
HEMATOPOIESIS AND STEM CELLS

Brief report
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MicroRNAs (miRs) are involved in many
aspects of normal and malignant hemato-
poiesis, including hematopoietic stem cell
(HSC) self-renewal, proliferation, and ter-
minal differentiation. However, a role for
miRs in the generation of the earliest
stages of lineage committed progenitors
from HSCs has not been identified. Using
Dicer inactivation, we show that the miR
complex is not only essential for HSC

maintenance but is specifically required
for their erythroid programming and sub-
sequent generation of committed ery-
throid progenitors. In bipotent pre-MegEs,
loss of Dicer up-regulated transcription
factors preferentially expressed in mega-
karyocyte progenitors (Gata2 and Zfpm1)
and decreased expression of the
erythroid-specific Klf1 transcription fac-
tor. These results show a specific require-

ment for Dicer in acquisition of erythroid
lineage programming and potential in
HSCs and their subsequent erythroid lin-
eage differentiation, and in particular indi-
cate a role for the miR complex in achiev-
ing proper balance of lineage-specific
transcriptional regulators necessary for
HSC multilineage potential to be main-
tained. (Blood. 2012;120(12):2412-2416)

Introduction

MicroRNAs (miRs) are an abundant class of endogenous small
noncoding RNAs that regulate gene expression, such as gene
silencing and degradation, uncovering a new layer of regulatory
control of gene expression in many organisms.1 To date, almost
1000 different miRs have been identified, playing important roles
in proliferation, differentiation, and apoptosis.2

miR biogenesis requires successive processing events carried
out by the RNAses Drosha and Dicer. Thus, in the absence of Dicer,
essentially all miRs are depleted, making Dicer deletion a method
by which their role in biological processes may be assessed.
Recently, it was suggested that Dicer is involved in regulation of
the hematopoietic stem cell (HSC) niche3 as well as in intrinsic
regulation of HSCs themselves.4 Individual miRs have been
implicated in differentiation of mature blood cell lineages, such as
B cells,5 T cells,6 and granulocytes.7 Recently, miR-141/4518 and
miR-1919 were implicated in terminal erythroid differentiation, and
in vitro studies have suggested that miR-150 is involved in the
development of megakaryocytes from megakaryocyte/erythroid
progenitors.10 However, a requirement for Dicer in regulating the
early stages of myelo/erythroid lineage commitment remains to be
demonstrated.

By deleting Dicer from the hematopoietic system, we show that
Dicer is not only crucial for maintenance of HSCs but is selectively
required for generation of the most primitive erythroid committed
progenitors, whereas megakaryocyte and myeloid lineage commit-
ment remains intact.

Methods
Mice

Dicer1fl/fl,11 Mx1-Cre,12 and R26CreERT213 mice have been described.
C57Bl/6SJLCD45.1 mice were from The Jackson Laboratory. Experiments
were performed with United Kingdom Home Office approval.

Gene expression analysis

Microarray analysis was performed as previously described.14 Microarray data
have been deposited in the ArrayExpress database (www.ebi.ac.uk/arrayexpress;
accession no. E-MTAB-674). Quantitative PCR analysis was performed using
the BioMark Dynamic Array platform (Fluidigm) and TaqMan Gene Expression
Assays (Applied Biosystems; supplemental Methods, available on the Blood
Web site; see the Supplemental Materials link at the top of the online article).

In vitro progenitor assays

Evaluation of erythroid (E) and myeloid (GM) potential was performed as
described,15 and megakaryocyte (Mk) potential with the Megacult assay
(StemCell Technologies) according to the manufacturer’s instructions
(supplemental Methods).

FACS

FACS analysis of peripheral blood and BM stem and progenitor cells was
done on a LSRII analyzer and sorts on a FACSAriaII (BD Biosciences). For
further details, see supplemental Methods.

Statistical analysis

Statistical significance was calculated using Mann-Whitney t test.
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Results and discussion

Loss of erythroid transcriptional priming in Dicer-deficient HSCs

Previous reports suggested that miRs control HSC numbers.4

Through competitive transplantation experiments, using 2 different
Cre lines, we found Dicer to be essential for maintenance of HSCs

(supplemental Figure 1). To assess whether loss of Dicer from
HSCs affects their lineage transcriptional priming we noncompeti-
tively transplanted Dicerfl/fl;Mx1Cre and control Dicerfl/fl BM cells.
BM cellularity was reduced � 2-fold in Dicer�/� mice 13 days after
deletion (supplemental Figure 2A). However, at this time point,
phenotypic LSKCD105�CD150� HSCs were present at normal
levels (Figure 1A-C), even though Dicer mRNA was efficiently
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Figure 1. Dicer regulates erythroid lineage transcriptional priming in HSCs. Lethally irradiated (9 Gy) wild-type CD45.1 mice were transplanted noncompetitively with
6 million BM cells from control (Dicerfl/fl or Dicerfl/�;Mx1Cre) or Dicer�/� (Dicerfl/fl;Mx1Cre) mice. At least 4 weeks after transplantation, Cre-mediated recombination was induced with
polyriboinosinic acid/polyribocytidylic acid (polyI:C), by intraperitoneal injections of 200 �g polyI:C every second day, 3 injections in total. (A) Representative FACS profiles of HSCs
(LSKCD105�CD150�) in Dicerfl/fl and Dicer�/� mice, respectively. Numbers in FACS profiles indicate percentage within indicated gate, relative to total BM cells. (B-C) Mean (� SEM)
frequency relative to total BM cells (B; 10 or 11 mice/group, analyzed individually) and absolute number per 2 tibiae (C) of LSKCD105�CD150� HSCs in Dicerfl/fl and Dicer�/� mice. n � 4 or
5 mice/group analyzed individually. (D) Deletion efficiency of Dicer from 100-200 sorted LSKCD150� HSCs. n � 6 mice/group. *P � .05. (E) Sorting strategy for isolation of CD45.2�LSKFlt3�

cells from Dicer�/� and Dicer�/� mice. FACS profiles are from kit-enriched samples. (F-I) Gene set enrichment analysis comparison of pre-B cell (preB-Sig; F), GM (GM-Sig; G), megakaryocyte
(Mk-Sig; H), and erythroid (E-Sig; I) associated gene expression between Dicer�/� and Dicer�/� LSKFlt3� HSCs. NES indicates normalized enrichment score; FDR, false discovery rate q
value; and P, nominal P value. Two biological replicates were analyzed/genotyped in 2 separate experiments, usingAffymetrix Mouse Genome 430 Version 2.0 arrays.
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deleted (Figure 1D). Using global gene profiling of Dicer�/� and
Dicer�/� LSKFlt3� HSCs (Figure 1E) and gene set enrichment
analysis,16 we observed that while lymphoid (pre-B), myeloid
(GM), and megakaryocyte (Mk) lineage programming was not
significantly affected by Dicer deletion (Figure 1F-H), there was a
marked overall down-regulation of erythroid (E) genes in Dicer�/�

HSCs (Figure 1I). Importantly, because Dicer-deleted
LSKCD105�CD150� HSCs were present at normal levels at this
time point (Figure 1A-B), any observed changes in transcriptional

lineage priming in HSCs, or output of distinct progenitors, are
unlikely in this setting to be because of depletion of HSCs.

In vitro colony assays revealed normal Mk colony numbers and
mildly reduced CFU-GM, in striking contrast to the complete loss
of BFU-Es in Dicer�/� BM, both upon direct deletion (Figure
2A-C) and deletion after noncompetitive transplantation (supple-
mental Figure 2B-E). To establish at which stage of the erythroid
differentiation pathway Dicer is required, detailed FACS staging of
myelo/erythroid progenitors in Dicer�/� BM was performed.18 This
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Figure 2. Dicer is critical for the earliest stages of the
erythroid progenitor compartment. (A-C) Mean
(� SEM) CFU-GM (A), CFU-Mk (B), and BFU-E
(C) colonies at 8 to 9 days of culture from unfractionated
BM cells isolated 12 days after intraperitoneal injections
of 200 �g polyI:C every second day, 3 injections in total,
of 11-day-old Dicerfl/fl (n � 4) and Dicer fl/fl;Mx1Cre mice
(n � 8). Each mouse was analyzed in quadruplicate.
(D) Representative FACS profiles of myelo/erythroid
progenitor cells from lethally irradiated CD45.1 wild-type
mice transplanted noncompetitively with Dicerfl/fl and
Dicer�/� (CD45.2) BM cells, analyzed 12 days after
polyI:C treatment. Numbers indicate percentage within
indicated gate, of total BM cells. (E-F) Mean (� SEM)
frequencies of test cell-derived myelo/erythroid progeni-
tors in transplanted mice. n � 10 or 11 mice/group,
analyzed individually. (G) Mean (� SEM) numbers of test
cell-derived myelo/erythroid progenitors in transplanted
mice. n � 4 or 5 mice/group, analyzed individually.
(H) Dicer deletion efficiency in pre-GMs, GMPs, pre-
MegEs, and MkPs isolated from mice transplanted with
Dicer�/� BM cells and injected with polyI:C 12 days prior
to analysis. Data are mean (� SEM) values from cells
purified from 2 different pools of mice/genotype, 2 or
3 replicate wells/pool. (I) Megakaryocyte/erythroid gene
expression in 100-200 pre-MegEs isolated from Dicerfl/fl

and Dicer�/� mice. Mean (� SEM) expression in Dicer�/�

relative to control Dicerfl/fl pre-MegEs, calculated using
the 2���CT method.17 Data generated from sorts per-
formed on 6 cohorts of mice/genotype (2 or 3 mice/
cohort), 13 or 14 technical replicates, 3 experiments in
total. *P � .05. **P � .01. ***P � .001. ns indicates not
significant. Statistics refer to comparison between Dicer�/�

mice and Dicerfl/fl control mice.
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analysis demonstrated a specific and complete loss of the earliest
erythroid committed progenitors (pre-CFU-Es, CFU-Es) and a
reduction in the preceding pre-MegE progenitors in Dicer�/� BM
(Figure 2D-G), whereas MkPs and pre-GMs were present at normal
levels, indicating unimpaired megakaryocytic and myeloid lineage
commitment. Consistent with the lower number of CFU-GM,
granulocyte-monocyte progenitor (GMPs) were reduced (Figure
2D-G). Specific deletion of Dicer in myeloid progenitors, using
Cebpa-Cre, does not result in impaired GMP formation.19 The
observed reduction of GMPs may therefore reflect that earlier, and
possibly more efficient, Dicer depletion is able to reveal a role for
miRs in myeloid lineage progression.

Blood analysis 12 days after deletion revealed a significant reduction
in red blood cells, hemoglobin, and hematocrit, but not platelet numbers
(supplemental Figure 2F), consistent with Dicer being required for
erythroid, but not megakaryocyte lineage commitment. White blood
cells were also reduced in Dicer-deficient mice (supplemental Figure
2F), most probably reflecting the reported role of Dicer in maturation of
granulocytes and lymphocytes.7-9

Importantly, analysis of myelo-erythroid progenitors in Dicer�/�

BM confirmed the absence of Dicer mRNA (Figure 2H). Consis-
tent with this, the Dicer-dependent miR-148a, but not the Dicer-
independent miR-451, was depleted in both HSCs and pre-MegEs
(supplemental Figure 2G). Expression of common Mk/E transcrip-
tion factors Gata1, Gfi1b, Runx1, and Fli1 was unaffected in
Dicer�/� pre-MegEs (Figure 2I), whereas expression of the Mk-
related Gata2, Zfpm1, and Mpl was increased, and the E genes Epor
and Klf1 decreased in pre-MegEs. Notably, at the normal Mk/E
bifurcation, Gata2 and Zfpm1 are up-regulated in MkPs, whereas
Klf1 is up-regulated in pre-CFU-Es.18 Likewise, Mpl, the key
cytokine receptor for early Mk development, was up-regulated in
Dicer�/� pre-MegEs. These data provide support for miRs acting as
developmental switches during cell fate determination by fine-
tuning the lineage-specific transcriptomes. The changes in lineage-
specific transcription factor and cytokine receptor expression are
probably the result of a wide-ranging deregulation of miR-
controlled genes. Using gene set enrichment analysis, we observed
that 203 of 219 gene sets defined by specific miR seeds being
present in the 3	-untranslated region showed up-regulation of gene
expression in Dicer�/� HSCs, with 122 of 219 of these being
significantly up-regulated (P � .05; false discovery rate � 0.25; no
gene sets significantly down-regulated; supplemental Table 1).
These data confirm a general role for miRs in suppression of
mRNA expression but also indicate that a large number of miRs
may contribute to the observed phenotype, although it needs to be
considered that pre-miR accumulation may also play a role.
Furthermore, recently it was suggested that Dicer may also regulate
gene expression by binding chromatin directly, suggesting that
Dicer might also affect hematopoiesis through siRNA-independent
mechanisms.20

So far, miRs have not been implicated in the early stages of
erythroid progenitors, but rather in maturation of erythroid cells,
such as miR-144/4518 and miR-191.9 Furthermore, miR-150 has
been suggested to drive the differentiation of megakaryocyte/
erythroid progenitors into the Mk lineage at the expense of the
erythroid lineage.10 The results obtained here show that Dicer-
deficient hematopoiesis already at the stem cell level is depleted of
erythroid gene expression; and in line with this, Dicer�/� HSCs
subsequently fail to generate the earliest stages of erythroid
lineage-committed progenitors, whereas myeloid and megakaryo-
cytic lineage commitment seems unaffected. This both identifies
the miR complex as selectively required for the generation of the
earliest stages of erythroid commitment and supports the proposed
role of HSC lineage priming in subsequent commitment events.21-24
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