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Follicular lymphoma is a monoclonal
B-cell malignancy with each patient’s tu-
mor expressing a unique cell surface
immunoglobulin (Ig), or B-cell receptor
(BCR), that can potentially recognize anti-
gens and/or transduce signals into the
tumor cell. Here we evaluated the reactiv-
ity of tumor derived Igs for human tissue
antigens. Self-reactivity was observed in

26% of tumor Igs (25 of 98). For one
follicular lymphoma patient, the recog-
nized self-antigen was identified as
myoferlin. This patient’s tumor cells
bound recombinant myoferlin in propor-
tion to their level of BCR expression, and
the binding to myoferlin was preserved
despite ongoing somatic hypermutation
of Ig variable regions. Furthermore, BCR-

mediated signaling was induced after cul-
ture of tumor cells with myoferlin. These
results suggest that antigen stimulation
may provide survival signals to tumor
cells and that there is a selective pres-
sure to preserve antigen recognition as
the tumor evolves. (Blood. 2012;120(20):
4182-4190)

Introduction

Follicular lymphoma (FL) is a slowly progressive and largely
incurable human B-cell malignancy. Transformation to a more
aggressive lymphoma, such as diffuse large B-cell lymphoma, is
common and strongly associated with an increase in morbidity and
mortality. A chromosomal translocation t(14:18) is the hallmark of
this disease, and it is found in 85%-90% of cases. It results in the
juxtaposition of the BCL2 proto-oncogene with the immunoglobu-
lin (Ig) heavy chain gene, IGH, leading to deregulated overexpres-
sion of Bcl-2 protein, a major inhibitor of apoptosis. However, the
t(14:18) translocation is insufficient to cause malignancy as it is
detectable in rare B cells from healthy persons.1-3 Thus, FL
pathogenesis requires additional signals beyond that imparted by
the deregulation of BCL2. The observation that FL cells isolated
from patients fail to survive in vitro and undergo spontaneous
apoptosis supports the hypothesis that extrinsic microenvironmen-
tal factors are required for maintenance and expansion of FL.4

Phenotypically, FL tumor cells resemble antigen-experienced
germinal center B cells. Their Ig genes, which are rearranged to
produce a functional B-cell receptor (BCR), have numerous point
mutations compared with their germline counterparts, and this
process of somatic hypermutation (SHM) is ongoing as the
malignant clone expands and diversifies. Thus, individual tumor
cells can each have slightly different Ig variable region sequences.5

Random mutations should eventually result in stop codons and loss
of BCR protein expression. However, FL tumors maintain a surface
BCR, indicating a selective force favoring retention of a functional
BCR. Furthermore, therapy with anti-idiotype antibodies directed
against the BCR did not select for the outgrowth of BCR-negative
variants. Rather, this therapy selected for the outgrowth of cells that
had amino acid substitutions in the targeted V region sequence,
making them unrecognizable by the anti-idiotype antibody.6 Other
in vitro studies with malignant B-cell lines have shown that

experimental knockdowns of the BCR and members of its signal-
ing pathway result in growth arrest, implicating their importance in
tumor cell survival.7

The BCR can transmit a tonic survival signal, but this is greatly
augmented on its binding to a cognate antigen.8 There is indirect
evidence to suggest that antigen recognition plays a role in the
pathogenesis of FL. SHM can introduce silent or replacement
mutations, the latter leading to an amino acid substitution. In a
normal immune response, B cells with mutations resulting in
higher binding affinity for the inciting antigen preferentially
survive. This selective pressure leads to enrichment of replacement
mutations in the complementarity determining regions (CDRs) of
the BCR, and an under representation of replacement mutations in
the framework regions (FWRs).9 This same distribution of replace-
ment and silent mutations has been reported for the BCRs of FL
cells,5 and the intraclonal diversity resulting from ongoing SHM
argues for the existence of an antigen driving the growth of the
tumor.10,11 However, improved methods for assessing antigen-
driven selection revealed strong negative selection against replace-
ment mutations in the FWRs, but no positive selection in the CDRs
of FL Ig variable regions.12,13 These findings gave evidence for a
selective pressure that maintains the expression of a functional
BCR, but not for antigen recognition.

Nevertheless, there are severalexamples of antigen recognition
by B-cell malignancies. A case of lymphoma arising in a patient
infected with hepatitis C virus had a tumor BCR that bound the
viral envelope protein.14 Furthermore, in some patients with both
hepatitis C virus infection and lymphoma, antiviral therapy led to
regression of the lymphoma,15 indicating a dependence of the
lymphoma on the continued presence of the virus. Mucosa-
associated lymphoid tissue lymphomas have been reported to bind
bacterial antigens as well as self-antigens, including Ig, DNA, and
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stomach extracts.16,17 In addition, a subset of splenic marginal zone
lymphomas using the IgH VH1-02 gene, have similar CDRs and
were shown to be both poly- and self-reactive.18 In chronic
lymphocytic leukemia (CLL), 30% of patients use a restricted Ig
repertoire, have stereotypic BCR sequences, and are frequently
self-reactive.19-21 These analyses suggest that shared antigens may
select tumor cell progenitors. Indeed, a subset of unmutated CLL
tumors with stereotyped BCRs were shown to bind a self-antigen
identified as nonmuscle myosin heavy chain II.21 Unlike CLL,
FL tumors do not have biased Ig V gene usage or stereotypic
Ig V regions sequences.22 However, some FL BCRs have been
reported to be reactive with self-antigens.23 These results provide
some support for the hypothesis that self-antigens provide survival
signals to FL tumor cells.

To investigate the hypothesis that self-antigen recognition plays
a role in the pathogenesis of FL, we used recombinant tumor
Igs, which had been produced for a clinical trial of therapeutic
vaccination (NCT00017290),24 and evaluated the reactivity of
tumor derived Igs for human tissue antigens. Furthermore, we used
a self-antigen recognized by the BCR from a patient’s tumor to
perform a clonal analysis of antigen recognition and tested the ability of
cognate antigen to transduce signals through the tumor BCR.

Methods

Recombinant tumor Ig

Recombinant tumor Igs were cloned as part of a clinical trial from patients
with previously untreated advanced stage FL25,26 and generated as previ-
ously described.24 The tumor Ig DNA and protein for each patient are
identified with a 4-digit numerical identifier. Variable regions were se-
quenced and analyzed for Ig gene usage and for the number of replacement
and silent mutations with IMGT V-Quest. The focused binomial test was
used to ascertain selection (ie, the probability that an excess or scarcity of
replacement mutations in the V gene CDRs or FWRs) occurred by chance.27

Cell lines secreting recombinant tumor Ig were grown in protein-free
RPMI with 1mM sodium pyruvate, nonessential amino acids, 100 �g/mL
streptomycin, 100 U/mL penicillin G, 2mM L-glutamine (Invitrogen), and
1% Nutridoma-SP (Roche Applied Science). To generate Igs lacking
N-linked glycans, cells were grown in media supplemented with 2 �g/mL
tunicamycin (Roche Diagnostics). Supernatants were harvested, and Ig was
purified using protein G followed by elution with 0.1M glycine (pH 3.0) and
neutralization with 1M Tris (pH 8.0). Concentrations of recombinant tumor
Ig were determined by ELISA and by A280 absorbance using a NanoDrop
ND-1000 Spectrophotometer (Thermo Scientific).

Analysis of N-linked glycosylation

Recombinant tumor Igs were treated separately with Endo-H and PNGase
F (New England BioLabs) according to the manufacturer’s instructions.
Proteins were separated by SDS-PAGE and transferred to nitrocellulose
membranes. Membranes were probed with anti–human IgG-HRP (Southern
Biotech 2040-05). Increased mobility after treatment with Endo H or
PNGase F indicates the presence of oligomannose glycans or N-linked
glycans, respectively.

IFA

Tumor Igs were tested for self-reactivity by indirect immunoflurescence
assay (IFA) on HEp-2 cells (Bion Enterprises) according to the manufactur-
er’s instructions. Igs were diluted in PBS with 2% BSA and used at
90-150 �g/mL. Anti–human Ig-FITC detected binding of tumor Igs. Evans
Blue was used as a counterstain. Staining was performed under moist
conditions at room temperature. Slides were imaged with a Nikon Eclipse
E800 microscope with a Nikon PlanApochromatic 1.40 aperture 100� objective
lens, for a final magnification of 1000�.

Expression of recombinant myoferlin

Recombinant myoferlin containing a C-terminal HA tag was kindly
provided by Dr William Sessa28 (Addgene). Recombinant myoferlin fused
to the mouse IgG2a Fc was generated by cloning myoferlin cDNA into
pFUSE-mIgG2A-Fc2 expression vector (InvivoGen). Recombinant myofer-
lin cDNA was transfected into 293T cells with Fugene HD (Promega) as per
the manufacturer’s instructions. At 24 hours after transfection, cells were
harvested. Clarified lysates were used in immunoprecipitations and
ELISAs. In flow cytometry-based staining and stimulation assays, detergent
was adsorbed with BioBeads SM-2 Adsorbent (Bio-Rad).

Immunoprecipitation, immunoblot, and protein identification

Cells were lysed at 10 � 106 cells/mL with nondenaturing lysis buffer
(20mM Tris HCL pH 8, 137mM NaCl, 1% NP-40) containing protease
inhibitors (Roche cOmplete Mini, EDTA-free protease inhibitor tablets) at
4°C for 45 minutes followed by centrifugation at 20 000g for 20 minutes at
4°C; 1 �g of tumor Ig was added to 1 mL of lysate and rotated for 2 hours at
room temperature, followed by addition of 25 �L of protein G beads
(Dynabeads, Invitrogen), and continued rotation for 15 minutes. The beads
were washed 5� with PBS and samples were eluted with nonreducing SDS
sample buffer, and separated by SDS-PAGE. Gels were silver-stained for
mass spectrometry (Pierce, Thermo Scientific) or transferred to nitrocellu-
lose membrane for immunoblots.

Membranes were probed with mouse antimyoferlin (Novus Biologicals,
H00026509) followed by detection with HRP-conjugated goat anti–mouse
IgG (Southern Biotechnology, 1030-05). Blots were developed with ECL
Western blotting detection reagent (GE Healthcare). For mass spectrometry
analysis, gel pieces containing silver-stained proteins were subjected to
in-gel tryptic digestion (Pierce, Thermo Scientific) and identified by
LC-MS/MS using the Agilent 1100 LC system and the Agilent XCT plus
Ion Trap (Agilent Technologies), as previously described.29 The MS/MS
spectra were scanned against the SwissProt database using the Spectrum-
Mill software (Agilent).

Myoferlin ELISA

The 96-well flat-bottom plates were coated with 5 �g/mL goat anti-HA
(Abcam ab9134), followed by blocking with 5% milk in PBS and
incubation with lysate of 293T cells transfected to express recombinant
myoferlin protein. Lysates of untransfected cells served as a negative
control. Plates were probed with 10 �g/mL of tumor Ig diluted 3-fold in
2% BSA in PBS. Binding of tumor Ig to myoferlin was detected with goat
anti–human IgG-HRP (Southern Biotechnology). ELISAs were developed
with ABTS (Sigma-Aldrich) and read with a Vmax kinetic microplate
reader (Molecular Devices).

Biolayer interferometry

Equilibrium affinity measurements were performed using an Octet
QK (Foretebio) at 25�C at 1000rpm.30 Biotinylated goat anti-HA (Gen-
Script, A00203) was loaded onto streptavidin-coated sensor tips (Fortebio)
followed by capture of recombinant myoferlin-HA protein from lysate of
293T cells transfected with recombinant myoferlin cDNA. Real-time interactions
between surfaces with immobilized myoferlin and different concentrations
of tumor Ig 1152 were measured simultaneously for 18 000 seconds using a
separate sensor tip for each concentration condition. Interactions were
monitored until at or near equilibrium. The equilibrium affinity (KD) of
myoferlin/tumor Ig 1152 was approximated by fitting a plot of final signal
intensity versus tumor Ig 1152 concentration to a 1:1 binding model, using
GraphPad Prism Version 5.0.

Intraclonal tumor Ig VH diversity

DNA was extracted from the biopsy of patient 1152 (AllPrep DNA/RNA
Micro Kit, QIAGEN) was amplified using PHusion High-fidelity PCR Kit
(New England BioLabs). Primers matched the 5� region of FWRs1
(5�-CAGGTCACCTTGAGGGAGTCTGG-3�) and the 3� region of FWRs4
(5�-TGAGGAGACGGTGACCAGGG-3�). PCR product was ligated into
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Zero Blunt PCR Cloning vector (Invitrogen) and transformed into compe-
tent Escherichia coli OneShot TOP10 cells. Plasmids isolated from single
colonies were sequenced using M13 universal primers. Sequences were
aligned with MacVector 12 software. To estimate false mutations intro-
duced by experimental methods, we cloned and sequenced the VH from this
patient’s B cell hybridoma (6C12). A single mutation was present in the
29 molecular clones sequenced, indicating a false mutation rate of
0.03 mutations/VH.

To rescue the soluble Ig from single tumor cells of patient 1152, the
cells were fused to K6H6/B5 heteromyeloma at a ratio of 1:1 with
polyethylene glycol and cultured in the presence of 100�M hypoxanthine,
0.4�M aminopterin, 16�M thymidine (Sigma-Aldrich). Hybridoma clones
that were positive in a screen for Ig-� were further expanded. RNA was
extracted using RNeasy (QIAGEN), followed by synthesis of cDNA
(Promega A3500) and amplification of VH and VL regions using leader
family primers to VH2 (5�-ATGGACATACTTTGTTCCAC-3�) and VL8

(5�-ATGGCCTGGATGATGCTTCTCCTC-3�) and 3� primers to � (5�-
GTCCTTGACCAGGCAGCCCAGGGCCGC-3�) and � (5�-GCGTCA-
GGCACAGATAGCTGCTGGCCGC-3�) constant regions. The V� regions
of hybridoma clone 2E12 and 2 nontumor-derived hybridomas were
amplified with SMARTer RACE cDNA Amplification (Clonetech) in
combination with the � constant region primer. The same primers used for
the PCR were used for sequencing.

Flow cytometry

HEp-2 cells were fixed and permeabilized (BD Cytofix/CytoPermBuffer),
stained with recombinant tumor Ig at 150 �g/mL followed by 2-fold
dilutions. Binding was detected with goat anti–human IgG-Alexa647
(Invitrogen), followed by analysis on a FACSCalibur 2-laser cytometer.

Detergent-adsorbed lysate of myoferlin-HA–transfected 293T cells was
used in tumor staining and stimulation assays. Detergent-adsorbed lysate of
untransfected 293T cells served as a negative control. Frozen biopsy cells
were thawed and washed twice with PBS 0.5% BSA. For analysis
of myoferlin binding to tumor, 100 �L of antigen prep was added to
5 � 105 biopsy cells and incubated for one hour at 4°C. Cells were washed
twice and stained for surface markers CD20 (340954), CD3 (558117), IgM
(561010), and � (555796), all from BD Biosciences. Anti-HA (Abcam,
ab72564) or anti–mouse IgG2a (Southern Biotechnology, 1080-09) was
used to detect myoferlin-HA or myoferlin-mG2a, respectively. For stimula-
tion assays, 5 � 105 biopsy cells in 100 �L RPMI with 10% FCS were
rested at 37°C for 30 minutes. A total of 100 �L of antigen prep, or anti-IgG

or anti-IgM (Southern Biotechnology, 2041-14 or 2022-14) at a final
concentration of 10 �g/mL, was added to cells and incubated at 37°C for
45 minutes. Cells were then fixed with 1.6% paraformaldehyde for
5 minutes at room temperature. Cells were pelleted and permeabilized with
2 mL ice-cold methanol and incubated at �20°C for 10 minutes. Cells were
washed twice then stained for CD3 and CD20 (BD Biosciences, 558021),
and phosphorylated S6 ribosomal protein (Cell Signaling, 4854S). Cells
were collected on an LSR II 3-laser cytometer (BD Biosciences), and data
were analyzed with Cytobank software (cytobank.org).31

Results

Reactivity of recombinant FL Igs with human tissue antigens

As expected, the tumor Igs were somatically mutated with an
average of 34.7 and 20.8 mutations for heavy and light chain
V genes, respectively (supplemental Figure 1A, available on the
Blood Web site; see the Supplemental Materials link at the top of
the online article). Replacement mutations were more frequent in
CDRs compared with FWRs (supplemental Figure 1B); however,
improved methods for detecting antigen-driven selection did not
identify positive selection for replacement mutations in the CDRs
(supplemental Table 1). These results are consistent with previous
analyses of tumor Igs.12,13,22 To test the recombinant tumor Igs for
reactivity with a large collection of self-antigens, we used perme-
abilized human cells (HEp-2) as the target and performed a screen
by IFA. HEp-2 IFA is a standard clinical assay for detecting
self-reactive antibodies in the serum of autoimmune patients.32 All
of the recombinant BCR proteins were expressed on a common
IgG3 heavy chain backbone regardless of the original isotype of the
tumor. The light chain constant regions, � or lambda, matched
those of the respective tumors. Therefore, all binding activity that
differed between these recombinant tumor-derived BCRs could be
attributed to their specific variable regions. The recombinant tumor
Igs were reactive at a frequency of 25.5%, with 25 of 98 tested
tumor Igs staining HEp-2 cells. When categorized based on the
original isotype of the tumor, IgG tumors have a higher frequency
of self-reactivity than IgM (Figure 1A). This frequency of HEp-2

Figure 1. Self-reactivity of recombinant FL Igs. Ex-
pressed Igs cloned from FL B cells were tested for
self-reactivity by an indirect IFA on HEp-2 cells.
(A) Summary of the frequency of self-reactive tumor Igs
and the cellular localization of recognized antigens. The
number of Igs tested is indicated in the center of the pie
chart. (B) Examples of HEp-2 IFA staining patterns.
Staining patterns of reactive Igs were confirmed in at
least 2 independent experiments. Bars represent 25 �m.
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reactivity is similar to that reported for normal antigen-experienced
IgG and IgM B cells.33,34 There was great diversity in the observed
staining patterns, indicating reactivity of different tumor BCRs
with different cellular antigens. For example, the recombinant
tumor Ig from patient 0912 stained filamentous structures, whereas
the tumor Ig from patient 1152 gave a speckled staining pattern and
appeared to bind in regions surrounding the nucleus and throughout
the cytoplasm (Figure 1B).

It has been reported that variable region SHM in FL introduces
motifs available for N-glycosylation (Asn-X-Ser/Thr, where X is any
amino acid except Pro, Asp, or Glu) and that the added glycans contain
oligomannoses.35,36 We were able to confirm these observations. Of
the tumor Igs studied here, 86% contain at least 1 N-linked
glycosylation motif not encoded by the respective germline V gene.
Acquisition of the motif was more prevalent in heavy chain
variable regions compared with light chain variable regions with a
frequency of 79.7% and 22.4%, respectively (Figure 2A). We
studied several of these motif-containing Igs, and all were con-
firmed to contain high mannose sugars, as indicated by their
sensitivity to Endo H, an enzyme that specifically cleaves oligoman-
nose glycans. They also contained mature glycoforms as indicated
by their sensitivity, and increased SDS-PAGE migration after
digestion with PNGase F, which cleaves all N-linked glycans
(Figure 2B). Oligomannose glycans were present in HEp-2 reactive
and HEp-2 nonreactive tumor Igs, indicating that possession of
oligomannose glycans does not dictate HEp-2 reactivity. However,
for tumor Igs that contain oligomannose glycans, this sugar moiety
might contribute to positive HEp-2 reactivity (ie, via lectin
binding). To address this question, we generated tumor Igs that
lacked N-linked glycans by growing the cells producing tumor Igs
in the presence of tunicamycin, an inhibitor of N-linked glycosyla-
tion. Tumor Igs generated in these conditions were no longer
sensitive to Endo H or PNGase F and had similar migration to
PNGase F-treated Igs produced in the absence of tunicamycin
(Figure 2B). Recombinant tumor Igs with and without N-linked
glycans were then compared by HEp-2 IFA. We found that
HEp-2 reactivity and staining patterns were unaffected by the
removal of N-linked glycans (Figure 2C). Titration curves gener-
ated by intracellular flow cytometry were similar between tumor
Ig with and without N-linked glycans (Figure 2D). These results
demonstrate that the reactivity of these tumor-derived Ig proteins
for antigens of Hep-2 cells was not dependent on carbohydrate
moieties within the Igs.

Identification of myoferlin as a uniquely recognized
self-antigen

To identify HEp-2 antigens recognized by the self-reactive tumor
Igs, all tumor Igs that were positive in the HEp-2 IFA were tested
for their ability to immunoprecipitate protein antigens from
HEp-2 cell lysate. The silver-stained protein band immunoprecipi-
tated by the tumor Ig of patient 1152 was the most prominent and
reproducible. For these reasons, we chose this tumor BCR and antigen
pair for further study. The tumor Ig from patient 1152 immunopre-
cipitated a protein band just below the 238-kDA marker (Figure
3A). Using LC-MS/MS, we identified the immunoprecipitated
protein as myoferlin, a protein known to associate with cell and
nuclear membranes, which correlates with the HEp-2 staining
pattern observed for patient 1152 (Figure 1B) and which is
involved in membrane repair and VEGF signal transduction.28 The
matched peptides covered 32% of the protein (supplemental Figure
2) and the calculated molecular weight of myoferlin is 236 kDA.

We confirmed the identity of myoferlin by performing immuno-
precipitation from HEp-2 cell lysate, followed by immunoblotting
with an antibody against myoferlin. (Figure 3B). To further validate
the target of tumor Ig 1152, recombinant myoferlin containing an
HA-tag was transfected into 293T cells, which do not express
endogenous myoferlin. Immunoblotting for myoferlin confirmed
its expression in transfected cells and immunoprecipitation of
transfected cell lysate with tumor Ig 1152 showed enrichment of
myoferlin, whereas immunoprecipitations with other tumor Igs did
not (Figure 3C). To determine whether myoferlin could be a
common self-antigen in FL, we used an ELISA where recombinant
myoferlin was captured by antibodies against its HA tag. We tested
all 98 tumor Igs; however, only the Ig from patient 1152 bound
recombinant myoferlin (Figure 3D). These results indicate that
myoferlin is a self-antigen, uniquely recognized by the BCR from
the tumor of patient 1152. The apparent equilibrium affinity of
tumor Ig 1152 for myoferlin was calculated as having KD of
10.3nM, as determined by biolayer interferometry.

Clonal analysis of self-reactivity and antigen binding

FL is characterized by ongoing SHM,5,6,10,11 and this phenomenon
was confirmed in the tumor from patient 1152. The rearranged
variable region was PCR amplified from DNA extracted from the
tumor using 5� FWRs1 and 3� JH primers specific to the tumor
variable region sequence. The PCR product was cloned and

Figure 2. HEp-2 reactivity is not dependent on vari-
able region oligomannose glycans. (A) Number of
N-glycosylation motifs in heavy (VH) and light (VL) chain
variable regions, not encoded by the germline sequence.
The number of sequences analyzed is indicated in the
center of the pie chart. (B) Tumor Igs from patients 0998
and 0912 were produced in the absence or the presence
of tunicamycin to generate Ig lacking N-linked glycans.
Tumor Igs were then treated with Endo H or PNGase F to
confirm the presence or absence of oligomannose gly-
cans or N-linked glycans, respectively. Proteins were
separated by SDS-PAGE and immunoblotted for human
IgG. (C) HEp-2 IFA staining patterns of tumor Igs with and
without (indicated by a “T”) N-linked glycans. Results are
representative of 2 independent experiments. (D) Intracel-
lular flow cytometric titration curve of HEp-2 cells stained
with tumor Ig with and without (indicated by a “T”)
N-linked glycans. Results are representative of 2 indepen-
dent experiments.
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52 molecular clones were sequenced. Among these 52 molecular
clones, there were 19 unique sequences encompassing 30 muta-
tions. There was a mixture of both silent and replacement
mutations, which were distributed in both FWRs and CDRs.
Importantly, no nonsense mutations were observed (supplemental
Figure 3).

To determine whether self-reactivity or antigen binding was
altered by ongoing SHM, we performed a rescue fusion on the
tumor biopsy from patient 1152. This approach fuses the patient’s
cells with a heteromyeloma, which allows for the immortalization
of individual tumor cells and the recovery of their Ig product, while
halting SHM.37 A total of 5 tumor subclones were obtained, and
they all contained tumor-derived Ig sequences but with different
point mutations (supplemental Figure 4). Fusion clones 4B11 and
6C12 express heavy chain sequences that are identical to the
2 dominant molecular clones (supplemental Figure 3). Interest-
ingly, clone 2E12 was strikingly different from the other recovered
clones. Clone 2E12 shared with the other clones the tumor VH,
DH, and JH genes and CDRs3 recombination joints, yet it had
accumulated a great number of mutations that distinguished it from
the other tumor clones. Clone 2E12 also expressed a different Ig�
V gene. Based on the chromosomal location of V� and J� genes,
the light chain genes of 2E12 were likely the genes expressed by
the original premalignant B cell, whereas the light chain genes of
the remaining tumor sublcones resulted from receptor editing in a
precursor clone. Despite differences in the nucleotide and amino
acid sequences of the recovered tumor subclones, all of them
retained reactivity with human HEp-2 cells and had the same
staining pattern (Figure 4A). All tumor subclone Igs were also able
to immunoprecipitate recombinant myoferlin from the lysate of
293T cells transfected with the myoferlin-HA construct (Figure
4B). The tumor subclone Igs were also tested for binding to
recombinant myoferlin by ELISA. Clones 4B11 and 6C12, which
express heavy chain sequences that are identical to the 2 dominant
molecular clones, exhibit the strongest binding (Figure 4C).

In addition to the tumor subclones, 2 clones of nontumor B cells
were recovered from patient 1152. These nontumor B cell clones

expressed different V genes and had different V/D/J or V/J joints
for both IgH and Ig�, were unmutated, and were an IgM isotype,
suggesting they were derived from normal mature naive B cells
These normal B cell–derived Ig proteins exhibited completely
different HEp-2 staining patterns and were unable to bind recombi-
nant myoferlin (supplemental Figure 5).

We next sought to assess the ability of the actual tumor cells
from patient 1152 to bind myoferlin. We used 2 different recombi-
nant myoferlin proteins (one containing an HA-tag, the other fused
to the mouse IgG2a Fc) to stain a single-cell suspension of the
biopsy from this patient. Tumor and nontumor B cells in the
specimen were identified by a combination of CD20 and Ig isotype
specific antibodies (supplemental Figure 6). Binding of the recom-
binant myoferlin antigen was detected with an antibody against the
HA-tag or mouse IgG2a Fc. The tumor cells bound both recombi-
nant forms of myoferlin in direct proportion to their level of BCR
expression (Figure 5). The nontumor B cells showed no binding of
myoferlin, once again providing a powerful internal control. These
results indicate that despite the great intraclonal diversity generated
by ongoing SHM, self-reactivity, and antigen binding were pre-
served and were a property specific for the Ig of the tumor cells.

Induction of BCR signaling of tumor cells by cognate antigen

FL tumor cells are capable of signaling through their BCR after
cross-linking of their BCR with polyclonal antibodies.38 Here we
measured the levels of phosphorylated S6 ribosomal protein (S6),
our most sensitive read-out of BCR-mediated signaling for this
tumor. Cross-linking antibodies specific to the heavy chain isotype
of the tumor and nontumor B cells, IgG and IgM, respectively, were
used as a positive control for BCR-mediated S6 phosphorylation.
When stimulated with recombinant forms of myoferlin, only the
tumor cells showed an increase in phosphorylated S6 (Figure 6).
The nontumor B cells only signaled in response to anti-IgM. Thus,
cognate antigen was able to induce specific BCR signaling in the
tumor cells.

Figure 3. Identification of myoferlin as a uniquely recognized self-antigen. (A) Silver stain of a 3%-8% Tris-acetate gel of proteins immunoprecipitated (IP) from HEp-2 cell
lysate by the indicated recombinant tumor Igs. (�) indicates lanes containing tumor Ig proteins only; IP, lanes containing the immunoprecipitated proteins; Ly, lysate; and
B, lysate IP with protein G beads only. The left arrow indicates the 236-kDa protein immunoprecipitated by the tumor Ig of patient 1152; the right arrow points to the location of
the tumor Igs. (B) Immunoblotting for myoferlin in immunoprecipitation samples from HEp-2 cell lysate. (C) Immunoblotting for myoferlin in immunoprecipitation samples from
293T cells transfected with recombinant myoferlin. (D) A total of 98 tumor Igs were tested for binding to recombinant myoferlin by ELISA. Myoferlin-HA was immobilized using
anti-HA antibodies on lysates from untransfected (left panel) and transfected 293T cells (right panel). Shown is a representative graph of OD405-490 values for 14 different
nonbinding patients’ tumor Igs (solid lines) compared with tumor Ig for patient 1152 (dotted line). The ability of tumor Ig 1152 to bind myoferlin was confirmed in at least
2 independent experiments.
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Discussion

The hypothesis that antigenic stimulation can contribute to the
development of B-cell malignancies was first proposed in 1959 in a
discussion of proliferative similarities in autoimmunity and leuke-
mia.39 Analysis of our large dataset of FL tumor BCR sequences
revealed that replacement mutations accumulate in CDRs and are
limited in FWRs, similar to previous reports,5 and consistent with
normal antigen experienced B cells.33,34 These patterns of muta-
tions, combined with the apparent selective pressure to preserve
BCR expression, have been interpreted as evidence for antigen
recognition in FL. However, newer methods that take into consider-
ation the intrinsic mutational biases of the codons that comprise the
CDRs and the FWRs have modified the view of how selective pressure
by antigen can shape the mutational patterns of FL BCRs.12,13

These authors found evidence for negative selection against
replacement mutations in FWRs but no evidence for positive
selection for replacement mutations in CDRs. These results were
interpreted to indicate the presence of a selective force to maintain
the structural integrity of the BCR, perhaps to allow for tonic
signaling, but not for specific antigen binding.

With the present study, we demonstrated that at least a subset of
FL tumors are capable of recognizing self-antigens. The frequency
of self-reactivity in FL is similar to that which has been observed
for normal memory B cells,33 indicting that FL tumors arise from a
B-cell population that has been selected by antigen. Our screen was
designed to detect tumor BCRs that were reactive against self-
antigens and just those that are expressed in HEp-2 cells. Thus, the
tumor Igs classified as nonreactive may well be reactive against
foreign or self-antigen targets not included in our screen. As we

were able to document antigen reactivity in FL, the apparent lack of
positive selection for replacement mutations in FL CDRs may not
necessarily indicate a lack of antigen selection. Once an optimal
strength of antigen interaction has been obtained, further replace-
ment mutations could be disadvantageous as they may reduce the
ability of the BCR to interact optimally with antigen. Indeed, this is
hypothesized to be the case in some autoimmune diseases, such as
rheumatoid arthritis, multiple sclerosis, and myasthenia gravis.40,41

In this study, myoferlin was identified as an antigen that was
uniquely recognized by one patient’s tumor. Whereas myoferlin is
not highly expressed in FL tumor cells,42 immunohistochemical
staining of malignant lymphoma biopsies for myoferlin show
scattered cell staining.43 Thus, myoferlin is present in the tumor
microenvironment and can serve as a source of antigenic stimula-
tion for the tumor cells.

We were unable to identify a shared antigen that was recognized
by more than one patient’s tumor, but we cannot exclude the
possibility that one exists. In CLL, there is a restricted Ig repertoire
and frequent use of BCRs with identical CDRs3 sequences.19-21

These stereotypic BCRs of CLL often react with the same
auto-antigen, supporting a role for antigens in driving this malig-
nancy. In FL tumors, the Ig V gene usage is representative of the
general B-cell repertoire, and there are no reports of stereotypic
BCRs. Thus, there is no molecular evidence for shared antigen
recognition in FL. With the BCRs from FL, we observed staining
patterns on HEp-2 cells that were quite diverse, attesting to the
possibility that the antigens recognized by FL tumor BCR are
stochastically determined, based on the Ig rearrangement that
occurred around the time of the t(14:18) translocation, and unique
to each patient.

Figure 4. Igs of 1152 tumor subclones retain self-
reactivity and antigen binding. (A) HEp-2 IFA staining
pattern of tumor subclone Igs (2E12, 6C12, 4B11, 1G2, and
1E9) were obtained through rescue fusion of cells from
the tumor biopsy of patient 1152; 1152 corresponds to the
recombinant tumor Ig from patient 1152. Bars represent
25 �m. (B) Immunoblot for myoferlin in immunoprecipita-
tions from lysate of 293T cells transfected with recombi-
nant myoferlin-HA construct. Ly indicates lysate; B, lysate
IP with protein G beads only; and 0516, an unrelated
tumor Ig. (C) Tumor subclone Igs were tested for binding
to recombinant myoferlin by ELISA. Recombinant
Myoferlin-HA protein was immobilized using anti-HA
antibodies on lysate from transfected 293T cells. Data
shown are representative of at least 2 independent
experiments.
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By identifying an antigen recognized by the BCR of a patient’s
tumor, we were able to interrogate the significance of antigen
recognition in the pathogenesis of FL. Receptor editing occurs

early in B-cell development and alters the BCR specificity of
autoreactive B cells. When occurring in mature B cells, receptor
editing, or receptor revision, is thought to rescue B cells in which

Figure 5. Antigen binding by tumor cells of patient 1152 correlates positively with BCR expression. A single-cell suspension of the tumor biopsy was analyzed by flow
cytometry to assess antigen binding by individual cells. Recombinant myoferlin with an HA tag or fused to mouse IgG2a FC was used to stain the cells. Antigen binding was
detected with goat anti-HA or goat anti–mouse IgG2a. Lysate from untransfected 293T cells served as a negative control (UT). Cells are gated on CD3�CD20	 B cells; tumor
B cells and nontumor B cells were identified with CD20hiIgM� and CD20intIgM	 gates, respectively.

Figure 6. Myoferlin stimulates phosphorylation of S6
ribosomal protein in tumor cells. A single-cell suspen-
sion of the tumor biopsy was stimulated with 100 �L of
detergent-adsorbed lysate of either untransfected 293T
cells (UT), or 293T cells transfected to express recombi-
nant myoferlin containing an HA tag or myoferlin fused to
mouse IgG2a Fc. A total of 10 �g/mL of goat anti-IgG and
IgM was used as positive control for BCR signaling for
tumor and nontumor B cells, respectively. Cells were
stimulated for 45 minutes at 37°C. Cells were then fixed
with 1.6% paraformaldehyde and permeabilized with
methanol. Cells were stained for expression of CD3,
CD20, and phosphorylated S6 ribosomal proteins. Tumor
and nontumor B cells were identified with CD3�CD20hi

and CD3�CD20int gates, respectively. Values adjacent to
histograms indicate median fluorescent intensities.
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SHM has prevented expression of a functional BCR, or led to weak
interaction with antigen.44 Receptor revision has been reported in
B-cell lymphomas,45,46 and such an event occurred during the
history of the malignant B-cell clone of patient 1152. Despite the
extensive intraclonal diversity of the tumor from patient 1152, generated
through ongoing SHM and receptor revision, tumor subclones
remained self-reactive and bound myoferlin. Furthermore, tumor
cells isolated from the patient’s biopsy bound myoferlin, with the
degree of binding correlating with BCR expression levels. These
results strongly suggest that a selective pressure did exist to
maintain antigen recognition by the BCR of this FL tumor. We were
also able to demonstrate the ability of antigen recognition to induce
BCR-mediated signaling in tumor cells, as assessed by phosphory-
lation of S6 ribosomal protein. Phosphorylation of ribosomal
protein S6 correlates with increased translation of mRNA tran-
scripts involved in cell cycle progression.47 Thus, as a result of
antigen binding, the tumor may be receiving survival signal
through its BCR, which could support the continued growth and
expansion of the tumor.

Recent work by the Stevenson group has led to the hypothesis
that FL tumor cells receive antigen-independent survival signals
through their BCR. They found that SHM leads to the introduction
of N-glycosylation motifs and that these motifs contain oligoman-
nose glycans.35,36 We have confirmed these findings. These glycans
may interact with mannose-binding lectins in the tumor microenvi-
ronment, which would allow for an antigen-independent route of
BCR stimulation in FL.48 In our study, N-linked glycans did not
dictate self-reactivity, and removal of glycans did not abrogate
antigen binding. Thus, signaling via lectin or by antigen binding are
both possible and tumor cells may receive survival signals through
multiple modes of BCR stimulation.

As the expression of the BCR and it is ability to be engaged by
antigens and/or lectins appears to be critical to the survival of
FL tumor cells, interference with BCR signaling might be an
effective therapeutic strategy. Indeed, clinical trials are now

underway to test drugs that target components of the BCR signaling
pathway.49,50
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