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Lack of Foxp3*™ macrophages in both untreated and B16 melanoma-bearing mice

Foxp3™* Tregs are essential for maintaining immune tolerance in mice
and men. Except for expression in a minor population of CD8" T cells,'
Foxp3 is currently believed to be restricted to CD4" Tregs in mice,
because widespread nonhematopoietic Foxp3 expression and its puta-
tive implication in tolerance have been refuted.>* Thus, the employment
of Foxp3 reporter mice, including Foxp3PTR<CFP (DEREG) mice,* has
been valuable for the investigation of Foxp3* Treg biology. Recently,
we demonstrated that the depletion of Foxp3* Tregs unleashes potent
therapeutic tumor-specific immunity,>¢ unlike less selective agents, eg,

immunotherapy. We thus specifically investigated this issue. Anti—
Foxp3-PE stainings of WT spleens revealed a CD11b~Foxp3* Treg
population as expected, whereas the CD11b* fraction contained a
clearly weaker PE signal (Figure 1A). The latter was identified as
autofluorescence since it persisted in isotype stainings (Figure 1A) or
unstained samples (not shown), in contrast to CD11b~Foxp3™* Tregs. To
further assess if the CD11b"PEY population actively transcribes the
foxp3 locus, we analyzed spleens of DT-treated DEREG mice. Strik-
ingly, CDI1b*PE"Y cells persisted on DT administration, whereas

o
targeting CD25. The recent postulation of immunoregulatory Foxp3™  CDI11b~Foxp3* Tregs were depleted (Figure 1A), suggesting that the %
macrophages’ implies that macrophage deletion in DEREG mice could — autofluorescent CD11b* population does not express Foxp3PTR-GFP, g
contribute to the striking effects of Foxp3™ cell ablation as cancer  Similar results were obtained with BM (not shown). In line with these %
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Figure 1. Lack of Foxp3 expression by macrophages. (A) WT and DEREG mice were treated on 2 consecutive days with 1ug DT or PBS intraperitoneally. One day later,
collagenase/DNase-digested splenocytes were analyzed by flow cytometry. CD11b (M1/70), Foxp3 (FJK-16s) or rat IgG2a/k isotype staining is shown. (B) BM was isolated
from 2-3 weeks old WT or scurfy males and analyzed by flow cytometry. CD11b and Foxp3 expression is shown. (C) BM of PBS- or DT-treated WT and DEREG mice was
analyzed by flow cytometry. CD11b expression of CD3e/TCRB/TCRy5 ™~ cells is plotted against GFP/autofluorescence. (D) BMM were generated as described® from WT or
DEREG mice except 100ng/mL DT was added on d0 and d3 of culture where indicated. BMM were harvested using accutase and analyzed by flow cytometry. CD11b vs Foxp3
expression is shown in the top panel. The bottom panel is unstained for Foxp3. (E) B16-OVA tumors were established in WT mice®, harvested, collagenase/DNase-digested
and analyzed by flow cytometry. CD11b, Foxp3 or isotype staining is displayed. (F) B16-OVA tumors were established in WT or Rag KO mice, resected and cryopreserved. Five
micrometer sections were analyzed by immunofluorescence microscopy after staining for Foxp3 (FJK-16s), F4/80 (BM8), CD3 (N1580) and AlexaFluor488- or
AlexaFluor555-labeled secondary antibodies. Axiolmager Z1, Axiovision 4.6.3.0 software, and AxioCam MRm were applied for image acquisition and analysis. Foxp3 (red),
CD3 (green) and DAPI (blue) signals are displayed in the upper panel; the lower panel shows Foxp3 (red), F4/80 (green) and DAPI (blue) stainings. All images were acquired
with 400X magnification and a 50 pm white scale bar is displayed. (A-E) All flow cytometry analyses were performed after Fc receptor blocking with anti-CD16/32 (2.4G2). Cells
were acquired on LSRII (BD Biosciences), analyzed by FlowJo (Tristar) and dead cells were excluded by ethidium monoazide (EMA) photolysis. (A-F) All experiments are
representative of 2-3 independent experiments.
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findings, CD11b*PE"*Y cells were present at rather increased percent-
ages in the BM of scurfy mice harbouring a mutated nondetectable
Foxp3 protein,® compared with Foxp3-sufficient litters (Figure 1B). In
contrast, CD11b Foxp3* Tregs were absent from scurfy mice as
expected, demonstrating a lack of Foxp3 staining in CD11b* cells
(Figure 1B). Because Manrique et al used the FITC/GFP channel for
revealing Foxp3 in their study,” which is more prone to autofluorescence
than the PE channel, we next assessed the deletion of Foxp3PTR-eGFP+
cells in DT-treated DEREG mice. Approximately 4% of T cell-excluded
BM cells in WT mice displayed strong autofluorescence (Figure 1C),
comparable with the reported frequency’. DEREG mice did not harbor
increased frequencies of GFP/autofluorescence™ cells within the
T cell-excluded CD11b* BM fraction (Figure 1C), which would be
expected from Foxp3-reporting cells. Similarly, DT administration to
DEREG mice did not result in depletion of the GFP/autofluorescence*
population (Figure 1C). DT efficiently accessed the BM because GFP*
Tregs were eliminated (not shown). Of note, autofluorescent CD11b*
cells are FSCMSSCh compared with nonautofluorescent CD11b™ cells
and T cells (not shown). Consistent with Manrique et al,” we readily
detected CD11b™ autofluorescent cells in spleens and BM of Rag KO
mice, but those similarly lacked Foxp3 expression (not shown). We next
generated BM-derived macrophages (BMM) from WT or DEREG
mice in presence or absence of DT during the culture period. Again, we
could not detect Foxp3 staining in CD11b* BMM, and no increased rate
of cell death was observed after culture in presence of DT (Figure 1D
and not shown). LPS stimulation—which was implicated in de novo
Foxp3 expression by Foxp3~ macrophages’—did not induce Foxp3
expression in BMM (not shown). The authors demonstrated a regulatory
role for putative Foxp3™ macrophages in B16 melanoma.” To exclude
that Foxp3 is induced in macrophages by melanoma-dependent mecha-
nisms, we analyzed B16-OVA melanoma-bearing mice. Spleens and
BM lacked CD11b*Foxp3* cells (not shown), as did tumor-free mice
(Figure 1A-C). Furthermore, single cell suspensions of tumors raised in
WT mice revealed no specific Foxp3 expression in CD11b* cells,
whereas CD11b~Foxp3* Tregs were present (Figure 1E), in line with
previous results.’> Similarly, immunofluorescence analyses of tumor
sections revealed that Foxp3™ cells were exclusively CD3, but did not
coexpress F4/80 or CD11b, whereas Foxp3™ cells were completely
absent from tumors elicited in Rag KO mice (Figure 1F, not shown).

Concluding, we found no evidence for Foxp3 expression in
macrophages by combining flow cytometry, immunofluorescence
microscopy and genetic approaches. This is fully in line with the
previously noted lack of Foxp3 protein expression in Rag KO
spleens.? Thus, macrophage subpopulations are not targeted in
genetically engineered DEREG mice and do not contribute to the
onset of self/tumor-specific immunity upon Foxp3* Treg ablation.
These results are of immediate relevance for the use of Foxp3
reporter mice and for the translational design of novel cancer
immunotherapies.
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