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Hereditary hemochromatosis (HH) is a
highly prevalent genetic disorder charac-
terized by excessive parenchymal iron
accumulation leading to liver cirrhosis,
diabetes, and in some cases hepato-
cellular carcinoma. HH is caused by mu-
tations in the genes encoding upstream
regulators of hepcidin or more rarely in
the hepcidin gene itself. A deficit in hep-

cidin results in intestinal iron hyper-
absorption; however, the local effectors
mediating the up-regulation of iron ab-
sorption genes are unknown. We hypoth-
esized that HIF-2 could mediate high iron
absorption rates in HH. We generated
Hepc�/� mice (a murine model of hemo-
chromatosis) lacking HIF-2 in the intes-
tine and showed that duodenal HIF-2 was

essential for the up-regulation of genes
involved in intestinal iron import and
the consequent iron accumulation in
the liver and pancreas. This study high-
lights a role of HIF-2 in the dysregulation
of iron absorption and chronic iron accu-
mulation, as observed in patients with
hemochromatosis. (Blood. 2012;119(2):
587-590)

Introduction

Hereditary hemochromatosis (HH) is a heterogeneous genetic
disease characterized by excessive iron accumulation in the liver
and parenchyma. Clinical manifestations include liver cirrhosis,
diabetes, cardiomyopathy, arthropathy, hypermelanotic skin pig-
mentation, and hepatocellular carcinoma. HH is typically caused
by mutations in genes encoding either upstream signaling mol-
ecules involved in the induction of hepcidin expression (HFE,
transferrin receptor 2, and hemojuvelin) or more rarely in the
hepcidin gene itself.1,2 Iron absorption in the duodenum is the only
way to control iron entry in the body and is finely regulated in
response to systemic iron requirements.3 At the apical brush border
of duodenal enterocytes, duodenal cytochrome b (DCYTB) fa-
cilitates non-heme iron uptake by divalent metal transporter 1
(DMT1), whereas ferroportin (FPN) exports iron across the baso-
lateral membrane.4

Hepcidin is the central regulatory molecule of systemic iron
homeostasis5 and regulates cellular iron efflux by binding to FPN
and inducing its internalization and subsequent degradation in
the lysosome.6 Although hepcidin is known to act at a systemic
level to regulate the rate of iron absorption by controlling the
amount of iron exported across the basolateral membrane by
FPN, the local effectors mediating the up-regulation of apical iron
absorption genes in hemochromatosis are unknown. We and others
have previously demonstrated that the hypoxia-inducible factor-2�
(HIF-2�) transcription factor, and not HIF-1�, regulates DMT1,
DCYTB, and FPN expression in the duodenum at basal level,
iron deficiency, and in conditions of increased erythropoiesis.7-9

HIF-1 and HIF-2 are heterodimeric transcriptional factors and
central mediators of cellular and systemic adaptation to hypoxia.
In the presence of oxygen, the HIF-� subunit is hydroxylated

by oxygen- and iron-dependent prolyl hydroxylases and targeted
to the proteasome after the binding to the von Hippel-Lindau
protein. On hypoxia (or iron deficiency), HIF-� is stabilized and
binds to the HIF-� constitutive subunit to induce the transcription
of target genes.10

We hypothesized that HIF-2 could be a mediator of high iron
absorption rates in HH and addressed this question by breeding the
hepcidin knockout mice (Hepc�/�), a model of severe iron
overload, with mice lacking HIF-2 in the intestinal epithelium.

Methods

Animals

Animal studies described here were reviewed and approved (Agreement
P2.CP.151.10.) by the Président du Comité d’Ethique pour l’Expérimentation
Animale Paris Descartes. We intercrossed mice homozygous for germline
knockout of hepcidin11 and mice with loss of HIF-2� specifically in the
intestinal epithelium Hif-2�lox/loxVillin-Cre�7, both in a C57BL/6J genetic
background, to produce the Hepc�/�/Hif-2�lox/lox/Villin-Cre� mouse strain
(referred as Hepc�/�Hif-2��int). Finally, we interbred Hepc�/�HIF-2��int

and Hepc�/�/Hif-2�lox/lox/VillinCre� mice (here referred as Hepc�/�). Male
mice were analyzed at the age of 5 months and compared with con-
trol genotypes, including Hepc�/� Hif-2�lox/lox/VillinCre� and Hepc�/�

Hif-2�lox/lox/VillinCre� (referred as controls [CTR]).

Reverse transcription and real-time quantitative PCR

RNA extraction, reverse transcription, quantitative PCR, and sequences of
the primers used have been previously described.7 All samples were
normalized to the threshold cycle value for cyclophilin.
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Western blot

Frozen whole duodenal tissue was homogenized using a pestle and smash,
and extraction of membrane proteins was performed as previously de-
scribed.7 The following antibodies were used: DMT1 antibody recognizing
both DMT1-IRE and non-IRE isoforms12 (kind gift of François Cannone-
Hergaux), DCYTB antibody (Alpha Diagnostic DCYTB11-A), and FPN
antibody (Alpha Diagnostic, MTP11-A).

Iron measurements and immunostaining

Plasma and tissue iron were quantified colorimetrically by a previously
described method.7 For histology, tissues were fixed in 4% formaldehyde
and embedded in paraffin and stained with Perls Prussian blue and nuclear
fast red counterstain.

Statistical analysis

Statistical analysis was performed using GraphPad Prism Version 4.0,
and the significance of experimental differences was evaluated by 1-way

ANOVA followed by a Bonferroni posttest. Values in the figures are
expressed as mean � SEM.

Results and discussion

To test whether HIF-2 can mediate the up-regulation of iron
absorption genes in HH, we generated Hepc�/� mice deleted for
HIF-2� in the duodenum (Hepc�/�Hif-2��int mice). These mice
do not exhibit any overt phenotypic abnormalities. We previously
reported that DMT1, DCYTB, and FPN protein levels were
increased in the duodenum of hepcidin-deficient mice (the Usf2�/�

mouse model13). We confirmed this result (Figure 1B) and fur-
ther demonstrated that Hepc�/� mice presented high levels of
DMT1, DCYTB, and FPN mRNA (although to a lesser extent)
compared with control mice (Figure 1A), suggesting that a
transcriptional control of these genes takes place in the duodenum

Figure 1. Iron absorption genes are decreased in Hepc�/�Hif-2��int compared with Hepc�/� mice. (A) Relative mRNA expression of DMT1 � IRE, DCYTB, and FPN
normalized to Cyclophilin in the duodenum of Hepc�/�Hif-2��int (F; n � 9) versus Hepc�/� (f; n � 9) and CTR (Œ; n � 9) mice. (B) Western blot of FPN, DMT1, and DCYTB on
membrane extracts of whole duodenum from Hepc�/�Hif-2�int and Hepc�/� mice versus CTR littermates. Expression was normalized to �-actin. Results were quantified using
ImageJ Version 1.43r software (http://rsb.info.nih.gov/ij/). All genotypes used contain the Hif-2�lox/lox allele. *P � .05. **P � .01. ***P � .001. ns indicates not significant.
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of these mice. The levels of DMT1, DCYTB, and FPN transcript
and protein were fully attenuated in Hepc�/�Hif-2��int (Figure
1A-B) compared with Hepc�/� mice with levels not statistically
different from wild-type mice. The duodenal deletion of HIF-2�
decreased significantly FPN protein levels, despite the lack of
hepcidin, which should prevent FPN degradation by systemic
regulation.

We next asked whether the decrease of genes involved in iron
absorption at the apical (DMT1 and DCYTB) and the basolateral
membrane (FPN) was sufficient to prevent the hyperabsorption
characteristic of the Hepc�/� mice. Interestingly, the double
knockout presented a significantly decreased accumulation of
nonheme iron in the liver and pancreas compared with Hepc�/�

littermates. This was assessed both quantitatively (Figure 2A) and

Figure 2. Iron parameters are decreased in the Hepc�/�Hif-2��int mice compared with Hepc�/� mice. (A) Quantification of liver (n � 12 per group) and pancreas (n � 6
per group) iron levels in Hepc�/�Hif-2��int (F) and Hepc�/� (f) versus CTR (Œ) mice. (B) Perls’ blue staining of the liver, pancreas, and spleen of CTR, Hepc�/�, and
Hepc�/�Hif-2��int mice. One representative picture of each genotype is shown. Bars represent 200 	m. (10
/0.45, Nikon E800 microscope, CDD QICAM cooled camera
[QImaging, QCapture Version 2.98.2 software [Qualitative Imaging Corporation]). (C) Plasma ferritin, plasma iron, and transferrin saturation in Hepc�/�Hif-2��int (Œ; n � 9)
versus Hepc�/� (f; n � 9) and CTR (F n � 9) mice. ***P � .001. ns indicates not significant.
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qualitatively by Perls’ blue staining (Figure 2B). Plasma ferritin
levels, reflecting parenchymal iron storage, were significantly
diminished in Hepc�/� mice lacking duodenal HIF-2, compared
with Hepc�/� mice (Figure 2C). However, plasma iron concentra-
tions or transferrin saturation (Figure 2C) did not differ between the
Hepc�/�Hif-2��int and Hepc�/� littermates, suggesting a contribu-
tion of the iron recycled from the spleen, an organ that is not
affected by the deletion of Hif-2�.14 Indeed, most circulating iron is
provided by macrophage iron recycling, and this process seems not
affected in the Hepc�/�Hif-2��int mice compared with the Hepc�/�

mice, as shown by the lack of detectable iron in the macrophages of
the spleen in both models (Figure 2B). Interestingly, hematologic
parameters (hemoglobin, hematocrit, mean corpuscular volume)
were decreased in the Hepc�/�HIF-2��int mice compared with the
Hepc�/� mice and not statistically different from wild-type mice
(supplemental Figure 1, available on the Blood Web site; see the
Supplemental Materials link at the top of the online article).

In conclusion, our data suggest that HIF-2 contributes to the
intestinal iron hyperabsorption in a mouse model of HH but may
not overcome all of the negative consequences of the abnormal iron
metabolism. Associations between single nucleotide polymor-
phisms at Hif-2� locus and blood-related phenotypes have been
recently demonstrated.15,16 It would be of interest to determine
whether HIF-2� polymorphisms could be found associated with
iron burden in hemochromatosis. Current treatments for iron
overload disorders are limited to phlebotomy or, in case of severe
anemia, cardiac failure, or poor tolerance, to chelation therapies.2

Here, we propose that therapeutic intervention on intestinal HIF-2�
activity might be beneficial to reduce the rates of iron absorption
and parenchymal iron overload.
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