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Autophagy is the process by which super-
fluous or damaged macromolecules or
organelles are degraded by the lyso-
some. Pharmacologic and genetic evi-
dence indicates that autophagy plays
pleiotropic functions in cellular homeosta-
sis, development, survival, and differentia-
tion. The differentiation of human blood

monocytes into macrophages is a
caspase-dependent process when trig-
gered ex vivo by colony stimulating
factor-1. We show here, using pharmaco-
logic inhibitors, siRNA approaches, and
Atg7-/- mice, that autophagy initiated by
ULK1 is required for proper colony stimu-
lating factor-1-driven differentiation of hu-

man and murine monocytes. We also
unravel a role for autophagy in macro-
phage acquisition of phagocytic func-
tions. Collectively, these findings high-
light an unexpected and essential role of
autophagy during monocyte differentia-
tion and acquisition of macrophage func-
tions. (Blood. 2012;119(19):4527-4531)

Introduction

Autophagy (macroautophagy) is a general mechanism for degrada-
tion and recycling of macromolecules that is characterized by the
formation of double-membrane vesicles called phagosomes that
derive from phagophores.! Autophagy plays a crucial role in
cellular homeostasis, development, differentiation, cell death and
survival, and ageing.>* Although autophagy functions mainly as a
safeguard mechanism during nutrient starvation, excessive au-
tophagy leads to cell death.’

Monocytes have the unique property to migrate into tissues in
response to inflammation where they are subjected to differentia-
tion into morphologically and functionally heterogeneous cells,
such as macrophages, myeloid dendritic cells, and osteoclasts,
depending on the stimulus.® The differentiation of human periph-
eral blood monocytes into macrophages can be reproduced ex vivo
by exposure to colony stimulating factor-1 (CSF-1; also known as
M-CSF), a process that requires limited activation of caspase-8 and
caspase-3.7 Binding of CSF-1 to its receptor CSF-1R triggers
successive waves of AKT activation, leading to the formation of a
caspase-8 activating platform and differentiation of monocytes into
macrophages.” In the present study, we investigated the implication
of autophagy in monocyte differentiation and acquisition of
macrophage functions.

Methods

Human monocyte culture and differentiation

Human peripheral blood monocytes were obtained from healthy donors
with informed consent following the Declaration of Helsinki according to

recommendations of an independent scientific review board. Experiments
on mice were performed with the approval of the ethics committee of the
University of Nice. Human and mouse monocytes were enriched with
autoMACS Separator (Miltenyi Biotec). Macrophage differentiation was
visualized using standard optics (Carl Zeiss), electronic microscopy, flow
cytometry, and phagocytic assay. A detailed description is in supplemental
Methods (available on the Blood Web site; see the Supplemental Materials
link at the top of the online article).

Immunoblot assays

Western blot analysis has been described previously.” Cytoplasmic and
microsomal fractions were carried out according to the manufacturer’s
instructions (proteoExtract Subcellular Proteome Extraction KIT; Calbio-
chem) and analyzed by immunoblotting.

Cathepsin activity measurement

After stimulation, cells were lysed (50mM Tris, pH 7.4, 150mM NacCl,
ImM phenylmethylsulfonyl fluoride, 1% Triton X-100) and cellular
extracts were incubated in 96-well plates with z-RR-AMC (cathepsin B) or
z-FR-AMC (cathepsin B/L) as substrates for various times at 37°C.
Cathepsin activity was measured by following emission at 460 nm (excita-
tion at 390 nm). Each experiment was performed in quadruplicates and
repeated at least 4 times.

siRNA knockdown

siRNA were introduced into monocytes by nucleoporation (Amaxa) as
described previously.® We used siRNAs targeting ULK 1, Beclin-1 (BEC#1
and BEC#2), Atg7 (ATG7#1 and ATG7#2), Atg5 (ATG5#1 and ATG5#2),
and luciferase as a negative control. Sequences are accessible on request
(Invitrogen).
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Results and discussion

One of the features of CSF-1-induced ex vivo monocyte differen-
tiation is rapid adherence to the culture flask with a characteristic
fibroblast-like shape, as judged by phase-contrast microscopy at
day 3 (Figure 1A top panels). Electronic microscopy images of
these cells showed typical autophagic structures, including double
membranes surrounding cytoplasmic material and/or mitochon-
dria, which correspond to autophagosomes (Figure 1A right
panels). In accordance with our previous observations,” we de-
tected caspase-3 proteolysis and nucleophosmin (NPM) cleavage
in monocytes that have been exposed for 48 hours to CSF-1
(Figure 1B). The accumulation of LC3-1I, which is a hallmark of
autophagy, was detected in CSF-1-treated monocytes as soon as
16 hours after the addition of CSF-1, which was earlier than
caspase activation. Concomitantly, cathepsin B (CTSB) was cleaved
into its active form, which is a feature of lysosomal activation, and
the expression of p62/SQSTMI1 (sequestosome) and LAMP2, a
lysosomal marker, increased. Accumulation of p62 during CSF-1-
induced differentiation is the balance between increased expression
of the protein and its degradation by lysosomal proteases.’ This is
probably the reason why p62 increased in the first 2 days after
CSF-1 addition and next decreased, reflecting its specific degrada-
tion in autophagosomes. Cathepsin activities increased gradually as
a function of time during macrophagic differentiation (Figure 1C).
The occurrence of autophagy reflected increased lysosomal flux
because LC3-II and p62 accumulations raised in the presence of
bafilomycin Al, an inhibitor of the lysosomal vacuolar H+-
ATPase (Figure 1D). Autophagy was not observed in human
monocytes that differentiate into dendritic cells on exposure to
GM-CSF plus IL-4, as judged by the lack of accumulation of
LC3-1I, CTSB activation, and caspase-3 and NPM proteolysis
(supplemental Figure 1A). Finally, autophagy induction was also
detected during differentiation of monocytes induced by GM-CSF
or CSF-1 plus RANK-ligand but not on IL-6 treatment (supplemen-
tal Figure 1B).

Cellular fractionation demonstrated the accumulation of LC3-II
in the microsomal fraction, in accordance with its well-admitted
lipidation that targets it to the membrane of phagophores (Figure 1E).
Cleaved caspase-8 and active CTSB were also detected in this
fraction, with very high amounts of both active proteases at day
2 of differentiation. In addition, ATG5 was found in this fraction,
implying that ATG proteins and caspase-8 coexist in the same
compartment (Figure 1E). Altogether, autophagy is induced during
the CSF-1-induced differentiation of monocytes into macrophages.
To get insights into the mechanism of autophagy induction by
CSF-1, we investigated the implication of ULKI, a kinase that
initiates autophagy, in macrophagic differentiation. CSF-1 was
shown to increase ULK1 protein level and phosphorylation on
Ser555 (Figure 1F). Importantly, knockdown of ULK1 inhibited
both LC3-II accumulation and macrophagic differentiation
(Figure 1G-H).

To further determine the role of autophagy in the process of
macrophage differentiation, we investigated the consequence of
inhibiting autophagy by both pharmacologic and other siRNA
approaches. Both 3-methyladenine (3-MA), a Vps34 inhibitor, and
CA-074-Me (CA), a CTSB and L inhibitor, prevented CSF-1-
induced differentiation of human monocytes, as indicated by the
lack of characteristic morphologic changes and CD71 and CD163
expression increase (supplemental Figure 1C), without increasing
the rate of cell death as judged by annexin-V/4,6-diamidino-2-
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phenylindole staining and caspase-3 and -8 activities (supplemental
Figure 2A-C). In addition, autophagy inhibition was totally revers-
ible when pharmacologic inhibitors were withdrawn for the culture
medium at day 2 and cells restimulated with CSF-1 for 3 days
(supplemental Figure 3A-B), indicating that this way of inhibiting
autophagy was not deleterious for monocytes. Importantly, 3-MA
and CA also abolished LC3-II accumulation and NPM cleavage at
day 2 (supplemental Figure 1D). As expected, CA abrogated,
whereas 3-MA only partially affected, CTSB and L activity
(supplemental Figure 1E). Finally, autophagy was required for
production of functional macrophages because 3-MA and CA
treatment abolished their capacity to phagocyte bacteria (supplemen-
tal Figure 1F). To substantiate further the implication of autophagy
in monocyte differentiation, we knocked down ATG6 (Beclin-1),
ATG7, and ATGS using 2 specific siRNAs (Figure 2A; supplemen-
tal Figure 1G). All siRNAs were found to dampen concomitantly
the expression of their respective targets (Figure 2B) and to inhibit
monocyte differentiation, as assessed by flow cytometry (Figure 2A),
but none was observed to increase the rate of cell death as judged
by annexin-V/4,6-diamidino-2-phenylindole staining and caspase
3 activity (supplemental Figure 2A-B). Finally, Beclin-1, ATGS, or
ATG7 knockdown also impaired the ability of differentiated
monocytes to phagocyte bacteria (Figure 2C).

As in human, differentiation of murine monocytes into macro-
phages was accompanied by NPM caspase-dependent cleavage and
induction of LC3-II accumulation (Figure 2D-E). The ex vivo
differentiation of monocytes from vav-Atg7 /'~ deficient mice
(Figure 2F) into macrophages was drastically inhibited compared
with monocytes from control littermate (Figure 2G). Collectively,
our data demonstrate an essential role of autophagy in CSF-1-
induced differentiation of monocytes into macrophages and the
generation of functional phagocytes.

There is compelling evidence that autophagy can drive the rapid
cellular changes necessary for proper differentiation.® For instance,
autophagy is involved in mitochondrial clearance during terminal
erythroid differentiation’ as well as in megakaryocyte,'® lympho-
cyte,'12 and adipocyte differentiation.!3 Of note, most of these
differentiation processes are also known to require caspase activa-
tion.!* We establish that autophagy plays a crucial role in monocyte
differentiation into macrophages when this differentiation is repro-
duced ex vivo by CSF-1 stimulation. Because active caspase-8 and
ATG proteins were found together in the microsomal fraction,
initiation of caspase-8 activation and autophagy could take place in
the same complex, as an autophagy-dependent apical activation of
caspase-8 that is independent of death ligands was recently
described.’ During the process of revision of the current manu-
script, it was reported that GM-CSF—-dependent differentiation of
monocytes into macrophages was also an autophagic process. '

Human peripheral blood monocytes attracted by the chemokine
CCL2 that shifted toward M2 phenotype by a local microenviron-
ment are a main source of tumor-associated macrophages.!” These
cells promote tumorigenesis via immunosuppressive effects, scav-
enging, and angiogenesis and are associated with poor prognosis in
various tumors.'® CSF-1-mediated differentiation of human mono-
cytes cultured ex vivo reproduces this macrophage polarization,
and inhibition of the CSF-1 receptor depletes tumor-associated
macrophages in vivo.!%20 Our results suggest that targeting au-
tophagy mechanisms could be an alternative approach to prevent
the deleterious effect of macrophages in tumor promotion through
blockade of CSF-1-mediated differentiation of monocytes.
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Figure 1. Autophagy is induced during macrophagic differentiation of human monocytes. Human peripheral blood monocytes from healthy donors were exposed
for the indicated times to 100 ng/mL CSF-1. (A) Electron microscopy images showing ultrastructural features of a representative monocyte (d0) and morphologic
features of autophagy in monocytes treated for 3 days (d3) with CSF-1. P indicates phagophore; A, autophagosome; and N, nuclei. (B) Immunoblot analysis of
caspase-3, NPM, LC3, Lamp2, CTSB, and SQSTM1 in monocytes exposed for the indicated times to CSF-1. Actin is used as a loading control. *Cleavage fragments.
Molecular weights (MW) are in kDa. (C) Measurement of CTSB and B + L activities using Z-RR-AMC or Z-FR-AMC as substrates, respectively, in monocytes treated
with CSF-1. Results, expressed as arbitrary units (A.U.) per minute and per milligram of protein, are the mean = SD of 4 independent experiments performed in
quadruplicate. (D) Monocytes were exposed for 3 days to 100 ng/mL alone or in association with bafilomycin A1 (10nM) added 48 hours after CSF-1 treatment, and
protein expression was analyzed by immunoblot. Actin is used as a loading control. (E) Monocytes were exposed for 2 days to CSF-1 before collecting cytoplasmic (F1)
and microsomal (F2) extracts that were analyzed by immunoblot. Lamp2 and y-tubulin are used as a control for microsomal and cytoplasmic fractions, respectively.
(F) Immunoblot analysis of phospho-ULK1 (Ser555) and ULK1 in monocytes exposed for the indicated times to CSF-1. (G) Monocytes were transfected with siRNA
targeting Luciferase (Luc) or ULK1 and exposed 2 days to CSF-1. The expression of ULK1 in transfected cells was analyzed by immunoblot. (F-G) Actin is used as a
loading control. (H) Monocytes were transfected with siRNA targeting Luciferase (Luc) or ULK1 and exposed 2 days to CSF-1. Macrophage differentiation was
examined morphologically (fibroblastic shape) and by 2-color flow cytometric analysis. Percentages indicate cells that express both CD71 and CD163.
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Figure 2. Autophagy involvement in monocyte differentiation into macrophages. (A) Monocytes were transfected with siRNA targeting Luciferase (Luc), Beclin-1 (BEC),
ATG7, or ATG5 and exposed 2 days to CSF-1. Macrophage differentiation was examined morphologically (fibroblastic shape) and by 2-color flow cytometric analysis.
Percentages indicate cells that express both CD71 and CD163. (B) Monocytes were transfected with siRNA targeting Luciferase (Luc), Beclin-1 (BEC), ATG7, or ATG5 and
exposed 2 days to CSF-1. The expression of Beclin-1, ATG7, ATG5, and LC3 in cells transfected with the indicated siRNA and treated for 2 days with CSF-1 was analyzed by
immunoblot. Actin is used as a loading control. Molecular weights (MW) are in kDa. (C) Functional assay of monocytes transfected with Luciferase, Beclin-1, ATG7, or ATG5
siRNA and treated for 2 days with CSF-1. Results are expressed as fold induction compared with untreated monocyte and represent the mean = SD of 4 independent
experiments performed in triplicate. ***P < .001 (vs d2 LUC) according to a student paired ttest. (D) Enriched bone marrow mouse monocytes were exposed for the indicated
times to 100 ng/mL CSF-1. Differentiation was studied by morphologic examination (fibroblastic shape) and by 2-color flow cytometric analysis at indicated day. Percentages
indicate cells that express both high CD11b and F4/80 staining. One representative of 5 independent experiments is shown. (E) Immunoblot analysis of NPM and LC3 in mouse
monocytes exposed for the indicated times to CSF-1. Actin is used as a loading control. *Cleavage fragments. (F) Immunoblot analysis of ATG7 in monocytes obtained from WT
or vav-Atg7~/~ mice (n = 2). Actin is used as a loading control. (G) Monocytes obtained from WT or vav-Atg7 /- mice were exposed for the indicated times to 100 ng/mL
CSF-1. Differentiation was studied by morphologic examination (fibroblastic shape) and by 2-color flow cytometric analysis at day 4. Percentages indicate cells that express
both high CD11b and F4/80 staining.
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