
resistant NOTCH1-mutated clone is at risk of acquiring further
progression-associated hits. Besides the known t(14;19)(q32;
q13)/IGH-BCL3,8-10 we also identified dic(9;14)(q34;q32)/IGH-
NOTCH1, which so far has not been reported in B-cell
leukemia/lymphoma, as a novel genomic aberration capable of
triggering RS.
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To the editor:

Persistently high quality of life conferred by coexisting congenital deficiency of terminal
complement C9 in a paroxysmal nocturnal hemoglobinuria patient

Paroxysmal nocturnal hemoglobinuria (PNH) clone bears a PIGA
mutation and fails to express glycosylphosphatidylinositol-linked
membrane proteins such as complement-regulatory CD55 and
CD59, leading to complement-mediated intravascular hemolysis
and thrombosis. The advent of eculizumab, an inhibitor of terminal
complement C5, provides good quality of life (QOL) by preventing
hemolysis and thrombosis,1,2 and may improve prognosis of PNH
patients.3 However, the safety of its long-term use for more than
10 years1,2 and the pathogenesis of eculizumab-associated extravas-
cular hemolysis have not been established.4 For the hemolysis,
steroid, splenectomy,5 and C3-targeted therapy6 have been pro-
posed, despite their individual risks.7 In 1980, we found a PNH
patient with a coexisting congenital deficiency of C9, still the only
case globally.8 Presently, the patient is 78 years old and has kept a
high QOL (no experience of massive hemolysis, thrombotic events,
critical infection, or malignant diseases) for more than 31 years

after the PNH diagnosis. Of note, the patient manifests very low
levels of PNH hemolysis (Figure 1A-B) and marrow failure (Figure
1A). The high QOL may reflect that the C9-deficiency prevents
membrane attack complex (C5b-9) formation but allows immune
reactions by generation of C5a and C5b-8.7 Currently, virtually all
erythrocytes (and granulocytes) of the patient showed the PNH
phenotype (Figure 1A-C). Whole blood cells had the same PIGA
mutation in 1998 and 2011 (Figure 1D), indicating that the cells are
of a single PNH clone. Marrow cells showed a normal karyotype.
These findings support the concept that clonal hematopoiesis in
PNH is a benign process. The clinical features suggest the safety
and efficacy of long-term inhibition of terminal complement
including C9 for even elderly PNH patients. Thus, we propose that
C9 targeting is another option for PNH therapy.2

Hemosiderinuria (Figure 1E) is an indicator of intravascular
hemolysis, probably induced by C5b-8 in the C9-deficient patient.7
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Surprisingly, the patient had C3d-bound erythrocytes (Figure 1C)
that often appear in PNH patients on eculizumab4,5 and are
susceptible to extravascular hemolysis.7 Thus, the patient manifests
extremely low levels of both intra- and extravascular hemolysis. It
is interesting to verify whether ordinary PNH patients harbor
dormant extravascular hemolysis. Judging from the fluorescence
intensity of C3d-positive erythrocytes, the amount of C3d on the
PNH erythrocytes of our patient appears less than that of some
PNH patients on eculizumab (Figure 1C; current report4). In
contrast, C3d� erythrocytes were undetectable in PNH patients
before eculizumab treatment (Figure 1C).4 The amount of C3d on
erythrocytes may inversely correlate with the intensity of intravas-
cular hemolysis. It then led us to speculate that intravascular
hemolysis is too rapid to allow extravascular clearance of C3d-

bound PNH erythrocytes in vivo. It is also theoretically possible
that eculizumab-associated extravascular hemolysis is controllable
by decreasing the dose of eculizumab. The C3d deposition could
also be affected by the altered expression of erythrocyte glycolip-
ids.9 In general, infection amplifies both intravascular hemolysis of
PNH10 and extravascular hemolysis of hereditary spherocytosis.
Eculizumab may not completely eliminate the infection-associated
precipitation of hemolysis in PNH patients having both types of
hemolysis.

The findings in our exceptional PNH patient surely promote
unveiling of complex pathophysiology and contribute to the
establishment of a better terminal complement-targeted therapy in
PNH.
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Figure 1. Analysis of the C9-deficient patient with PNH. (A) Clinical profile of the
C9-deficient patient with PNH. ND indicates not determined; and PNH erythrocytes,
negative for both CD55 and CD59. (B) Correlation between LDH levels and PNH
type III erythrocytes (%). �, 14 patients with PNH; ● , C9-deficient patient with
PNH; dashed line, upper limit of normal LDH range. (C) C3d expression on
erythrocytes of PNH patients with C9 deficiency (C9� PNH), with eculizumab
(Ecu� PNH), without eculizumab (Ecu� PNH), and of a patient with autoimmune
hemolytic anemia (AIHA). Numbers indicate the population (%) of cells in each
quadrant. (D) Arrow indicates a PIGA mutation, deletion of G (352), in the
granulocyte genome exon 2 of C9� PNH. (E) Arrows indicate urine hemosiderin
stained with Prussian blue of C9� PNH.
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