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Macrophage-colony stimulating factor
(CSF-1) signaling through its receptor
(CSF-1R) promotes the differentiation of
myeloid progenitors into heterogeneous
populations of monocytes, macrophages,
dendritic cells, and bone-resorbing oste-
oclasts. In the periphery, CSF-1 regulates
the migration, proliferation, function, and
survival of macrophages, which function
at multiple levels within the innate and
adaptive immune systems. Macrophage

populations elicited by CSF-1 are associ-
ated with, and exacerbate, a broad spec-
trum of pathologies, including cancer,
inflammation, and bone disease. Con-
versely, macrophages can also contrib-
ute to immunosuppression, disease reso-
lution, and tissue repair. Recombinant
CSF-1, antibodies against the ligand and
the receptor, and specific inhibitors of
CSF-1R kinase activity have been each
been tested in a range of animal models

and in some cases, in patients. This re-
view examines the potential clinical uses
of modulators of the CSF-1/CSF-1R sys-
tem. We conclude that CSF-1 promotes a
resident-type macrophage phenotype. As
a treatment, CSF-1 has therapeutic poten-
tial in tissue repair. Conversely, inhibition
of CSF-1R is unlikely to be effective in
inflammatory disease but may have utility
in cancer. (Blood. 2012;119(8):1810-1820)

Introduction

Cells of the mononuclear phagocyte system contribute to the
pathology of major diseases and at the same time are essential for
normal development, innate and acquired immunity, homeostasis,
and tissue repair.1-6 They enter the circulation from the marrow as
monocytes and leave the blood in response to a wide range of
signals to either contribute to inflammatory processes or take up
residence in specific locations in tissues.3,5 The function of
macrophages in inflammation varies depending on the nature of the
stimulus. Broadly speaking, 2 major pathways of macrophage
activation have been described associated with the activation of
distinct T lymphocyte immune responses. Classical activation is
associated with the actions of IFN-� and is directed toward killing
of microbial pathogens.7 Alternative activation, involving re-
sponses to IL-4 or IL-13, has been associated with parasitic and
allergic diseases.1 These states of macrophage activation have also
been called M1 and M2, respectively, linked to the activation of
Th1 and Th2 cells, and are considered mutually exclusive and
antagonistic. M2 macrophages have also been ascribed functions in
immunosuppression and vascularization in tumors.8,9 Biswas and
Matonavani have extended the classification into further subclasses
of M2-like macrophages.10 Markers of the different activation
states have been proposed. For example, in the mouse, Arg1, Fizz,
and Ym1 (chi3l3) have been considered M2 markers, whereas
elevated MHC class II, CD86, and iNOS expression are associated
with M1 polarization.1,7 However, the markers do not correlate
very well with each other when analyzed across large datasets or in
responses to different stimuli.1,11 In reality, each pathogen and each
pathology probably generates a unique macrophage phenotype that
also varies with time from the onset to the resolution (or chronic
progression) of the response. Within macrophage populations,
individual cells may also be infinitely heterogeneous because of the

stochastic nature of transcription control.12 As Mosser and Ed-
wards13 suggest, it is more appropriate to see macrophage heteroge-
neity in terms of the diversity of points on a color wheel, rather than
on a linear scale between M1 and M2, or alternative and classical
extremes. Within such a spectrum, it is also debatable whether the
antigen-presenting dendritic cell (DC) can be considered as a
separate entity distinguishable by function or markers from
macrophages.4,14

One essential regulator of macrophage homeostasis in vivo is
macrophage colony-stimulating factor, or CSF-1, so named be-
cause it was the first of the hemopoietic growth factors to be
isolated as a pure protein and because it can promote the growth of
pure colonies of macrophages from bone marrow progenitors in
semisolid media in vitro.15 Although CSF-1 has this activity, it is
not the only factor that can promote macrophage growth from
marrow cells, and indeed the numbers of colonies and their size are
greatly increased when it acts in combination with other factors,
including GM-CSF, IL-3, and IFN-�.16-18 Nevertheless, natural
mutations of the Csf-1 locus in mouse (op/op) and rat (tl/tl)
confirmed that CSF-1 has a nonredundant function in controlling
macrophage numbers in tissues and additionally revealed numer-
ous pleiotropic consequences of CSF-1 deficiency, including
severe growth retardation and low fertility.6,19,20 The osteopetrosis
seen in CSF-1–deficient animals is a consequence of deficient
production of bone-resorbing osteoclasts, which share a progenitor
with macrophages and express the CSF-1 receptor.19,21,22

Human CSF-1 cDNA was cloned independently by 2 groups in
the late 1980s.23,24 We now recognize that there are actually 3 major
forms of CSF-1 protein produced from alternatively spliced
transcripts: the predominant secreted proteoglycan, a secreted
glycoprotein, and cell-surface membrane-anchored form that can

Submitted September 9, 2011; accepted December 7, 2011. Prepublished
online as Blood First Edition paper, December 20, 2011; DOI 10.1182/blood-
2011-09-379214.

© 2012 by The American Society of Hematology

1810 BLOOD, 23 FEBRUARY 2012 � VOLUME 119, NUMBER 8

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/119/8/1810/1355035/zh800812001810.pdf by guest on 18 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2011-09-379214&domain=pdf&date_stamp=2012-02-23


be released by proteolytic cleavage.19 Each shares an N-terminal
region containing an active 149-amino acid fragment that forms a
4-helix bundle. The crystal structure of the active fragment was
solved by Pandit et al.25 CSF-1 acts on its target cells by binding to
CSF-1R (c-fms), a member of the type III protein tyrosine kinase
receptor family. The crystal structure of the CSF-1/CSF-1R com-
plex was described by Chen et al.26 Recently, a second ligand for
the CSF-1R, IL-34, was described,27 potentially explaining some of
the differences in severity between the op/op mouse and a CSF-1R
mutation.28 The spatiotemporal expression of IL-34 differs from
that of CSF-1, suggesting that they have distinct biologic func-
tions.29 The two ligands acting on the same receptor are conserved
across evolution to birds. CSF-1 and the binding sites on the
receptor have evolved rapidly across species. By contrast, IL-34 is
much more conserved across species, and computational modeling
suggests that it binds to different parts of the receptor.30 In keeping
with this view, Chihara et al identified mAbs binding to CSF-1R
that can block CSF-1, but not IL-34 binding.31 The two proteins
induced equivalent expression of chemokine genes when added to
human whole blood,32 but Chihara et al found subtle difference in
signal intensity between the two ligands on mouse cells.31 The very
high level of conservation of IL-34 across species is atypical of
immune-associated genes and could reflect an essential function.
Thus far, no viable mouse knockout of IL-34 has been reported. If
the knockout is lethal, where the CSF-1R knockout is known to be
viable on some backgrounds,28 this would imply the existence of
another receptor for IL-34. That, in turn, would have implications
for the use of CSF-1R antagonists, which could lead to elevated
IL-34 levels acting on an alternative target. The mRNA encoding
the CSF-1R is expressed in a highly restricted manner in macro-
phage lineage cells in both mouse and human (www.biogps.gn-
f.org) and from a separate promoter (which differs between mouse
and human33) in placental trophoblasts and in osteoclasts.34 The
promoter region of the mouse locus has been characterized and
used to produce a CSF-1R-EGFP transgenic mouse line, which
enables the visualization of macrophages in tissues.35

Shortly after recombinant CSF-1 became available, its ability
to expand the mononuclear phagocyte system after administra-
tion in vivo was demonstrated in mice36 and subsequently in
rats,37 nonhuman primates,38 and humans.39 Increased levels of
circulating CSF-1 were detected in many different human
disease states or animal models. Pharmacologic disruption of
the CSF-1/CSF-1R axis to modulate macrophage populations
has therapeutic potential in 4 broad clinical settings: inflamma-
tory disease, cancer, autoimmunity, and bone disease (Figure 1).
Accordingly, many different companies have explored different
approaches to blocking CSF-1 action. In this review, we
critically review animal and human studies of CSF-1 biology
and explore the potential applications of both CSF-1 and
CSF-1R antagonists in human medicine.

Control of circulating CSF-1

CSF-1 is present in the circulation, predominantly as the proteogly-
can form, at biologically active concentrations of approximately
10 ng/mL. It is produced constitutively by a wide variety of cells of
mesenchymal and epithelial origin.6,19 The level in the circulation
increases in many different pathologies, including infections,
cancer, and chronic inflammatory disease, regardless of etiol-
ogy.19,20,40 CSF-1 levels are also elevated in the circulation during
pregnancy and contribute to placentation.41,42 In both mice and
humans, there is a perinatal surge of tissue and circulating
CSF-1.43,44 In inflammation, CSF-1 may also be produced by
recruited macrophages themselves, although in the mouse at least,
most macrophages do not produce CSF-1 and undergo cell death in
the absence of the protein.45,46 Under normal steady-state condi-
tions, the production of CSF-1 is balanced by its consumption by
tissue macrophages, through receptor-mediated endocytosis by the
CSF-1R followed by intracellular destruction.47

Figure 1. CSF-1 receptor signaling and blockade
strategies. CSF-1 and IL-34 bind to the extracellular
domain of the CSF-1R to induce dimerization and ty-
rosine kinase (TK)–mediated autophosphorylation of cy-
toplasmic tyrosine residues, leading to a cascade of
intracellular signals, which regulate the production, sur-
vival, and function of macrophages. To date, no alterna-
tive receptor for IL-34 has been identified. Disruption of
the CSF-1/CSF-1R axis can be achieved using neutraliz-
ing anti–CSF-1 mAbs or anti–CSF-1R mAbs (the latter
can block binding of either CSF-1 or IL-34 or both
cytokines) or inhibition of CSF-1R tyrosine kinase using
small-molecule TK inhibitors.
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Effects of CSF-1 in vitro

Biologic effects of CSF-1 and the signaling pathways from the
receptor have been reviewed in detail elsewhere.19 Addition of
CSF-1 in cell culture can accelerate differentiation and maturation
of monocytes into active phagocytes. In humans, CSF-1 is com-
monly used to generate monocyte-derived macrophages in vitro,48

and this process has been analyzed using cDNA microarrays.49 The
phenotype of these monocyte-derived macrophages has been
contrasted to the cells generated when monocytes are cultured in
GM-CSF to produce monocyte-derived DCs, which have an
increased capacity for antigen presentation.50 A meta-analysis of
mouse microarray data indicates that CSF-1– and GM-CSF–
stimulated cells are more similar than different, and both are clearly
phagocytes.11 Nevertheless, CSF-1 as the sole stimulus polarizes
macrophages away from an antigen-presenting phenotype and
toward an immunosuppressive function in both mouse and hu-
man.4,14 Hence, macrophages generated in response to CSF-1 have
been proposed by some to be alternatively activated or M2-like.49,51

Because CSF-1–stimulated macrophages can still respond to the
M2-inducing lymphokine IL-4 with significant changes in gene
expression,1,49,51,52 it is more appropriate to consider the CSF-1–
stimulated cell as a distinct entity. One of the most studied and
unique targets of CSF-1 signaling in mice and humans is the
proteolytic enzyme urokinase plasminogen activator,53,54 a target of
the ras-raf-MAPK pathway,55 which contributes to regulated fibrino-
lytic activity. But caution is needed when extrapolating from mouse
experiments on CSF-1. In humans, but not in mice, continuous
exposure to CSF-1 appears to drive a proatherogenic phenotype,48

in keeping with an inferred role in atherosclerosis.56 Broadly
speaking, based on in vitro data, CSF-1 as a sole stimulus might be
expected to generate actively phagocytic macrophages that pro-
mote extracellular proteolysis and tissue repair and suppress
cell-mediated immunity.

Effects of CSF-1 administration in vivo

The simple homeostatic mechanism that balances macrophage
numbers with production and receptor-mediated clearance of
CSF-147 is clearly disturbed when exogenous CSF-1 is adminis-
tered, receptor-mediated clearance is saturated, and the concentra-
tion in the circulation rises. The administration of CSF-1 can
generate a transient increase in c-fos mRNA in the spleen,
providing a simple in vivo bioassay and suggesting that CSF-1
availability is not saturating for tissue macrophages.57 To generate a
more sustained response leading to measurable changes in macro-
phage numbers, the molecular size of CSF-1 becomes critical
because macrophages and their progenitors require continued
exposure to CSF-1 to enter the cell cycle.58 The unglycosylated
minimal active fragment of CSF-1, a disulphide-linked homodimer
produced in bacteria by Chiron, is cleared rapidly by the kidney
with a half-life of 1 to 2 hours.59 The recombinant protein produced
by Genetics Institute was made in mammalian cells and was a
secreted 70- to 90-kDa glycosylated protein, with a longer
C terminus, closely resembling the form that can be isolated from
human urine.24 In consequence, the larger protein has a much
slower rate of renal clearance and a 5-fold lower dose of the
mammalian-expressed protein (0.5-1 mg/kg per day) than the
bacterial recombinant protein (4 mg/kg per day), was required to
generate substantial responses in mice.

The first demonstrated efficacy of recombinant human CSF-1 in
mice showed that treatment each day for 4 days caused a 10-fold
increase in blood monocyte numbers.36 More recently, CSF-1 was
shown to increase conventional and plasmacytoid DC numbers.60,61

The latter finding is consistent with the expression of CSF-1R
(CD115) on the shared macrophage/DC progenitor cell and on
mature DCs themselves.61,62 Prolonged CSF-1 administration to
mice also altered osteoclastic function and generated an increase in
serum markers of bone turnover.22 There was no net change in bone
mineral density, presumably because of the coupling of osteoclast
and osteoblast function. Indeed, there was an unexpected and
unexplained increase in the trabecular bone, which would suggest
the possible use of CSF-1 as an anabolic agent.

The maximal response to CSF-1 apparently required the
repeated administration.36 Ulich et al conducted a single dose
escalation study in rats, and a dose of 0.5 to 1 mg/kg caused a
transient spike in monocyte count of approximately 5- to 10-fold
after 24 hours, which returned to baseline by 36 hours.37 Prolonged
treatment led to maintenance of the elevated monocyte count, and
the only apparent toxicity was a thrombocytopenia. Subsequent
studies progressed to rabbits and nonhuman primates38,63 and used
continuous intravenous infusion or twice-daily subcutaneous injec-
tion. Repeated infusions after 2 weeks generated comparable
increases in monocyte count. The same group subsequently noted a
substantial decrease in plasma cholesterol in the treated animals63;
precisely how this is related to the up-regulation of cholesterol
biosynthesis in human monocyte-macrophages by CSF-148 is unclear.

The role of CSF-1 in monocyte maturation

This initial study of treatment of mice with CSF-1 did not
distinguish among subpopulations of monocytes. Blood monocytes
in mouse and human are heterogeneous in terms of surface
markers. In humans, two populations have been distinguished
based on the level of expression of the Fc receptor, CD16, which
varies inversely with that of the lipopolysaccharide coreceptor,
CD14.64,65 Similarly in mice, the expression of Ly6C and the
fractalkine receptor CX3CR1 varies inversely to distinguish two
subpopulations that are thought to be functionally equivalent to the
human populations.64,66 One monocyte population (CD14 (hi) or
Ly6C (hi) in human and mouse, respectively) is short-lived in the
circulation and recruited in response to inflammatory stimuli,
notably in response to chemokines that interact with the receptor
CCR2.64,66,67 A recent paper from a consortium of investigators
suggested these be called “classical” rather than “inflammatory”
monocytes.65 By contrast, the precursors of resident tissue macro-
phages, subsets of which have also been reported to patrol vessel
walls,68 were referred to as “nonclassical.” There was also an
“intermediate” population identified. These designations are rather
artificial; subdivision seems to require a rather arbitrary assignment
of the location of gates on a flow cytometer. As discussed below in
the context of anti–CSF-1R treatments, there is evidence that the
monocyte “subpopulations” are actually a maturation series con-
trolled by CSF-1.65,69 Accordingly, where CSF-1 caused a 5-fold
increase in blood monocytes in nonhuman primates, the large
majority expressed the “nonclassical” maturation marker, CD16.38

Furthermore, in keeping with the role of “nonclassical” cells as
precursors of tissue macrophages, CSF-1 treatment of mice also
caused a very large increase in resident tissue macrophage numbers
and in expression of the maturation marker, F4/80.36
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Early preclinical and clinical studies of CSF-1

CSF-1 has had limited application as a hemopoietic growth factor
in the setting of bone marrow transplantation or during recovery
from myelosuppressive chemotherapy, where other myeloid growth
factors, such as G-CSF and GM-CSF, are in common use.70 One
reported phase 3 trial by Masaoka et al, using purified CSF-1 from
human urine, reported a reduction in circulating granulocyte
recovery time and improved survival without retransplantation in
marrow transplant patients.71 Similarly, Hidaka et al reported the
use of CSF-1 (also known as Mirimostim) in patients with severe
neutropenia after chemotherapy for ovarian cancer.72 Their data
suggested an improvement in NK-cell function and numbers and
T-cell maturation as well as an improvement in granulocyte
function that was not improved by combination with G-CSF.
Arguably, there is a rationale for exploring the efficacy of
combined treatments CSF-1 and GM-CSF. In the mouse, the
two factors act together on high proliferative potential precursors to
generate very large colonies.16,17 In humans, very low concentra-
tions of GM-CSF were required to generate large macrophage
colonies in standard colony assays using CSF-1.18

Phase 1 clinical trials of recombinant CSF-1 (produced by
Genetics Institute) by continuous infusion in humans with ad-
vanced melanoma confirmed the ability to increase circulating
monocyte numbers.73,74 The increases reversed rapidly on cessation
of infusion and were reproduced on reinfusion. The transient
thrombocytopenia and the decrease in circulating cholesterol seen
in the previous animal studies were confirmed in these patients. The
choice of melanoma as target for such trials was based in part on
animal studies in which CSF-1 prevented metastasis of the B16
melanoma75 and evidence for the ability of CSF-1–stimulated cells
to kill melanoma cells in vitro.38 Although there was anecdotal
evidence of efficacy in a small number of the treated patients in
these trials, to our knowledge there has not been a follow-up trial. A
separate phase 1 study in cancer patients using rhCSF-1 produced
by Chiron also observed mild thrombocytopenia in some persons
and also unexplained hyperglycemia.76 This study did not identify
any therapeutic effect on the cancers.

The other initial target for CSF-1 therapy was fungal diseases,
where CSF-1–stimulated macrophages were purported to phagocy-
tose organisms, such as Candida.77 There was no reported fol-
low-up from the initial clinical studies in humans that suggested an
increase in survival rate of bone marrow transplant patients with
disseminated candidiasis78; it is not known whether this was the
result of a lack of commercial interest or a lack of reproducibility.
Around the time of these studies, it became clear that CSF-1
treatment could exacerbate the pathology of certain diseases in
animal infectious and inflammatory disease models, not surpris-
ingly, because pathology can be macrophage-mediated.79 Several
studies have explored the role of CSF-1 in the pathology of
autommune nephritis, combining studies of ectopic CSF-1 with
increased or reduced CSF-1 levels in the op/op or transgenic mice
overexpressing various forms of the protein.80-82 These studies
indicated that CSF-1 drives increased production of inflammatory
or “classical” macrophages from the marrow and also local
proliferation within the kidney.83 Indeed, contrasting studies of
candidiasis were informative. Whereas pretreatment of animals
with CSF-1 was found to be protective,77 treatment of animals with
an established disseminated candidiasis accelerated the disease.77,84

On initial exposure, CSF-1–stimulated macrophages are able to

recognize and clear the pathogen. Once the disease is established,
there is massive macrophage infiltration of the affected organs (the
kidneys); these cells produce inflammatory cytokines that mediate
the pathology. Accordingly, the CSF-1 treatment drastically accel-
erated weight loss in the Candida-infected mice.84

Recent advances in the applications of CSF-1

The potential importance of CSF-1 in the regulatory balance of
antigen presentation is supported by recent evidence of csf1r gene
polymorphisms associated with altered CSF-1R expression being
linked to asthma susceptibility.85 The gene encoding the ligand,
CSF-1, also varies between persons and is strongly linked to Paget
disease susceptibility.86 The ability of macrophages in certain
activation states to suppress T-cell responses and to elicit tolerance
has been known for a very long time.14,87 As noted in “Effect of
CSF-1 in vitro,” in both mice and humans, populations of
macrophages polarized with CSF-1 as the sole stimulus are
generally relatively poor at stimulating T cells in vitro. In vivo, the
F4/80 antigen, which is inducible by CSF-1,36 increased on
maturation, and generally considered a macrophage marker,3,4 is
required for the generation of oral tolerance. Furthermore, F4/80
KO mice are deficient in regulatory T cells (Tregs).88 An F4/80�

macrophage population, which expresses the transcription factor
Foxp3, normally expressed by Treg, was recently identified and
apparently suppressed T-cell responses and induce Treg conversion
in vivo.89 This work was subsequently retracted. Nevertheless, in
mice, treatment with CSF-1 has been shown to cause profound
immunosuppression; T cells from the spleens of treated animals
were unresponsive to T-cell mitogens or allogeneic cells.90 CSF-1
was also shown to directly suppress allogeneic T-cell responses in
vitro91 and cutaneous hypersensitivity responses in vivo.92

CSF-1 was reported to be substantially elevated in the circula-
tion in acute GVHD in mice.93 Blazar et al were the first to assess
the impact of CSF-1 treatment in bone marrow transplantation,
examining T cell-depleted grafts, with and without a potential
NK-cell contribution to their recognition by the recipient.94 They
found an inhibitory effect of CSF-1 on engraftment, but only if the
recipient NK cells were able to recognize and eliminate the graft.
Indeed, others had reported that CSF-1 treatment led to increases in
the numbers of NK cells and their mobilization from the marrow by
an unknown mechanism.95 More recently, the effect of recipient
CSF-1 pretreatment was investigated in an acute GVHD model
after transfer of BALB/c bone marrow and spleen cells into
irradiated C57Bl/6 recipients.96 Pretreatment reduced the severity
of disease without apparently altering engraftment. These data
were used to argue for distinct functions of “macrophages” versus
“DCs” in GVHD pathology. We have pretreated B6D2F1 recipients
for 4 days with CSF-1 at a 2� higher dose than used by Hashimoto
et al,96 before irradiation and transplantation of parental B6 bone
marrow supplemented with splenic T cells. Although we saw
expansion of both macrophages and CD11c-positive cells in the
recipient mice as expected from previous studies,36,61 the pretreat-
ment had no effect on survival or GVHD severity (K.P.A.M. and
S. Oliver, unpublished data, May 2008). Similarly, in a CD8
T cell–dependent model (C3H.SW into B6), we also found no
effect of pretreatment (K.P.A.M. and S. Oliver, unpublished
data, January 2009). We can only conclude that a limiting role
for macrophage-mediated removal of alloreactive T cells is a
specific feature of the model or strain combination used by

CSF-1 AND CSF-1R SIGNALING 1813BLOOD, 23 FEBRUARY 2012 � VOLUME 119, NUMBER 8

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/119/8/1810/1355035/zh800812001810.pdf by guest on 18 M

ay 2024



Hashimoto et al.96 Pretreatment of a human bone marrow
transplant recipient with CSF-1 has not been reported, and the
impact is difficult to predict from the mouse studies, which are
specifically designed to generate a substantial GVH response.
There is, thus far, no reproducible evidence of clinical utility for
CSF-1 as a treatment to suppress acute GVHD. Two separate
studies in Japan71,97 and one in the United States98 found that CSF-1
(M-CSF) treatment had no effect on acute GVHD or relapse rate. The
former study reported a small impact on extensive chronic GVHD.

The more promising trend in the recent studies of CSF-1 as a
therapeutic agent relates to its trophic actions.6,21 Building on the
evidence of the role of CSF-1 in reproduction and pregnancy
mentioned above, and initial data on rats,99 Nishimura et al found a
correlation between elevated CSF-1 in the serum and successful
ovulation induction in an in vitro fertilization program.100 They
subsequently reported that coadministration of CSF-1 with gonado-
trophins could increase the numbers of oocytes, fertilized eggs, and
transferred embryos101

The pro-repair phenotype noted in “Effects of CSF-1 in vitro”
includes the expression of numerous growth factors for other cells
(eg, IGF-1, PDGFB, and VEGFA), endocytic receptors (eg,
macrophage scavenger receptors), and proteolytic enzymes in
addition to urokinase plasminogen activator.6,19-21 CSF-1 probably
contributes to the local macrophage proliferation that is one
hallmark of Th2-driven inflammation,102 especially because mouse
inflammatory macrophages recruited by a sterile stimulus can be
autocrine for CSF-1.45

Among the systems that have been studied are fracture repair
and macrophage-osteoblast interactions,103 repair after ischemia in
the kidney104,105 and heart,106 promotion of angiogenesis,107 and
elimination of amyloid deposits in the brain.108,109 Two biologic
issues arise from these studies. First, there is the question of
whether CSF-1–stimulated macrophages can interconvert into cells
of mesenchymal lineages. We found some evidence using a
CSF-1r–EGFP transgenic reporter that myeloid cells can give rise
to myofibroblasts.110 In the case of angiogenesis, there is some
evidence for bone marrow precursors of endothelial cells. Mono-
cytes can apparently transdifferentiate into endothelium in vitro,
but in vivo the major effect of CSF-1 is to promote production of
proangiogenic growth factors.107 The second issue is whether the
CSF-1R is expressed on cells outside of the mononuclear phago-
cyte lineage. Menke et al found that CSF-1 treatment can promote
repair in a renal ischemia reperfusion model in mice and suggested
that the effects were partly the result of direct effects on the tubular
epithelial cells, which they claimed expressed significant levels of
CSF-1R in response to the insult.105 Jose et al saw no evidence of
CSF-1R protein expression by renal epithelial cells in rejecting
renal allografts, where the ligand CSF-1 was also expressed very
highly by tubular cells.83 According to Menke et al, a nonmac-
rophage-mediated mechanism of CSF-1 action was supported by
depleting the animals of CD11b-positive cells using a CD11b-DTR
transgene,105 but these authors did not apparently detect the
resident macrophages, which are actually extremely numerous in
the kidney and do not express CD11b.111 Macrophages may be a
significant contaminant of primary renal epithelial cell cultures as
they are in cultured calvarial osteoblasts; thus, contaminating
macrophages could explain the apparent expression of CSF-1R.112

Alikhan et al recently published the same basic observation: that
CSF-1 can promote renal repair after reversible ischemia.104 But
using the same CSF-1R–EGFP transgene, they did not see any
evidence of induced CSF-1R expression by tubular epithelial cells
and instead demonstrated that the treatment-increased macrophage

recruitment, polarized the cells toward an M2-like phenotype and
promoted production of growth factors, such as IGF1. That finding
built on an earlier observation: that CSF-1 can promote the growth
of embryonic kidney in tissue culture,113 again a system in which
there was no evidence of expression of CSF-1R in the renal
parenchyma outside of the macrophages.

Blocking the actions of CSF-1

There are two approaches to blocking the action of CSF-1: the use
of inhibitors directed against the protein tyrosine kinase activity of
the receptor and the use of agents that block the binding of CSF-1
to its receptor (Figure 2). The latter category includes antibodies
against the receptor, antibodies against the ligand, and soluble
receptors. There are several complexities that arise from the use of
CSF-1R inhibitors that are commonly neglected.

1. CSF-1R is part of a family of receptors, the intracellular
domains of which are very closely related. Of the many
available inhibitors,114 GW2580 has the greatest apparent
specificity for CSF-1R versus related kinases, such as c-kit
and Flt3.115 This inhibitor does not inhibit the avian CSF-
1R,30 so specificity is not solely determined by the ATP-
binding pocket (and the inhibitor is therefore more likely to
be truly specific). But in vitro assays are not entirely
predictive of the activity in whole cells.45

2. With the discovery of a second ligand for the CSF-1
receptor, IL-34, there is the question for antibodies of
whether they inhibit both of the ligands.27,30 Both anti–
mouse CSF-1R antibodies described in the paragraphs below
inhibit both CSF-1 and IL-34 actions29 (and D.A.H. and
L. Bonham, unpublished data, September 2006), although as
noted earlier, the two ligands probably bind different parts of
the receptor, and selective monoclonals have also been
described.31

3. Because CSF-1 is cleared from the circulation by receptor-
mediated endocytosis,47 CSF-1R blockade causes a massive
elevation of circulating CSF-1 concentration. As the anti-
body concentration subsides, there is a consequential en-
hanced CSF-1 signal and rebound monocytopoiesis. This
will also occur if CSF-1R–bearing cells are killed, for
example, by toxic liposomes or with macrophage-directed
toxic transgenes.116 However, it does not occur when CSF-1R
kinase inhibitors are added, unless they are toxic, because
receptor-mediated internalization of CSF-1 does not require
the kinase activity of the receptor.45

There has been relatively little use made of anti–CSF-1 antibodies.
Wei et al generated a neutralizing rabbit anti-serum and examined
the effect of PEGylated-antibody on postnatal development.117

They essentially recapitulated many of the growth retardation and
developmental abnormalities of the op/op mouse, supporting the
view that the postnatal surge of CSF-1 is important for organ
maturation and somatic growth.6,21 Lokeshwar and Lin generated a
rat anti–CSF-1 neutralizing mAb,118 which has been used to
demonstrate a role for CSF-1 in inflammation and joint erosion in
collagen-induced arthritis.119 The 5A1 mAb was also used in
ovariectomized mice to demonstrate CSF-1 dependence in
estrogen deficiency-induced bone loss,120 raising the possibility
that such therapy could be applied in human osteoporosis.
Anti–CSF-1 mAb has been tested in nonhuman primates,121

generating a selective depletion of the “mature” or resident
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CD16� monocyte population and a time-dependent loss of
Kupffer cells from the liver. These findings support the role of
CSF-1 in monocyte maturation discussed in “The role of CSF-1
in monocyte maturation.” A phase 1/2 clinical trial of anti–
CSF-1 antibody in prostate cancer with bone metastasis, to
reduce osteolytic activity, was commenced by Novartis but
discontinued for strategic reasons (http://clinicaltrials.gov/ct2/
show/NCT00757757).

The first neutralizing mAb directed against CSF-1R, AFS98,
was produced by Sudo et al, who used it to demonstrate the
redundancy of CSF-1 in the generation of monocyte precursors,122

effectively supporting the conclusions from the op/op mouse in
which there is no reduction of total circulating monocytes.28

Conversely, AFS98 has been used in several studies to address the
functional role of CSF-1 signaling in pathology. For example,
Murayama et al found that injection of the antibody (2 mg/day) on
alternate days for 6 weeks reduced macrophage accumulation in
atherosclerotic lesions in apoE-deficient mice.123 Similarly, Jose et
al found that daily administration of AFS98 greatly reduced local

proliferation of infiltrating macrophages in renal allografts.83 Lim
et al injected similar doses for 6 weeks and observed suppression of
macrophage accumulation in a model of diabetic nephropathy,124

and Segawa et al found that AFS98 administration reduced
macrophage infiltration into damaged skeletal muscle.125 In the
latter case, the effect was to increase fibrosis, in keeping with the
antifibrotic actions of CSF-1–stimulated macrophages noted in the
renal ischemia-reperfusion model discussed above. Kubota et al
reported that daily AFS98 treatment (50 mg/kg) reduced macro-
phage numbers in an implanted osteosarcoma model and reduced
vascularization, lymphangiogenesis, and tumor growth.126 Lenzo
et al found that AFS98 treatment reduced the accumulation of
exudate macrophages in two peritoneal and one lung inflammation
model.127

Results with AFS98 contrast to the conclusions obtained using a
different monoclonal anti–CSF-1R antibody, M279, which binds
the receptor with significantly greater affinity.69 Prolonged treat-
ment with this antibody selectively removed tissue macrophage
populations, including those found in growing tumors, but had no

Figure 2. CSF-1 regulation of macrophage develop-
ment in the mouse and the effects of prolonged M279
anti–CSF-1R mAb treatment. HSCs give rise to com-
mon myeloid precursors, which generate monocyte-DC
precursors that in steady state give rise to DC precursors
and CSF-1R�Ly6Chi and CSF-1R�Ly6Clo monocytes.
Monocytes enter the circulation from the marrow and are
signaled to exit the blood to contribute to inflammatory
processes (CSF-1R�Ly6Chi) or to take up residence in
specific locations (CSF-1R�Ly6Clo). CSF-1 is a critical
regulator of the differentiation, proliferation, and survival
of CSF-1R�Ly6Clo monocyte-derived tissue macro-
phages, alternatively activated macrophages, and tumor-
associated macrophages. The cellular sources of CSF-1
are primarily mesenchymal in origin, but macrophages
and tumors can also secrete this cytokine. Treatment with
CSF1R blocking antibody M279 selectively depleted the
CSF-1R�Ly6Clo monocyte precursor of resident tissue
macrophages, whereas CSF-1R�Ly6Chi inflammatory
monocytes were increased. Within tissue, the M279 mAb
may prevent differentiation and proliferation of resident
macrophage populations and tumor-associated
macrophages.
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protective effect in several inflammatory models, including lipopoly-
saccharide-induced lung inflammation, tissue injury, GVHD, or the
same peritoneal model studied by Lenzo et al.127 The tumor studies
were rather differently designed than those of Kubota et al126

because the tumor was allowed to establish before treatment
commenced and M279 anti–CSF-1R was still able to deplete the
macrophages. CSF-1–dependent macrophages may have many
roles in tumor progression and metastasis, and in humans the
receptor may itself be expressed by tumor cells.6,128,129 In our
studies, we saw no effect of anti–CSF-1R on tumor growth, despite
the macrophage depletion, but that finding does not preclude
possible applications in cancer therapy.

Interestingly, the M279 antibody treatment actually led to
exacerbation of GVHD, an outcome later confirmed using AFS98
by others.96 In our study using M279,69 we argue that CSF-1–
dependent tissue macrophages generate peripheral tolerance and
their removal permits excessive alloreactive T-cell activation. In
the subsequent study,96 the authors argue that CSF-1–dependent
cells are involved in the clearance of the autoreactive T cells (host
vs graft), a claim connected to the apparent protective effect of
pretreatment with CSF-1 in the same model discussed above.

Consistent with the lack of effect on inflammation, prolonged
M279 antibody treatment of mice had no effect on the total
monocyte count. Treatment ablated the more mature F4/80hiLy6Clo

monocyte subpopulation, with a corresponding increase in the
Ly6Chi cells suggesting a maturation block (Figure 2). As expected,
based on the function of these cells as precursors of resident
macrophages,64 with time, the treatment removed the large major-
ity of tissue macrophages. The exceptions were the macrophages of
the lung, brain, uterus, and ovary, and subpopulations within
lymphoid tissues. The lack of impact within the brain did not reflect
CSF-1 independence of microglia because these cells were de-
pleted in nervous tissue outside the blood-brain barrier, including
the retina and spinal cord. The comparative lack of effect of M279
administration on the macrophages of the uterus contrasts with a
study of the role of local CSF-1 in macrophage recruitment during
pregnancy,130 where treatment with AFS98 caused almost complete
macrophage depletion in the uterus within 3 days. There is certainly
a substantial depletion of macrophages in the uterus of the op/op
mouse,131 so the lack of effect of M279 is probably the result of
the local production of CSF-1 in the uterus and long half-life of the
resident macrophages in the virgin females.130 In other sites, the
pattern of response to M279 anti–CSF-1R was entirely consistent
with the CSF-1 dependence of tissue macrophage populations
based on examination of the op/op and CSF-1r (�/�) mice, the
known turnover rates of tissue macrophages, and the known
function of ly6Chi monocytes in inflammation.64,65,69

The acute loss of monocytes and tissue macrophages seen with
AFS98 in the majority of studies suggests that this antibody, unlike
M279, is either directly toxic, or it promotes clearance of monocytes/
macrophages. Indeed, the effects of the antibody in the GVHD
model of Hashimoto et al were mimicked by toxic liposomes.96

This finding immediately raises additional issues about interpreta-
tion and mechanism because macrophages on the surface of bone
are a critical part of the stem niche, and their depletion leads to stem
cell mobilization.132 Within days, AFS98 administration caused
much greater depletion of splenic96 and uterine130 macrophages
than we observed after prolonged treatment with M279. Among
several differences between the antibodies, M279 is a rat IgG1,
which is bound poorly by mouse FcRn, which regulates the
half-life in the serum, whereas AFS98 is a rat IgG2A, which binds
with high affinity.133 So, the doses of IgG2A used by Hashimoto

et al (1-2 mg/injection) could generate sustained very high circulat-
ing concentrations of rat IgG2A.96 Second, IgG2A binds selectively
to the high affinity cytophilic antibody receptor (CD64) on mouse
macrophages134 and could trigger recognition by and/or aggrega-
tion with other macrophages. The effect of M279 seems more
likely to represent the biology of CSF-1R signaling as opposed to
less specific macrophage depletion seen with AFS98.

CSF-1R kinase inhibitors

The major difference between antibodies and kinase inhibitors is
that the latter are more likely to block autocrine actions of
endogenous CSF-1, which is less accessible to antibodies. Irvine et
al demonstrated that a novel CSF-1R kinase inhibitor could repress
autocrine signaling in mouse inflammatory macrophages, leading
to reduced expression of inflammatory cytokines.45 GW2580 is
probably the most selective and best characterized of the available
inhibitors. There are limited pharmacologic data on the inhibi-
tor.115,135 Treatment of mice with the drug had a small effect on
thioglycollate-elicited macrophage recruitment115; and in a later
study, despite relatively high dosing twice daily, it had limited
effects in a rat arthritis model.135 Rather remarkably, there was
actually a dose-related increase in blood monocyte count in normal
rats after prolonged treatment.135 Priceman et al treated mice with
even higher doses of GW2580 (160 mg/kg) to test the role of
CSF-1R in recruitment of macrophages into growing tumors.136

Despite this increased dose, there was a small decrease in tumor
macrophages and no change in the numbers of monocytes/
macrophages in marrow, peripheral blood, or spleen of naive mice,
by contrast to the substantial effects on tissue macrophage numbers
claimed by Hashimoto et al using a significantly lower dose
(1.6 mg/mouse, � 60 mg/kg) only once daily, after 6 days.96

The only other CSF-1R inhibitor for which there are significant
data in vivo is Ki20227. Kubota et al reported in their study of
tumor angiogenesis that the inhibitor at 50 mg/kg daily subcutane-
ously had similar effects to AFS98 on the numbers of macrophages
in tumors, and consequent angiogenesis.126 The same inhibitor was
found to reduce macrophage numbers and associated pathology in
models of inflammatory arthritis137 and encephalomyelitis.138 Even
after prolonged treatment, the inhibitor caused only a marginal
increase in circulating CSF-1 levels,138 by contrast to the massive
escalation seen in CSF-1R–deficient mice.28 This implies that the
inhibitor does not significantly reduce the numbers of CSF-1R–
expressing tissue macrophages that normally clear the ligand from
the circulation.47 Conversely, the inhibitor did greatly reduce the
numbers of Ly6G-positive granulocytes which is not seen with
either of the anti–CSF-1R antibodies, so there must be some
concerns as to its specificity. There are several other less specific
inhibitors that can block CSF-1R kinase activity but have broader
specificity for other kinases. One orally available molecule,
JNJ-28312141,139 has substantial activity against CSF-1R and the
related Flt3. This inhibitor was found to decrease Kupffer cell
numbers by approximately 40% and generated a somewhat larger
increase in circulating CSF-1 (still � 2-fold) than Ki20227. Like
the other molecule, Ki20227, the JNJ inhibitor reduced macro-
phage numbers in transplanted tumors and constrained tumor
growth.139 Another molecule from the same company, dubbed
fms-I, has been studied in the ureteric obstruction model of
nephritis and in a glomerulonephritis model in rats.80 This inhibitor
at low doses prevented local monocyte proliferation, and at higher
doses drastically depleted blood monocytes and resident tissue
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macrophages, at least in the kidney. A molecule that inhibits CSF-1
kinase activity that is already in widespread clinical use is imatinib
(STI571, Gleevec), which was originally developed as an inhibitor
of ABL kinase for the treatment of chronic myeloid leukemia.140

Paniagua et al found that imatinib and GW2580 have similar
efficacy in 3 different mouse models of autoimmune arthritis.141 We
have tested the effect of maximally tolerated doses of imatinib
using the MacGreen reporter mice. Even at doses that caused
neutropenia and liver damage, we saw no evidence of the depletion
of monocytes or resident tissue macrophages seen with M279
antibody (D.A.H., unpublished observations, September 2006).
Dose-limiting toxicity probably occurs through inhibition of other
kinases at concentrations below those required to inhibit CSF-1R
kinase in vivo. Aside from these examples, none of the other
patented CSF-1R inhibitors reviewed recently114 has made it into
published animal trials, let alone human treatments.

In conclusion, CSF-1 as a candidate therapeutic agent is
undergoing something of a renaissance in the context of tissue
repair. IL-34 has not yet been tested, and we do not yet know
whether it could target other receptor(s) as well as CSF-1R. A
constraint on its development is that human IL-34 is not active on
rodent cells,27 and it does not refold from bacterial expression.
Extrapolation from animal studies of CSF-1 to humans needs to be
approached with caution; a large animal model, such as the pig,142

could be a sensible intermediate. Furthermore, applications of
CSF-1 must still be approached cautiously; there is the potential to
make macrophage-mediated pathology considerably worse if it is
applied early in the onset of disease.

The impact of the M279 anti–CSF-1R antibody in the mouse,
combined with the effects of CSF-1 treatment and the phenotype of
the CSF-1–deficient mouse and rat, suggests that the indispensible
function of the CSF-1R signaling is to promote monocyte matura-
tion to form the precursors of resident tissue macrophages. The
available data clearly demonstrate that CSF-1R is not a good target
for anti-inflammatory therapy. The high levels of CSF-1 seen in
many inflammatory diseases are probably a part of a feedback

damage repair response, and on that basis it could even be
counterproductive to target the receptor. The exception may be
where immunosuppression in certain infectious diseases and cancer
is associated with very high levels of CSF-1, in which case
anti–CSF-1R mAb treatments, in contrast to tyrosine kinase
inhibitors, could restore effective immunity.

Anti–CSF-1R treatment could well provide a route to manipula-
tion of macrophage numbers in tumors, where they are basically
the resident tissue macrophages of a new organ. One application for
anti–CSF-1R would be as an adjunct therapy to prevent regrowth
after surgical or therapy-associated regression, a circumstance in
which large numbers of macrophages are recruited and will
otherwise contribute their trophic functions to regrowth of the
tumor. The trophic role of macrophages in regrowth was first
demonstrated in the op/op mouse, where transplantable tumor
growth and vascularization are severely compromised.143 By
analogy, CSF-1 deficiency in mice is associated with deficient
hepatocyte proliferation after partial hepatectomy.144 Against that
benchmark, we argue that the AFS98 antibody and the various
kinase inhibitors probably elicit distinct effects through distinct
mechanisms that may, or may not, involve CSF-1R signaling. In a
sense, that is unimportant. As in the case of imatinib, which
probably does not act solely as an Abl kinase inhibitor, the
mechanism may end up being unrelated to the original hypothesis,
but efficacy and therapeutic index are all that matters.
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