FC was also lower in the control group of patients
submitted to autologous SCT who developed mucositis and
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